
A Appendix

A.1 Background on Pairwise Learning

We coin the term “pairwise” learning for the frameworks that learn visual representations based on
semantic invariance between dual-stream encoder representations. A general pairwise learning method
first generates multiple augmented views by applying a series of random image augmentations to the
input sample, then clusters views with the same semantics in the representation space. Optionally in
such frameworks, methods using contrastive losses repel samples with different semantics. Previous
works not only have built various self-supervised tasks that benefit representation learning but also
show that learned representations can benefit different downstream tasks.

In this paper, we focus on four representative pairwise learning methods, MoCo [13, 14, 34],
BYOL [24], SimSiam [12] and DINO [8]. Specifically, MoCo takes advantage of the contrastive loss
and negative samples in the mini-batch, while BYOL, SimSiam, and DINO focus on the similarity of
the same image across diverse augmentations.

MoCo Momentum Contrast (MoCo) takes advantage of a contrastive loss function InfoNCE [57]
with dot product similarity. It starts from two identical encoder networks, an online encoder fq and a
momentum encoder fk.

At each training step, a mini-batch of N images x are uniformly sampled from a training set D.
Given two distributions of image augmentations T and T ′, two image augmentations t ∼ T and
t′ ∼ T ′ are sampled respectively and applied to x, resulting in 2N samples. Augmented images,
v = t(x) and v′ = t′(x), are called views. Then, v and v′ are fed to two encoders to generate queries
q = fq(v) and keys k = fk(v

′).

For each view vi in v and its corresponding query qi = fq(vi), the contrastive loss is formulated as:

LMoCo,qi = − log
sim(qi, ki)∑N
j=1 sim(qi, kj)

(2)

where sim(qi, ki) = exp(qi · sg[ki]/τ), sg[·] implies stop gradients and τ is a temperature hyper-
parameter. This loss encourages qi to be similar to its corresponding key ki (called positive), but
dissimilar to other keys (called negatives) in the mini-batch. The online encoder fq with parameters
θq is updated by the above contrastive loss. The momentum encoder fk with parameters θk, an
Exponential Moving Average (EMA) of fq , is updated by

θk := mθk + (1−m)θq, (3)

where m ∈ [0, 1) is a momentum coefficient that controls how fast θk updates towards the online
network θq . Finally, fk will be discarded once the training completes.

BYOL Similar to MoCo, in addition to fq and fk, BYOL maintains two identical projection networks
gq, gk and one prediction networks pq (See Fig. 10a). BYOL also starts from inputs v and v′ but
calculates the projection z1 = gq(fq(v)) and z2 = gk(fk(v

′)), and tries to regress z2 from z1 using
the prediction network pq .

After applying l2-normalization to the prediction pq(z1) and the target projection z2, a mean squared
error is measured as:

LBYOL,1 = ∥pq(z1)− sg[z2]∥22 = 2− 2
pq(z1) · sg[z2]

∥pq(z1)∥2 · ∥sg[z2]∥2
(4)

whose value is low when pq(z1) is close to z2.

Similarly, by swapping v and v′, another symmetric loss can be applied on top of z′1 = gq(fq(v
′))

and z′2 = gk(fk(v)), as LBYOL,2 = ∥pq(z′1)− sg[z′2]∥
2
2. The total loss is LBYOL = (LBYOL,1 +

LBYOL,2)/2. The parameters of fk and gk are also the EMA of fq and gq respectively.

Finally, fk, gq , gk and pq will be discarded once the training completes.

SimSiam SimSiam (Simple Siamese) shares the same architecture as BYOL, while the parameters of
the ‘momentum’ branch of SimSiam are always tied to the ‘online’ branch (See Fig. 10b). Therefore,
SimSiam only maintains one branch, including an encoder f , a projector g, and a predictor p.

18

(a) BYOL (b) SimSiam (c) DINO

Figure 10: Conceptual comparison of three pairwise learning frameworks

SimSiam uses negative cosine similarity to encourage the predicted representation h = p(g(f(v)) to
be similar to the projected representation of another view g(f(v′)), as follows:

LSimSiam,1 = − h

∥h∥2
· sg[g(f(v′))]
∥sg[g(f(v′))]∥2

(5)

Another symmetric loss term can also be derived as LSimSiam,2 = − h′

∥h′∥2
· sg[g(f(v))]
∥sg[g(f(v))]∥2

, where
h′ = p(g(f(v′))). The total loss is LSimSiam = (LSimSiam,1 +LSimSiam,2)/2. And gq will be discarded
once the model is trained.

DINO DINO shares a similar overall structure as MoCo which contains two encoders fq and fk,
and fk is the EMA of fq (See Fig. 10c). The outputs of both encoder networks are normalized as
probability distributions over K dimensions by applying softmax with a temperature parameter τt,
and K is the dimension of fq(v). DINO also maintains a centering vector C with dimension K.
Following the formulation of knowledge distillation, a cross-entropy loss is applied to encourage the
output distribution of fq to become similar to a centered distribution from fk, as follows:

LDINO,1 = −P (sg[fk(v′)]− C) · logP (fq(v)) (6)

where P (x) = softmax(x/τt). By swapping v and v′ in Eq. 6, another loss LDINO,2 which is
symmetric to LDINO,1 can be derived. And the total loss is the mean value of LDINO,1 and LDINO,2.

After each step of optimization, fk is updated by Eq. 3. C also gets updated in a similar manner:
C := mcC + (1−mc) · mean(fk(v), fk(v′)) (7)

Here mc ∈ [0, 1) is another momentum coefficient.

A.2 Implementation Details

Here we present the implementation details in all settings.

A.2.1 General Joint Learning Framework

The general joint learning framework starts from the official implementation of CURL [45] for
DMControl and Atari. For different self-supervised learning losses, we only replace the contrastive
learning head of CURL with a different SSL head and update the loss calculation. All the hyper-
parameters are left untouched, except that we use the learning rate 10−3 for all DMControl environ-
ments. The detailed hyper-parameters can be found at Table 2 (DMControl) and Table 4 (Atari). We
keep the most of hyper-parameters from DMControl for real-world robot experiments. The modified
configuration is listed as Table 3.

We use the official implementations of DrQ [83] and RAD [46] for DMControl benchmark. The
re-implementation of DrQ (denoting as DrQ*) has the same joint learning framework and image
augmentation from CURL.

19

Table 2: hyper-parameters used for DMControl with general joint learning framework
Hyperparameter Value

Image augmentation Random crop
Image size before augmentation (100, 100)

Image size after augmentation (84, 84)
Replay buffer size 100000

Number of environment step 100000
Initial explore steps 1000

Stacked frames 3
Action repeat 2 finger, spin; walker, walk;

reacher, hard; hopper, hop
8 cartpole, swingup
4 otherwise

Critic target update frequency 2
Actor update freq 2
EMA τ for Q′, gk 0.01

EMA τ for fk 0.05
Discount γ .99

Initial α 0.1

Convolutional layers in fq 4
Number of filters 32

Fully connected layer in fq 1
Tanh after fq False

Image representation dimension 50
MLP layer of Qi

q, Ap 3
MLP Hidden units 1024
MLP Non-linearity ReLU

Optimizer Adam
(β1, β2) → (fq, Q

i
q, Ap) (.9, .999)

(β1, β2) → (α) (.5, .999)
Learning rate (fq, Q

i
q, Ap) 10−3

Learning rate (α) 10−4

Batch size 512

Evaluation episodes 10
Train with random seeds 10

Table 3: Modified hyper-parameters for real-world robot experiments
Hyperparameter Value

Stacked frames 1
Action repeat 1

Number of environment step 100000
Number of random seeds 10

A.2.2 Losses for Self-supervised Learning

Pairwise Learning In this section, we replace the contrastive learning head with projectors and
encoders depending on the exact loss. All the projectors and predictors are two-layer MLPs with
ReLU in the middle. The input dimension which is the output dimension of the encoder, (50 on
DMControl and uArm Reacher, and 576 on Atari). The hidden dimension of the MLP is 256 and the
output dimension is 128. We use the same encoder EMA update rate (τ = 0.05 for SAC and 0.001
for Rainbow) to update the projectorgk (if applicable) in the target branch. The applied losses are
introduced in Sec. A.1.

20

Table 4: hyper-parameters used for Atari with general joint learning framework
Hyperparameter Value

Image augmentation pipeline with image size Original Image (84, 84)→
Random crop (80, 80) →
Replication padding (88, 88) →
Random crop (84, 84)

Replay buffer size 100000
Number of environment step 400000

Initial explore steps 1600
Stacked frames 4

Frameskip 4
Action repeat 4

Discount γ .99
Priority exponent 0.5

Priority correction 0.4 → 1
Target update frequency 2000

Support of Q distribution 51 bins
EMA τ for fk 0.05

Reward Clipping [−1, 1]
Max gradient norm 10

Convolutional layers in fq 2
Number of filters (32, 64)

Image representation dimension 576
Fully connected layer type Noisy Nets

Noisy nets parameter 0.1
MLP layer of Qq 2

MLP Hidden units 256
MLP Non-linearity ReLU

Optimizer Adam
(β1, β2) → (fq, Qq) (.9, .999)

Learning rate 10−4

Batch size 32

Evaluation episodes 10
Train with random seeds 20

Transformation Awareness We use a two-layer MLP with ReLU as the classifier for both rotation
classification and shuffle classification. The hidden dimension of the MLP is 1024 and the classifier
is supervised by a cross-entropy loss. The output dimension is 4 for four-fold rotation classification
and 1 for binary shuffle classification.

Reconstruction In this section, we follow the official implementation of SAC+AE [84] and apply
the same image augmentation from CURL. The decoder has one fully connected layer and the same
number of transposed convolutional layers as the convolutional layers in the encoder. When the
output image from the decoder is smaller than the ground truth, we crop the ground truth to the size
of the decoder output from the upper left corner.

For MAE we start from augmented SAC+AE and first divide the augmented image into non-
overlapping patches in the spatial domain with a size of 4 × 4. Then we randomly mask 50%
of the patches by setting the pixel value of the masked patches to zero. Finally, the reconstruction
loss is modified to calculate MSE only over the masked patches. Other regularization losses are left
untouched.

RL Context Prediction For all kinds of losses, the dimensions of all the fully connected layers and
hidden layers in MLPs are 1024.

21

A.2.3 Manually Balance Two Self-supervised Losses

In this section, we further explore the ways to manually combine two self-supervised losses. Extract-
AR, Guess-AF, and Predict-FR are methods manually designed to combine two individual losses
However, Guess-AF and Predict-FR are not better than the single self-supervised loss in their
combinations (see Guess-Action and Predict-Reward in Table 11 and Fig. 4). Considering that
Extract-AR, Guess-AF, and Predict-FR concatenate both the outputs and apply supervision by
averaging loss per element of the output, the target with a higher dimension will naturally get
more penalty due to the larger number of elements in the output. We further test the ‘Balanced’
configuration, where we only modify how the supervision is applied. Take Extract-AR as an example,
in the ‘Balanced’ setting, we first calculate loss regarding action prediction and reward prediction
separately, then the total self-supervised loss is the average of both the action prediction loss and the
reward prediction loss. By adjusting the combination weights, the ‘Balanced’ trick brings overall
improvements on top of all three methods as shown in Table 5. Such observation suggests that we
need to carefully design how the two losses are combined, which is getting trickier as the number of
combined losses increases.

Table 5: Scores on DMControl improved by manually balancing two self-supervised losses, suggest-
ing the importance of weight hyper-parameters when combining multiple losses. Methods in gray are
without a self-supervised loss for reference.

Agent ball_in_cup, catch cartpole, swingup cheetah, run finger, spin reacher, easy walker, walk

SAC-Aug(100) 541.4 ± 306.2 563.4 ± 235.0 172.1 ± 64.0 724.6 ± 154.9 654.4 ± 222.1 422.1 ± 250.8
RAD 879.9 ± 82.0 786.4 ± 95.1 387.9 ± 81.3 910.4 ± 104.5 508.8 ± 111.5 522.1 ± 95.5
DrQ 914.9 ± 21.2 692.2 ± 222.9 360.4 ± 67.7 935.6 ± 201.3 713.7 ± 147.6 523.9 ± 182.2

Extract-AR 822.2 ± 240.5 592.9 ± 124.7 225.8 ± 60.7 783.0 ± 112.0 678.7 ± 181.3 458.4 ± 148.9
Extract-AR-Balanced 897.9 ± 113.9(↑75.7) 582.3 ± 119.2(↓-10.6) 232.9 ± 33.2(↑7.1) 881.5 ± 114.2(↑98.5) 720.5 ± 136.4(↑41.8) 533.8 ± 100.8(↑75.4)

Guess-AF 329.8 ± 298.4 140.7 ± 144.0 0.9 ± 22.8 880.0 ± 59.5 382.9 ± 265.0 494.7 ± 112.7
Guess-AF-Balanced 918.4 ± 353.5(↑588.6) 536.1 ± 190.3(↑395.4) 191.2 ± 78.6(↑190.3) 842.9 ± 67.9(↓-37.1) 462.0 ± 208.7(↑79.1) 507.0 ± 128.7(↑12.3)

Predict-FR 750.3 ± 256.0 723.2 ± 167.5 12.4 ± 35.7 861.5 ± 49.2 636.1 ± 201.4 270.0 ± 154.9
Predict-FR-Balanced 829.6 ± 241.6(↑79.3) 751.0 ± 90.0(↑27.8) 216.2 ± 77.6(↑203.8) 864.8 ± 72.2(↑3.3) 882.1 ± 87.4(↑246.0) 472.9 ± 189.7(↑202.9)

A.2.4 Evolving Multiple Self-supervised Losses

We choose PSO (Particle Swarm Optimization) [41] for the optimal combination of hyper-parameters
including Nw weights of losses wi=1,2,...,Nw and two magnitudes of augmentation mj=1,2 for the
online networks and the target networks respectively. Each mj varies from [84, 116]. We limit
the range of each wi to [0, 10] for ELo-SAC and ELo-Rainbow while a range of [10−4, 104] for
ELo-SACv2 and ELo-SACv3.

During the evolutionary search, we use a batch size of 128 for ELo-SAC and ELo-SACv2, each
combination is trained with 5 different random seeds. As for ELo-SACv3, the batch size is set to
64 and the number of random seeds is set to 3 to save computation. ELo-Rainbow also train with
5 random seeds during the evolutionary search. Other hyperparameters used in the search and all
hyperparameters for evaluation are identical to Table 2 and Table 4.

ELo-SAC ELo-SAC maintains a population of 50 for DMControl and each particle evolves 15
generations in “cheetah, run”. Before the search, the first ith particles are initialized with mj=1,2 = 88,
and each particle only has one weight set to 1 and other weights set to 0. In another word, these
first ith particles start with the existing single self-supervised loss method in the search space. Other
particles are randomly initialized. Table 6 shows the combination Elo-SAC found in cheetah run. The
columns in Table 6 show the search space. The first six columns denote the optimal weight wi of
its corresponding loss obtained with the evolutionary search, while the last two columns denote the
original image size before random crop (image augmentation magnitude mj=1,2).

Table 6: Optimal parameters that ELo-SAC found in cheetah run

Agent Searched
Env.

CURL
w1

BYOL
w2

Predict FR
w3

Extract AR
w4

AutoEncoder
w5

RotationCLS
w6

Online Aug.
m1

Target Aug.
m2

ELo-SAC Cheetah, run 0 0.288 0.628 0 0 0.009 87 86

22

ELo-SACv2 Compared with ELo-SAC, ELo-SACv2 has the following major improvements:

1. Initialization Define the set of image augmentation magnitude M = {(m1 = t,m2 = t) |
t = 86, 88, 92, 100, 116}, and the set of SSL weights W = {(wi=t = 1, wi ̸=t = 0) | t =
1, 2, ..., 6}. The first |M| × |W| particles are initialized from the Cartesian product of M
and W . Other particles are randomly initialized.

2. Search space The search space of self-supervised losses is updated based on the loss
performance at Table 11. We empirically choose the losses from different categories that
have a relatively strong performance when it is applied solely to RL.

3. Weight range The weight of each self-supervised loss is presented on a log scale so that the
search can cover a larger range.

Besides the improvements above, ELo-SACv2 evolves 45 generations and the optimal combination is
chosen from the top 10 combinations regarding the overall performance. The optimal combination
found by ELo-SACv2 is shown in Table 7. ELo-SACv2 slightly improves the results of ELo-SAC
with all the modifications (see Figure 4 and Table 11).

Table 7: Optimal parameters that ELo-SACv2 found in cheetah run

Agent Searched
Env.

CURL
log10 w1

DINO
log10 w2

Predict FR
Balanced
log10 w3

Extract AR
Balanced
log10 w4

AutoEncoder
log10 w5

RotationCLS
log10 w6

Online Aug.
m1

Target Aug.
m2

ELo-SACv2 Cheetah, run -3.309 -0.562 1.272 -0.772 -3.904 0.344 88 91

ELo-SACv3 Since ELo-SAC and ELo-SACv2 only search in one DMControl environment, ‘cheetah
run’, and both the found solutions perform weaker on ‘finger, spin’ and ‘reacher, easy’, we further
extend ELo-SACv2 to search in multiple environments at the same time, named ELo-SACv3. The
optimization process of ELo-SACv3 is presented as:

argmax
mj=1,2,wi=1,...,Nl

mean(R̂seed=1,2,3
envs (mj=1,2, wi=1,...,Nl

)) (8)

where R̂ = R/RDrQ is the original agent reward R normalized by the score of DrQ RDrQ reported in
[83], and envs is the set of six DMControl environments listed in Table 11.

We let ELo-SACv3 evolve for 25 generations and chose the loss combination with best performance
among the top 10 records. The found parameters are listed in Table 8.

Table 8: Optimal parameters that ELo-SACv3 found in six DMControl environments

Agent Searched
Env.

CURL
log10 w1

DINO
log10 w2

Predict FR
Balanced
log10 w3

Extract AR
Balanced
log10 w4

AutoEncoder
log10 w5

RotationCLS
log10 w6

Online Aug.
m1

Target Aug.
m2

ELo-SACv3 6 environments -2.304 -4.0 -2.989 0.103 -1.722 -3.481 88 89

ELo-Rainbow ELo-Rainbow has a population of 30 and the initialization is similar to ELo-SAC.
The search is performed on Frostbite only for 10 generations and the found combination is shown in
Table 9.

Table 9: Parameters of ELo-Rainbow found in Frostbite

Agent Searched Env. BYOL
w1

Predict Future
w2

Extract Reward
w3

AutoEncoder
w4

Rotation CLS
w5

ELo-Rainbow Frostbite 0.250 1.054 2.280 0.953 0.591

Interestingly, we find that the optimal combination found by ELo-SAC is relatively sparse, where
BYOL and Predict FR are the only two major losses. Similarly, ELo-SACv2 relies more on Predict-
FR-Balanced and RotationCLS, while ELo-SACv3 relies on Extract-AR-Balanced mostly. However,

23

for ELo-Rainbow, the magnitudes of all the weights are relatively similar. The difference between the
found results reflects the different properties of different environments. Our further experiments in
DMControl confirm the generalization ability to evolve losses; i.e., the obtained solution of weights in
one environment achieves relatively good performance on other environments in the same benchmark.
However, results on Atari are much inconsistent with DMControl. We cover detailed observations
and discussions in Section 4 and Appendix A.4.

The code for ELo-SACv3 is available at https://github.com/LostXine/elo-sac, and the code
for ELo-Rainbow is available at https://github.com/LostXine/elo-rainbow.

A.2.5 Comparison of method variants

In Section 4, several variants of the existing methods are introduced. The difference between these
methods, especially on image augmentation, can be summarized as follows: SAC-NoAug is the
original pixel-based SAC [27, 28]. SAC-Aug(88) and SAC-Aug(100) use the random crop as the
only image augmentation, where (88) means the original image has a size of 88× 88 before randomly
cropping to 84× 84 and (100) means the original image has a size of 100× 100. These two methods
should be regarded as variants of RAD with different augmentation choices. The random crop from
100× 100 to 84× 84 is the default image augmentation method for all the methods introduced in
Sec. 3.2, including SAC+AE. Essentially, if we remove their self-supervised loss, they will fall back
to SAC-Aug(100). Similarly, we test DrQ variants by replacing its default random shift augmentation
with the random crop, reported as DrQ(88) and DrQ(100). Meanwhile, RAD uses random translate
by default except on walker walk; ELo-SAC and ELo-SACv2 first crop the center of the input image
to the found optimal sizes. Then two central patches are randomly cropped to 84× 84 as the inputs
for the online networks and the target networks respectively.

For the policy learning part, all the methods share the same model. However, DrQ, DrQ(88),
DrQ(100), and SAC+AE apply an additional tanh activation after the visual encoder. We also study
the effect of the activation function in the coming Section A.3.4.

A.3 Ablations

Besides random crop and encoder backbone investigated in Section 4, we further perform detailed
ablations on more image augmentation, learning rate, encoder architecture, and activation function in
this section. The default test environment is identical to ablations in Section 4.

A.3.1 Image Augmentation

We study the effect of random translate, an image augmentation method which is widely used in
RAD [46]. Similar to random crop, the image size for translate is linear to the magnitude of the
translate, when using a fixed crop size: the larger the image size, the stronger the augmentation. As
shown in Fig. 11, image size for translate has a similar pattern for most tested methods (with an
exception of RotationCLS). In summary, it is critical to engineering image augmentation carefully
when designing an RL system with or without SSL.

Figure 11: Ablations on translate image augmentation.

24

https://github.com/LostXine/elo-sac
https://github.com/LostXine/elo-rainbow

A.3.2 Learning Rate

Fig. 12 shows how the learning rate of self-supervised loss contributes to the performance. In this
group of ablations, we only change the learning rate for SSL and leave the RL part untouched.
SAC-NoAug and SAC-Aug(100) are both baselines for reference without any self-supervised losses.
The results suggest that a smaller learning rate for SSL may improve performance. Therefore, it is
necessary to search for the absolute weights of losses like ELo [60], which is equivalent to searching
for the learning rate.

Figure 12: Ablations on the self-supervised learning rate.

A.3.3 Encoder Architecture

We further investigate the effect of additional linear layers in the visual encoder. Additional linear
layers with ReLU activation are appended to the end of the visual encoder. All additional layers
have a latent dimension of 128. Fig. 13 shows that additional layers usually bring downgraded
performance, which could be caused by limited data.

Figure 13: Ablations on additional linear layers after the visual encoder.

Another important aspect of the encoder architecture design is how to merge or separate two branches.
As Visionary [3] suggests, where and how to merge visual representation with action representation is
critical when designing an efficient value network. Similarly, we hypothesize that the point where split
the representation for the SSL branch and the RL branch is also important. Figure 14 demonstrates
two separation point configurations, named A and B. Figure 15 shows how the performance of
different approaches changes in such two configurations.

A.3.4 Activation Function

Though all the methods we tested in Table 11 share the same visual encoder architecture, DrQ and
SAC+AE apply an additional activation function tanh to the visual representation. To make a fair
comparison and study the effect of such an activation function, we conducted detailed ablations on

25

Figure 14: Comparison of two separation points. Figure 15: Ablation on separation points.

six DMControl tasks using the hyper-parameters identical to Table 2. Results in Table 10 confirm
that the default design choice of all three methods is better than their alternatives.

Table 10: Ablation on Tanh activation
Agent Tanh ball_in_cup, catch cartpole, swingup cheetah, run finger, spin reacher, easy walker, walk Relative Score

DrQ (default) ✓ 914.9 ± 21.2 692.2 ± 222.9 360.4 ± 67.7 935.6 ± 201.3 713.7 ± 147.6 523.9 ± 182.2 6.642
DrQ-w/o-Tanh 870.8 ± 177.0 826.4 ± 44.9 393.7 ± 74.0 849.6 ± 140.9 635.0 ± 155.0 525.0 ± 163.7 6.182

CURL-w-Tanh ✓ 832.4 ± 118.4 508.5 ± 133.9 209.3 ± 24.2 676.3 ± 185.2 336.1 ± 216.5 463.7 ± 93.4 -3.266
CURL (default) 730.0 ± 179.4 471.5 ± 89.9 215.1 ± 57.3 717.8 ± 136.5 569.8 ± 179.4 442.6 ± 87.1 -2.032

SAC+AE (default) ✓ 616.1 ± 169.9 388.8 ± 130.1 291.8 ± 59.8 799.0 ± 138.9 481.3 ± 130.4 402.6 ± 161.5 -2.529
SAC+AE-w/o-Tanh 358.9 ± 209.8 378.0 ± 96.0 289.4 ± 60.7 702.5 ± 157.3 516.8 ± 190.0 375.4 ± 136.2 -4.998

A.4 Detailed Results on DMControl and Atari

DMControl Table 11 notes the Interquartile mean, standard deviation and Relative Scores of tested
algorithms in six DMControl environments. The score distribution of tested algorithms over six
environments is summarized as Figure 20. Table 12 and Figure 21 include results of two additional
harder environments in DMControl. The figures of reward curve v.s. environment step are grouped as
Figure 23-32 and Figure 33-37 by the learning method.

Atari Similar to Table 11 and Figure 20, Table 13 Figure 22 are results in seven Atari environments.

A.5 Real-world Robot Experiments

To further evaluate methods in the real world applications, we set up a continuous robot arm control
environment, uArm reacher. With the help of some simple techniques in computer vision and robotics,
our environment can autonomously randomly reset and keep the agent training without any human
input.

The environment requires a robotic arm with a suction cup actuator, two fixed RGB cameras, and a
cube that can be picked up by the suction cup as the target, as shown in Fig. 8. The goal is to move the
actuator close to the target as fast as possible. The observation comes from two cameras with a native
resolution of 640× 480. The images are then resized to 100× 100, stacked along channel axis, and
finally randomly cropped into 84× 84, resulting in an 84× 84× (3 + 3) image observation before
fed to the network. The action space is a 3D vector ranging from -1 to 1, and it will be mapped to the
actuator position movement in a 3D robot Cartesian coordinates whose original point is the center of
the robot base.The robot’s motion range is manually limited for safety concerns while avoiding the
actuator moving the target in one episode. Following reacher in DMControl, we define a very simple
reward function. The reward function returns 1 when the 3D Euclidean distance between the actuator
and the target is lower than a threshold, otherwise, it returns −1e− 3. The length of each episode is
set to 200 steps, which limits the range of the episode accumulated reward to [−0.2, 200].

To enable automatic reward generation, we make an automatic calibration framework to get the target
location in 3D, and calibrate the top-down camera before any experiments. We use AprilTag [56] to
locate the robot position in the image plane, and read the 3D robot coordinates directly from the robot.
By doing so, we can build a map between 2D image coordinates and 3D robot coordinates. The
2D coordinates of the target is first extracted by a simple color threshold. Then, given the constant

26

Table 11: Interquartile mean and standard deviation on six DMControl tasks. The last column is
colored based on the relative performance w.r.t. SAC-Aug(100), Fig. 4

Agent ball_in_cup, catch cartpole, swingup cheetah, run finger, spin reacher, easy walker, walk Relative Score
N

o
SS

L
SAC-NoAug 71.4 ± 139.9 224.8 ± 28.6 120.9 ± 25.7 238.9 ± 172.6 204.8 ± 131.8 99.6 ± 38.7 -8.868

SAC-Aug(88) 510.8 ± 187.4 714.2 ± 113.9 354.5 ± 68.7 771.2 ± 175.0 347.9 ± 148.5 192.2 ± 165.0 0.160
SAC-Aug(100) 541.4 ± 306.2 563.4 ± 235.0 172.1 ± 64.0 724.6 ± 154.9 654.4 ± 222.1 422.1 ± 250.8 0.986

RAD 879.9 ± 82.0 786.4 ± 95.1 387.9 ± 81.3 910.4 ± 104.5 508.8 ± 111.5 522.1 ± 95.5 5.310

DrQ 914.9 ± 21.2 692.2 ± 222.9 360.4 ± 67.7 935.6 ± 201.3 713.7 ± 147.6 523.9 ± 182.2 6.028
DrQ(88) 762.5 ± 139.4 508.2 ± 161.2 331.7 ± 80.5 877.6 ± 93.2 395.5 ± 161.0 119.2 ± 160.5 0.154

DrQ(100) 907.6 ± 102.9 675.5 ± 131.1 318.8 ± 54.2 940.0 ± 127.2 627.0 ± 233.0 302.9 ± 295.8 3.898

Se
lf

-s
up

er
vi

se
d

CURL 730.0 ± 179.4 471.5 ± 89.9 215.1 ± 57.3 717.8 ± 136.5 569.8 ± 179.4 442.6 ± 87.1 1.128
CURL-w-Action 888.4 ± 179.5 537.8 ± 189.9 247.7 ± 72.7 604.2 ± 79.3 521.3 ± 211.0 439.9 ± 67.8 1.452
CURL-w-Critic 690.9 ± 328.8 603.8 ± 156.4 233.7 ± 44.3 657.0 ± 127.1 536.3 ± 208.8 443.0 ± 157.9 1.320

BYOL 667.7 ± 281.2 507.2 ± 221.7 70.7 ± 44.3 547.3 ± 185.6 403.7 ± 183.7 449.0 ± 153.5 -1.594
DINO 916.9 ± 65.7 686.0 ± 152.2 198.3 ± 79.3 923.1 ± 124.4 686.2 ± 198.2 414.6 ± 162.4 3.957

SimSiam 82.6 ± 86.7 67.4 ± 68.6 0.7 ± 0.3 7.6 ± 179.4 72.3 ± 71.1 34.1 ± 24.0 -12.537

RotationCLS 157.9 ± 212.1 336.4 ± 220.1 209.7 ± 44.7 801.9 ± 139.7 540.3 ± 163.7 537.0 ± 170.3 -0.718
ShuffleCLS 112.2 ± 101.9 28.8 ± 28.4 0.9 ± 0.4 53.0 ± 162.8 108.3 ± 55.4 127.3 ± 98.9 -11.701

SAC+AE 616.1 ± 169.9 388.8 ± 130.1 291.8 ± 59.8 799.0 ± 138.9 481.3 ± 130.4 402.6 ± 161.5 0.566
MAE 251.1 ± 231.1 372.8 ± 76.1 282.0 ± 62.3 669.5 ± 112.8 336.9 ± 170.1 489.7 ± 49.4 -1.635

Extract-Action 871.0 ± 298.6 493.9 ± 162.7 172.3 ± 65.5 870.4 ± 108.1 578.3 ± 144.4 484.8 ± 70.5 2.297
Extract-Reward 598.2 ± 306.2 469.8 ± 218.7 302.1 ± 89.9 828.7 ± 115.3 753.2 ± 155.5 522.2 ± 130.5 3.266

Guess-Action 724.6 ± 265.3 495.7 ± 121.4 204.6 ± 26.2 669.9 ± 116.8 578.8 ± 161.1 410.6 ± 91.1 0.813
Guess-Future 82.4 ± 87.1 146.6 ± 178.0 0.7 ± 0.4 786.5 ± 117.8 323.4 ± 229.2 74.1 ± 73.6 -7.318

Predict-Future 121.5 ± 186.9 252.7 ± 219.9 0.7 ± 0.3 796.7 ± 166.7 365.3 ± 235.2 112.7 ± 137.4 -6.201
Predict-Reward 672.8 ± 260.3 517.8 ± 215.6 279.1 ± 71.9 837.6 ± 264.6 796.2 ± 143.5 520.1 ± 218.1 3.826

Extract-AR 822.2 ± 240.5 592.9 ± 124.7 225.8 ± 60.7 783.0 ± 112.0 678.7 ± 181.3 458.4 ± 148.9 3.042
Guess-AF 329.8 ± 298.4 140.7 ± 144.0 0.9 ± 22.8 880.0 ± 59.5 382.9 ± 265.0 494.7 ± 112.7 -3.421

Predict-FR 750.3 ± 256.0 723.2 ± 167.5 12.4 ± 35.7 861.5 ± 49.2 636.1 ± 201.4 270.0 ± 154.9 0.821

ELo-SAC 831.3 ± 76.2 798.7 ± 44.4 354.0 ± 68.9 835.7 ± 151.2 485.2 ± 171.5 532.1 ± 160.7 4.567
ELo-SACv2 864.6 ± 97.0 679.8 ± 104.7 414.0 ± 59.8 844.0 ± 166.4 513.9 ± 95.5 555.4 ± 163.7 4.901
ELo-SACv3 851.0 ± 143.5 612.6 ± 87.7 313.9 ± 74.6 914.7 ± 143.4 625.2 ± 94.5 697.4 ± 238.1 5.502

Table 12: Scores on two harder tasks in DMControl
Agent hopper, hop reacher, hard Relative Score

N
o

SS
L

SAC-NoAug 0.033 ± 0.4 3.1 ± 39.7 -2.543
SAC-Aug(88) 0.048 ± 0.4 210.733 ± 190.9 0.191

SAC-Aug(100) 0.024 ± 0.4 262.4 ± 140.4 0.634
RAD 0.038 ± 0.9 193.1 ± 186.1 -0.112
DrQ 0.424 ± 1.4 258.95 ± 205.6 4.017

Se
lf

-s
up

.

CURL 0.076 ± 0.4 115.5 ± 116.4 -0.765
BYOL 0.025 ± 0.1 49.725 ± 126.1 -2.025
DINO 0.25 ± 0.5 200.333 ± 178.9 1.789

RotationCLS 0.031 ± 0.1 210.05 ± 117.3 0.036
SAC+AE 0.061 ± 0.4 140.567 ± 185.1 -0.579

ELo-SAC 0.116 ± 0.3 81.592 ± 53.7 -0.845
ELo-SACv2 0.147 ± 0.6 152.858 ± 70.8 0.314
ELo-SACv3 0.177 ± 0.4 98.208 ± 78.7 -0.112

height of the target, we can obtain 3D target location from its 2D image coordinates according to the
2D↔3D map.

The environmental reset process is also automatic. At the beginning of each episode, the robot
arm will pick up the target cube, and randomly release the cube at a certain height like throwing
dice, in order to randomly initialize the cube location. The new location of the target cube is saved
for generating rewards. After the robot arm automatically moves to a fixed pre-assigned starting
point, the environmental reset is done and then the RL agent takes over the control. The RL agent
can perform regular online training until the episode ends. Finally, after each episode ends, the
environment repeats the reset process to initialize the next episode.

27

Table 13: Scores on Atari, the last column is colored based on the relative performance w.r.t. Efficient
Rainbow, “*” means using a different image augmentation method from the original paper

Agent assault battle_zone demon_attack frostbite jamesbond kangaroo pong Relative Score

N
o

SS
L Eff.-Rainbow 506.8 ± 59.3 14840.0 ± 6681.7 519.3 ± 193.1 873.1 ± 834.8 318.5 ± 92.7 853.0 ± 1304.8 -19.0 ± 2.4 2.065

Rainbow-Aug 459.7 ± 79.6 4770.0 ± 4379.0 870.3 ± 345.9 1469.7 ± 962.2 317.0 ± 110.5 619.0 ± 298.0 -20.3 ± 0.5 -2.223

DrQ* 503.7 ± 89.0 7600.0 ± 6839.0 891.2 ± 322.3 943.7 ± 913.2 321.0 ± 91.6 605.0 ± 462.0 -19.9 ± 0.8 -0.290

Se
lf

-s
up

er
vi

se
d

CURL 511.6 ± 107.3 5100.0 ± 5530.2 615.3 ± 240.4 928.3 ± 1018.5 307.0 ± 219.8 620.0 ± 300.8 -18.1 ± 2.3 -0.516
BYOL 514.6 ± 93.4 9470.0 ± 4879.6 418.4 ± 246.5 2111.5 ± 982.6 291.5 ± 90.9 740.0 ± 1573.6 -18.5 ± 2.9 1.877

RotationCLS 427.1 ± 62.2 12950.0 ± 5742.7 401.0 ± 159.0 1591.9 ± 949.5 285.5 ± 70.2 892.0 ± 1674.2 -19.3 ± 1.3 -2.647

Rainbow+AE 485.2 ± 74.7 14290.0 ± 5927.7 528.8 ± 158.6 1272.5 ± 964.3 320.5 ± 68.8 1155.0 ± 1392.5 -18.8 ± 2.3 4.815
Extract-Action 443.6 ± 72.8 7370.0 ± 3797.5 521.0 ± 126.6 1627.4 ± 874.5 282.0 ± 56.1 855.0 ± 612.3 -18.7 ± 2.5 -2.237

Extract-Reward 494.8 ± 63.7 14420.0 ± 4901.0 533.4 ± 224.1 1286.6 ± 1109.0 294.5 ± 83.7 804.0 ± 1001.0 -18.4 ± 2.1 1.692
Predict-Future 509.5 ± 67.7 10420.0 ± 5252.4 452.1 ± 145.6 1144.5 ± 988.7 295.0 ± 70.7 733.0 ± 966.0 -19.4 ± 2.1 -1.796

Predict-Reward 485.6 ± 100.8 11870.0 ± 4197.2 547.9 ± 291.6 1155.9 ± 946.9 304.0 ± 92.7 908.0 ± 1718.9 -19.4 ± 1.7 0.135
Predict-FR-Balanced 485.7 ± 82.2 14270.0 ± 4421.5 495.8 ± 209.7 1359.1 ± 1029.2 293.5 ± 146.8 664.0 ± 1239.6 -18.9 ± 1.3 -0.508

ELo-Rainbow 493.1 ± 67.4 11750.0 ± 4727.9 623.4 ± 249.9 1027.6 ± 863.8 297.5 ± 66.4 795.0 ± 593.3 -19.2 ± 2.3 -0.369

A.6 Empirical Analysis on the Learned Representations

To further understand the role of self-supervised loss and image augmentation in an online rein-
forcement learning system with the joint learning framework, we empirically show the properties of
representations learned by different losses.

We first follow Wang et al. [77] and measure the three metrics Dynamic Awareness, Diversity, and
Orthogonality, extending them from discrete action space to continuous action space.

Dynamics Awareness means two states that are adjacent in time should have similar representations
and states further apart should have a low similarity.

Diversity measures a ratio between state and state-value differences. High diversity means two states
have two different representations to be distinguished even when they have similar state values.

Orthogonality reflects the linear independence of the representation, in another word, the higher the
orthogonality, the lower the redundancy in the representations.

Assume an image observation xi is taken when the intrinsic system state is si. Denoting the visual
representation of xi generated by the encoder from the critic networks as ϕi, and Critic(ϕi, ·) is the
learned critic network output. Eq. 9 shows how to compute the three representation metrics.

Dynamic Awareness =

∑N
i

∥∥ϕi − ϕj∼U(1,N)

∥∥
2
−

∑N
i ∥ϕi − ϕ′

i∥2∑N
i

∥∥ϕi − ϕj∼U(1,N)

∥∥
2

Diversity = 1− 1

N2

N∑
i,j

min

(
dv,i,j/maxi,j dv,i,j

ds,i,j/maxi,j ds,i,j + 10−2
, 1

)

Orthogonality = 1− 2

N(N − 1)

N∑
i,j,i<j

|⟨ϕi, ϕj⟩|
∥ϕi∥2 ∥ϕj∥2

(9)

where N is the total number of samples, U(1, N) means uniformly sample from [1, N], ds,i,j =
∥ϕi − ϕj∥2 and dv,i,j = |maxa Critic(ϕi, a)−maxa Critic(ϕj , a)|.
Predict State from Visual Representation Besides the three metrics on visual representations and
state-values, we further measure the quality of visual representation ϕi by predicting the system state
si only using ϕi. The intuition is that a better visual representation should be able to capture the
intrinsic system state more precisely. We utilize a two-layer MLP to regress the system state si on its
corresponding visual representation ϕi. Mean squared error is applied to supervise the network as
well as to evaluate the network on the test set.

To properly measure all these metrics, We first collect a dataset in cartpole swingup from DMControl
using state-based SAC, which is different from any methods we’ll benchmark to avoid bias. We run
state-based SAC with five random seeds, and take the replay buffer of each run to form a dataset.
The whole dataset has 12500× 5 = 62500 state transitions. We measure Dynamics Awareness and
Orthogonality on the full dataset, while Diversity is calculated for one run due to computational

28

cost. For state prediction, we use the first four runs as the training set and the last run is held for the
evaluation.

Finally, we benchmark selected methods with five different random seeds on cartpole swingup,
and reports the metrics above every 100 model update step. We demonstrate how the four metrics
correlate to the environment step and agent performance as Fig. 16 and Fig. 17.

Figure 16: Scores versus representation metric values

Fig. 16 shows how metrics change as training. Most of the methods converge on a similar Orthogonal-
ity, Dynamic Awareness, and Diversity value. SAC-NoAug has a low Dynamic Awareness measure
which could be used to explain its low performance. While a higher Dynamic Awareness measure
does not bring extra scores for BYOL and SAC+AE. Similarly, the lower Diversity value of DrQ and
ELo-SAC do not hurt their performance either. Meanwhile, most of the metrics become relatively
stable after the first 4000 steps. Therefore, we confirm that the shallower layers of the neural networks
in visual reinforcement learning converge faster as observed by Chen et al. [9].

Fig. 17 shows the correlation between metrics and the agent performance. We report the Pearson
correlation coefficient as Table 14. As Wang et al. [77] suggested, these metrics only measure certain
properties of the visual representation, and they do not suggest that a property is necessary for better
policy learning. However, we find that the state prediction error is correlated to the agent performance
to some extent, which may be valuable in some cases.

Table 14: Pearson correlation coefficient between scores and representation metrics
Dynamic Awareness Orthogonality Diversity Prediction MSE

-0.284 0.435 0.111 -0.625

A.7 Observation on Pretraining Framework

Besides the joint learning framework used in CURL and SAC+AE, Shelhamer et al. [70] investigate
a pretraining framework to combine SSL with RL and use the self-supervised loss as an intrinsic
reward to further boost performance during online learning. Recent works on policy learning (e.g.,
[59, 68, 76, 82, 88]) also take advantage of the self-supervised learning in a multi-step framework
and show its great potential in solving challenging visual-based problems.

This pretraining framework is similar to how self-supervision has been benefiting supervised Com-
puter Vision tasks ([8, 10, 12, 17, 34, 40, 60]): pretrain with self-supervised losses, and then finetune

29

Figure 17: Scores versus representation metric values

with the downstream task loss. Motivated by them, in this section, we design and benchmark the
two-stage pretraining framework, replacing the joint learning framework used in CURL and SAC+AE.

In the first stage, we use data collected by training a SAC-Aug(100) agent on the same task and
update the visual encoder only using self-supervised loss. We name this stage pretraining which
means to use self-supervised losses to update the model and to be downstream task agnostic. Then in
the second stage i.e., the online training stage, we only keep the trained encoder from the first stage
and train an agent using SAC-Aug(100). The only difference between this stage and training an agent
from scratch is that here the visual encoder has been “initialized” with the pre-trained weights while
it is randomly initialized in SAC-Aug(100). This also means that the image encoder can be tuned by
RL loss in the online training stage to match the online sample distribution. Fig. 18 compares two
training frameworks, in which the rounded rectangle means to update the model with the labeled loss
for one step.

Figure 18: Two learning frameworks for SSL + RL, the rounded rectangle means to update the model
with the labeled loss for one step.

The methods using the pretraining framework have the prefix ‘Pretrain’. ‘Pretrain-Random’ means the
data used for pretraining is collected by a random policy. In both cases, the pretraining framework has
the same model update steps as the joint learning framework baseline. But note that the pretraining
model has access to extra data collected by other policies, which makes it an unfair comparison. To
this end, we test another joint learning configuration named with the prefix ‘Longer’. Here we match
the total number of environment steps (or collected data) to its pretraining variants. Similarly, three
methods without any self-supervised learning are benchmarked with ’Longer’ configuration. We
compare two frameworks in six DMControl environments, Relative Scores are reported as Fig. 19
and the full results are shown as Table 15.

30

Figure 19: Relative Score of two learning frameworks for combining SSL to RL. The bars with
diagonal lines stand for the methods that only use image augmentation without any self-supervised
losses.

In general, given the same amount of model updates, the pretraining framework performs better than
the joint learning framework except ELo-SAC (we believe this is because ELo-SAC search was done
only under the joint learning framework). But such an advantage of the pretraining framework may
come from the extra data used in the pretraining stage. When the same amount of data is given, the
longer joint-learning configuration usually performs better than the pretraining methods except when
AutoEncoder is the self-supervised loss. Such observations imply that the learning framework has
different impacts on policy learning even if the same self-supervised loss is applied. It might not
be the best practice to directly use the existing self-supervised losses designed for joint learning
framework with the pretraining framework. However, only Longer-ELo-SAC achieves comparable
results compared to image augmentation based methods with ‘Longer’ configuration. On the other
hand, we argue that on DMControl, the advantages of the pretraining framework come from the
access to extra data instead of the framework itself. When the total environment step is limited and no
previous data has been collected, the joint learning framework can better solve DMControl problems.

A.8 Limitations

In this paper, we focus on SAC for environments with continuous action space and Rainbow for
environments with discrete action space. Though both methods are generic, it will be interesting
to see how self-supervised losses work with other RL methods and image augmentations in more
challenging environments. Meanwhile, both RAD [46] and DrQ [83] investigate many image
augmentation approaches for their learning methods. We only focus on random crop and translate
because of their positive effects, and more combinations of image augmentation and self-supervised
learning methods worth further investigation. In addition, the search space of ELo-based methods
are relatively limited. They may achieve better scores with a larger search space (more losses) and a
more representative searching environment.

A.9 Computation Information

Training one DMControl agent for 50k model update steps usually takes 3 hours on one NVIDIA
A5000 GPU. It takes around 1.5 hours to train five Atari agents in parallel using an Apple M1 Max
CPU.

31

Table 15: Comparison of the two frameworks. Methods in gray are without a self-supervised loss for
reference. The total amount of data/environment step at each stage is listed in the second and the
third column.

Agent Pretraining
env.step

Online
env.step ball_in_cup, catch cartpole, swingup cheetah, run

SAC-Aug(100) 0 100k 541.4 ± 306.2 563.4 ± 235.0 172.1 ± 64.0
Longer-SAC-Aug(100) 0 200k 944.9 ± 75.3(↑403.5) 851.0 ± 36.4(↑287.6) 424.0 ± 66.8(↑251.9)

RAD 0 100k 879.9 ± 82.0 786.4 ± 95.1 387.9 ± 81.3
Longer-RAD 0 200k 932.6 ± 52.6(↑52.7) 846.2 ± 34.1(↑59.8) 551.4 ± 176.1(↑163.5)

DrQ 0 100k 914.9 ± 21.2 692.2 ± 222.9 360.4 ± 67.7
Longer-DrQ 0 200k 952.0 ± 301.5(↑37.1) 857.4 ± 31.4(↑165.2) 475.9 ± 78.7(↑115.5)

SAC+AE 0 100k 616.1 ± 169.9 388.8 ± 130.1 291.8 ± 59.8
Longer-AE 0 200k 579.4 ± 274.0(↓-36.7) 467.1 ± 196.9(↑78.3) 359.0 ± 57.6(↑67.2)

Pretrain-AE 100k 100k 914.7 ± 129.0(↑298.6) 759.1 ± 99.3(↑370.3) 419.8 ± 41.1(↑128.0)
Pretrain-Random-AE 100k 100k 903.1 ± 219.9(↑287.0) 736.0 ± 97.4(↑347.2) 405.3 ± 55.5(↑113.5)

CURL 0 100k 730.0 ± 179.4 471.5 ± 89.9 215.1 ± 57.3
Longer-CURL 0 200k 935.0 ± 26.5(↑205.0) 776.2 ± 82.2(↑304.7) 307.6 ± 57.3(↑92.5)

Pretrain-CURL 100k 100k 921.0 ± 25.5(↑191.0) 705.4 ± 138.3(↑233.9) 213.0 ± 56.7(↓-2.1)
Pretrain-Random-CURL 100k 100k 874.5 ± 298.3(↑144.5) 745.3 ± 124.5(↑273.8) 224.3 ± 60.6(↑9.2)

DINO 0 100k 916.9 ± 65.7 686.0 ± 152.2 198.3 ± 79.3
Longer-DINO 0 200k 952.6 ± 48.9(↑35.7) 858.1 ± 21.4(↑172.1) 248.6 ± 49.3(↑50.3)

Pretrain-DINO 100k 100k 748.1 ± 164.7(↓-168.8) 759.3 ± 110.8(↑73.3) 344.7 ± 56.5(↑146.4)
Pretrain-Random-DINO 100k 100k 904.6 ± 266.6(↓-12.3) 758.6 ± 86.1(↑72.6) 355.6 ± 77.5(↑157.3)

ELo-SAC 0 100k 888.3 ± 90.6 772.8 ± 167.3 359.7 ± 69.7
Longer-ELo-SAC 0 200k 949.5 ± 29.8(↑61.2) 866.6 ± 30.0(↑93.8) 489.6 ± 149.7(↑129.9)

Pretrain-ELo-SAC 100k 100k 505.8 ± 301.3(↓-382.5) 617.9 ± 147.1(↓-154.9) 400.2 ± 63.6(↑40.5)
Pretrain-Random-ELo-SAC 100k 100k 466.2 ± 200.3(↓-422.1) 519.8 ± 175.4(↓-253.0) 302.9 ± 126.4(↓-56.8)

Agent Pretraining
env.step

Online
env.step finger, spin reacher, easy walker, walk

SAC-Aug(100) 0 100k 724.6 ± 154.9 654.4 ± 222.1 422.1 ± 250.8
Longer-SAC-Aug(100) 0 200k 868.6 ± 140.8(↑144.0) 911.6 ± 92.3(↑257.2) 658.3 ± 378.2(↑236.2)

RAD 0 100k 910.4 ± 104.5 508.8 ± 111.5 522.1 ± 95.5
Longer-RAD 0 200k 874.6 ± 150.8(↓-35.8) 819.2 ± 115.7(↑310.4) 765.5 ± 337.8(↑243.4)

DrQ 0 100k 935.6 ± 201.3 713.7 ± 147.6 523.9 ± 182.2
Longer-DrQ 0 200k 906.9 ± 155.7(↓-28.7) 809.2 ± 102.0(↑95.5) 740.0 ± 314.3(↑216.1)

SAC+AE 0 100k 799.0 ± 138.9 481.3 ± 130.4 402.6 ± 161.5
Longer-AE 0 200k 887.8 ± 127.4(↑88.8) 578.6 ± 160.7(↑97.3) 700.3 ± 232.7(↑297.7)

Pretrain-AE 100k 100k 869.8 ± 150.6(↑70.8) 757.8 ± 174.0(↑276.5) 308.0 ± 243.1(↓-94.6)
Pretrain-Random-AE 100k 100k 793.6 ± 175.9(↓-5.4) 858.0 ± 155.0(↑376.7) 107.8 ± 216.1(↓-294.8)

CURL 0 100k 717.8 ± 136.5 569.8 ± 179.4 442.6 ± 87.1
Longer-CURL 0 200k 732.1 ± 146.2(↑14.3) 688.8 ± 229.8(↑119.0) 701.5 ± 148.0(↑258.9)

Pretrain-CURL 100k 100k 785.8 ± 134.1(↑68.0) 754.5 ± 106.2(↑184.7) 277.7 ± 152.0(↓-164.9)
Pretrain-Random-CURL 100k 100k 693.8 ± 178.2(↓-24.0) 804.8 ± 205.8(↑235.0) 356.2 ± 131.8(↓-86.4)

DINO 0 100k 923.1 ± 124.4 686.2 ± 198.2 414.6 ± 162.4
Longer-DINO 0 200k 926.0 ± 128.3(↑2.9) 861.4 ± 131.8(↑175.2) 722.6 ± 251.4(↑308.0)

Pretrain-DINO 100k 100k 877.5 ± 123.8(↓-45.6) 635.0 ± 172.0(↓-51.2) 260.1 ± 145.8(↓-154.5)
Pretrain-Random-DINO 100k 100k 823.4 ± 75.4(↓-99.7) 712.6 ± 126.6(↑26.4) 197.5 ± 147.2(↓-217.1)

ELo-SAC 0 100k 789.3 ± 198.2 478.3 ± 159.9 537.5 ± 164.5
Longer-ELo-SAC 0 200k 919.2 ± 154.1(↑129.9) 753.8 ± 159.9(↑275.5) 789.9 ± 335.3(↑252.4)

Pretrain-ELo-SAC 100k 100k 711.5 ± 161.7(↓-77.8) 503.6 ± 220.1(↑25.3) 115.5 ± 152.4(↓-422.0)
Pretrain-Random-ELo-SAC 100k 100k 742.3 ± 142.4(↓-47.0) 548.0 ± 136.4(↑69.7) 179.7 ± 189.5(↓-357.8)

32

Figure 20: DMControl score distribution

33

Figure 21: Hard DMControl score distribution

Figure 22: Atari score distribution

34

Figure 23: Step-reward curve of ELo-SAC based methods

Figure 24: Step-reward curve of DrQ and its variants

Figure 25: Step-reward curve of SAC variants with different image augmentations

35

Figure 26: Step-reward curve of CURL and its variants

Figure 27: Step-reward curve of self-supervised learning based methods

Figure 28: Step-reward curve of classification-based methods (transformation awareness)

36

Figure 29: Step-reward curve of reconstruction methods

Figure 30: Step-reward curve of RL context prediction methods - 1

Figure 31: Step-reward curve of RL context prediction methods - 2

37

Figure 32: Step-reward curve of RL context prediction methods - 3

Figure 33: Step-reward curve on two harder DMControl environments - typical methods

Figure 34: Step-reward curve on two harder DMControl environments - SAC with different image
augmentations

Figure 35: Step-reward curve on two harder DMControl environments - self-supervised learning
based methods - 1

38

Figure 36: Step-reward curve on two harder DMControl environments - self-supervised learning
based methods - 2

Figure 37: Step-reward curve on two harder DMControl environments - ELo-SAC based methods

39

	Appendix
	Background on Pairwise Learning
	Implementation Details
	General Joint Learning Framework
	Losses for Self-supervised Learning
	Manually Balance Two Self-supervised Losses
	Evolving Multiple Self-supervised Losses
	Comparison of method variants

	Ablations
	Image Augmentation
	Learning Rate
	Encoder Architecture
	Activation Function

	Detailed Results on DMControl and Atari
	Real-world Robot Experiments
	Empirical Analysis on the Learned Representations
	Observation on Pretraining Framework
	Limitations
	Computation Information

