
A. Experimental Settings

ImageNet. We first train our backbone network on ImageNet [2] using SGD optimizer. The L2
regularization coefficient and momentum are set to 0.0001 and 0.9 respectively. We train the network
for 90 epochs with a batch size of 256 on 2 NVIDIA Tesla V100 GPUs and adopt a 5-epoch warmup
procedure. The initial learning rate is set to 0.1 and it decays by 0.1 at epochs 30 & 60.

Mini-Kinetics and ActivityNet. Then we add navigation module and train it along with the backbone
network on video datasets. On Mini-Kinetics [5] and ActivityNet [1], we use SGD optimizer with a
momentum of 0.9 and the L2 regularization coefficient is set to 0.0001. The initial learning rate is set
to 0.002 and it will decay by 0.1 at epochs 20 & 40. The models are trained for 50 epochs with a
batch size of 32 on 2 NVIDIA Tesla V100 GPUs. The loss factor λ is set to 1 for the two datasets
and the temperature τ decreases from 1 to 0.01 exponentially.

Jester and Something-Something. The training details on Jester [8] and Something-Something [3]
datasets are the same with ActivityNet [1] except the following changes: the initial learning rate is
0.01 which decays at 25 & 45 epochs and it is trained for 55 epochs in total; the loss factor λ on these
datasets is set to 0.5; the training data will be resized to 240 × 320 and then cropped to 224 × 224 as
the raw data on these two datasets has relatively smaller resolutions.

B. Building AFNet on BasicBlock
Table 1: Comparisons with baseline method on Jester.

Method Frames Jester
Top-1 Acc.

TSNR34 [12] 8 83.5%

AFNetR34 (RT=0.75) 8 89.3%
AFNetR34 (RT=0.50) 8 89.7%
AFNetR34 (RT=0.25) 8 89.5%

In previous experiments, we build AFNet on ResNet50 [4] which is made up of Bottleneck structure.
Instead, we build AFNet with BasicBlock in this part on Jester dataset and compare it with baseline
method TSN [12]. Table 1 shows that our method continuously shows significant advantages over
TSN [12] in different selection ratios which validates the effectiveness of our method on BasicBlock
structure as well. Interestingly, AFNet obtains the best performance when the selection ratio is set to
0.5 and it shows relatively the lowest accuracy when selecting more frames. This can be explained
that our navigation module effectively restrains the noise of meaningless frames and implements
implicit temporal modeling which utilizes fewer frames but obtains higher accuracy.

C. Building AFNet wtih More Frames
Table 2: Comparisons with baseline method on ActivityNet with more sampled frames.

Method Frames ActivityNet

mAP. GFLOPs

TSN [12] 16 76.9% 62.8G
AR-Net [9] 16 73.8% 33.5G
VideoIQ [10] 16 74.8% 28.1G
AdaFocus [13] 16 75.0% 26.6G
AFNet (RS=0.4,RT=0.8) 16 76.6% 32.9G

TSN [12] 32 78.0% 131.2G
AFNet (RS=0.4,RT=0.8) 32 77.6% 60.9G

We build AFNet with more sampled frames in this section and compare it with baseline method. The
results are shown in Table 2. When sample 16 frames, TSN exhibits a clear advantage in performance
over other efficient methods which can be explained by the information loss in the preprocessing
phase (e.g., frame selection, patch cropping) of these dynamic methods. This phenomenon motivates
us to design AFNet, which adopts a two-branch structure to prevent the loss of information. The
results show that AFNet costs significantly less computation compared to baseline method with only a
slight drop in performance. Furthermore, we conduct experiments on 32 frames and the phenomenon
is similar to 16 frames.
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D. More Ablation of AFNet
Table 3: Ablation of Fusion Strategy and Temperature Decay Schedule on ActivityNet.

Fusion Strategy Temperature Decay Schedule mAP
RT=0.5

Addition Exponential 73.5%
Dynamic Fusion Cosine 74.1%
Dynamic Fusion Linear 73.8%

Dynamic Fusion Exponential 74.3%

We further include more ablation of AFNet on ActivityNet with 12 sampled frames. First, we test
AFNet’s performance without the dynamic fusion module and the results in Table 3 can demonstrate
that this design is nontrivial as it effectively balances the weights between the features from two
branches. Besides, we explore different temperature decay schedules, including: 1) decay expo-
nentially, 2) decay with a cosine shape, 3) decay linearly. The results show that exponential decay
achieves the best performance and we adopt this as the default setting in all our experiments.

E. Limitations and Potential Negative Societal Impacts

First, the backbone of AFNet needs to be specially trained on ImageNet because of the two branch
structure, while most other methods directly utilize the pretrained ResNet [4] from online resources.
To make AFNet can be conveniently used by others, we offer the pretrained backbone on ImageNet
which can be accessed in our provided code. Second, we did not consider build any temporal
modeling module during the design of AFNet which is the main focus of other static methods, like
TEA [6], TDN [11], etc. However, we have demonstrated that AFNet implements implicit temporal
modeling and it is compatible with existing temporal modeling module, like TSM [7]. To the best of
our knowledge, our method has no potential negative societal impacts.
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