
Boosting the Performance of Generic Deep Neural
Network Frameworks with Log-supermodular CRFs

Hao Xiong
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083
hao.xiong@utdallas.edu

Yangxiao Lu
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083
yangxiao.lu@utdallas.edu

Nicholas Ruozzi
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083
nicholas.ruozzi@utdallas.edu

Abstract

Historically, conditional random fields (CRFs) were popular tools in a variety
of application areas from computer vision to natural language processing, but
due to their higher computational cost and weaker practical performance, they
have, in many situations, fallen out of favor and been replaced by end-to-end deep
neural network (DNN) solutions. More recently, combined DNN-CRF approaches
have been considered, but their speed and practical performance still falls short
of the best performing pure DNN solutions. In this work, we present a generic
combined approach in which a log-supermodular CRF acts as a regularizer to
encourage similarity between outputs in a structured prediction task. We show that
this combined approach is widely applicable, practical (it incurs only a moderate
overhead on top of the base DNN solution) and, in some cases, it can rival carefully
engineered pure DNN solutions for the same structured prediction task.

1 Introduction

A wide range of machine learning applications can be cast as structured prediction problems, joint
prediction problems in which the aim is to produce a vector of correlated outputs rather than a single
class label, e.g., semantic image segmentation, stereo matching, etc. Historically, conditional random
fields (CRFs) were popular for this class of problems as they (1) allow modeling of the underlying
problem structure, (2) can incorporate domain knowledge, and (3) admit efficient (approximate)
inference in certain settings. More recently, however, increases in data set and model sizes have made
CRF-based approaches less practical. Instead, deep neural networks (DNNs) that can be trained at
scale by taking advantage of accelerators like GPUs and TPUs have become increasingly popular.

While deep neural networks yield powerful predictive models, they can be sample inefficient [26] and
may fail to produce solutions that respect natural constraints required by the structured output, e.g.,
if the output is a combinatorial object. In practice, the structured outputs of DNNs can lack simple
smoothness properties that one would expect in a given domain: (1) in stereo matching, neighboring
pixels likely have similar depths, (2) in optical flow estimation, neighboring pixels likely have similar
flows, (3) in activity recognition in video, objects/activities are likely to persist between frames, (4) in
motion/trajectory prediction tasks, objects in motion tend to stay in motion in the same direction, (5)
in image colorization, neighboring pixels likely have similar colors, (6) in segmentation, neighboring

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

pixels are more likely to be part of the same class, and (7) in certain statistical physics applications,
neighboring particles tend to behave similarly. As a result, the ability to incorporate this type of soft
knowledge could improve the training of DNN models and smooth the structured output.

Motivated by existing approaches that combine DNNs with CRFs, such as structured variational
autoencoders [22] and models for stereo depth estimation [24, 31], we propose a generic hybrid
model, which takes an existing DNN, combines it with a CRF, and then jointly trains the combined
model, for the above smoothing task. In order to accomplish the smoothing, our CRFs will employ
log-supermodular potentials. This class of potential functions belongs to the family of so-called
attractive graphical models [54] as the potential functions encourage agreement between the variables
over which they operate. As such, we dub our approach attractive smoothing. Our aim is to show that
(1) the training and prediction overhead of such a hybrid model can be kept low and (2) a sufficiently
expressive CRF can act like a regularizer for the DNNs by smoothing the outputs as described above.
Our approach applies in both discrete and continuous settings and, to the best of our knowledge, our
approach represents a novel, practical application of continuous log-supermodular CRFs.

Via a series of experiments, we show that attractive smoothing can be applied to yield both qualitative
and quantitative performance improvements with only a modest overhead compared to the original
DNN in a range of applications (stereo matching, semantic segmentation, and image colorization).
Our experiments show that even a simple CRF can smooth local neighborhoods and encourage local
consistency. In our experiments, the hybrid approach always resulted in a performance improvement,
sometimes dramatically, over the pure DNN architecture. In particular, we observed that even
comparatively older architectures can be competitive against (or outperform) more recent architectures
simply with the addition of an attractive CRF.

2 Preliminaries

We will use CRFs to represent a joint probability distribution over a structured output y given data
observations x that factorizes as a product of nonnegative potential functions over a given graph
structure. Specifically, given a graph G = (V,E) and ϕi(·|x) : Y → R≥0 and ϕij(·, ·|x) : Y × Y →
R≥0, a pairwise CRF models p(y|x) as

p(y|x) = 1

Z(x)

∏
i∈V

ϕi(yi|x)
∏

(i,j)∈E

ϕij(yi, yj |x),

where Z(x) is the normalizing constant that ensures that p(·|x) is a probability distribution.

The graph structure and potential functions are problem dependent – they should be chosen to reflect
the structure, correlations, and constraints of the output. In particular, we will be interested in
log-supermodular (LSM) potential functions as they encourage agreement between the variables
upon which they operate. Formally, a function f : D → R≥0 for D ⊆ Rn is log-supermodular if
f(x)f(y) ≤ f(x∧y)f(x∨y), for all x, y ∈ D, where for all i ∈ {1, . . . , n}, (x∧y)i = min(xi, yi)
and (x ∨ y)i = max(xi, yi). Note that D should be closed under these operations in order for the
above definition to make sense, e.g., D = {0, 1}n or D = [0, 1]n. If the inequality is reversed f
is said to be log-submodular (submodular and supermodular functions satisfy a similar inequality
with products replaced by sums). A twice continuously differentiable function f : D → R≥0 is
log-supermodular on D if and only if for all i ̸= j ∈ {1, . . . , n} and x ∈ D, ∂2 log(f)

∂xi∂xj
|x∈D ≥ 0, i.e.,

the off-diagonal elements of the Hessian matrix of log(f(·)) are nonnegative over the domain [51].
From the definition, products of log-supermodular functions are log-supermodular. So, if all of the
potential functions are log-supermodular, so is p(y|X).

Log-supermodular (log-submodular) functions arise in a variety of applications and represent classes
of functions for which global maxima (minima) can be found efficiently in both discrete and con-
tinuous settings [14, 47, 21, 1]. Discrete log-supermodular/log-submodular functions also have a
rich history in the study of CRFs in both theory and practice, e.g., [19, 5, 25]. Continuous log-
supermodular CRFs enjoy similar theoretical properties to their discrete counterparts [41, 42, 2].
However, despite the wide use of discrete log-supermodular/log-submodular models in real-world
settings, e.g., in a variety of computer vision tasks, continuous log-supermodular CRFs have not
received much attention in practical applications.

2

X

Discriminator Net

Parameter Net

CRF Inference Layer

Loss

y

Optimizer

Init.
ŷ

Node Pot.

Edge Pot.

Minimize BFE

[], ,

, ,

()| ,i iy w v

()| ,ij i jy , y w v

()
d

f xv =

()pf xw=

Figure 1: General architecture of the end-to-end NN+CRF model for structured prediction tasks.

3 Attractive Smoothing via Log-supermodular CRFs

The structured prediction problems considered here are supervised learning problems in which we are
given data observations x(1), . . . , x(M) ∈ Rd and corresponding structured outputs y(1), . . . , y(M) ∈
Y . The aim is to learn a model that can predict the structured outputs for novel data observations.
In order to take advantage of the predictive power of deep neural networks in combination with the
modeling power of CRFs for this task, we propose the simple end-to-end model shown in Figure 1.
In this architecture, two neural networks, a discriminator NN and a parameter NN, are trained to
construct the parameters of a CRF given a data observation x. Inference is then performed over the
CRF in order to produce the final prediction, ŷ, which is then fed into a loss function. Specifically, the
discriminator network produces a vector of outputs v and the parameter network produces a vector of
outputs w and the CRF models the joint probability of the structured output y given v and w.

In applications, we will think of the discriminator net as a given DNN solution for the structured
prediction task whose outputs we want to smooth and the parameter net will control the strength of
the relationship between neighboring variables yi and yj . As a motivating example, consider a task
in which the input is a video and the aim is to determine whether or not each frame of the video
contains an object from a known finite set, F . Consider a DNN that takes as input the ith frame of
video and produces a vector v(i) ∈ {0, 1}|F |, where v(i) = 1 indicates that the DNN predicts that
object f is in frame i. Applying this DNN for each frame of video generates a sequence of vectors
and stacking the results produces a vector v, which we can treat as the output of the discriminator net
in our architecture. If an object appears in frame i, it is likely to occur in frame i+ 1 as well. We can
construct a chain-structured CRF, with one binary random variable, y(t)f , for each f ∈ F at each time
slice t, whose potentials at time slice t are given by

ϕf
t (y

(t)
f |v(t), a) = exp(a

(t)
f (y

(t)
f − v

(t)
f)2)

ϕf
t,t+1(y

(t)
f , y

(t+1)
f |c) = exp(ct,t+1

f · y(t)f · y(t+1)
f),

where a and c ≥ 0 are the outputs of the parameter net (indexed by f ∈ F and time steps or pairs of
time steps). The nonnegativity constraint on c ensures that each potential function is log-supermodular.
The effect of these potentials is to encourage the smoothness property over the sequence of video
frames for the object detection task.

More generally, when applying attractive smoothing for structured objects y ∈ S for some finite
set S ⊂ R, the univariate potential functions could be arbitrary (as univariate functions are always
log-supermodular) and the pairwise potentials could be of the form exp(g(yi, yj |v, w)), where
g(yi, yj |v, w) is a supermodular function of yi and yj , i.e., g(yi, yj |v, w) + g(y′i, y

′
j |v, w) ≤ g(yi ∧

y′i, yj ∧ y′j |v, w) + g(yi ∨ y′i, yj ∨ y′j |v, w) for all yi, yj , y′i, y
′
j ∈ S. Note that in the most general

case, we assume that the potential function values for each input/output pair are parameters of the
CRF. The linear constraint on the pairwise potential functions could be added to the machine learning
objective (discussed below) and enforced, with additional overhead, via projected gradient methods.

3.1 The Continuous Case

In the case of continuous models, similarities between random variables are often modeled using a
multivariate Gaussian distribution. There are two primary reasons for this: (1) multivariate Gaussians
represent a simple, well-understood parametric family and (2) Gaussian CRFs admit exact MAP

3

inference via matrix inversion. While this can be slow in practice for large models, in special
sub-classes of Gaussian models, e.g., walk-summable Gaussian graphical models [33, 43], exact
MAP inference can be done with Gaussian belief propagation, or similar approaches, without the
expense of a full matrix inversion. Further, GPU versions of approximate message-passing algorithms,
mean-field methods, or approximate variational inference methods, e.g., [55], can be used to make
inference extremely practical even in large-scale models.

As an example of an approach based on walk-summable models, consider potentials of the form

ϕi(yi|v) ≜ exp(−(yi − vi)
2), (1)

i.e., vi is the mean parameter of a Gaussian potential in the CRF, which is given by the discriminator
net, and the parameterized pairwise potentials are of the form

ϕij(yi, yj |w) ≜ exp(−wij · (yi − yj)
2). (2)

The parameters, w ≥ 0, are given as the output of the parameter NN. Note that the nonnegativity
constraint on w is sufficient to ensure that the joint distribution is a welk-summable Gaussian. This
model is a generalization of the modeling approach taken by Liu et al. [31] and others.

The Gaussian CRF acts as a regularizer/smoother to encourage (or not) neighboring pixels to take
similar values depending on how the parameter net selects the w parameters. While the CRF in this
example admits efficient inference, the modeling power of the potential functions is limited by the
Gaussian requirement. Note that this model is log-supermodular by construction as the coefficients
of the yiyj terms is equal to wij , which is constrained to be nonnegative. If we relax the Gaussian
requirement, the resulting log-quadratic model may not be integrable. However, in many practical
applications, the structured outputs y come from compact subset of Rn of the form [a, b]n, and
we can weaken the Gaussian requirement to only requiring log-supermodularity in such a setting.
Specifically, consider potential functions of the form

ϕi(yi|v, a, b) = exp(ai · y2i + bi · yi · vi) (3)
ϕij(yi, yj |c) = exp(cij · yi · yj), (4)

where v is the output of discriminator net and w = (a, b, c) is the output of parameter net. From
the second order condition for log-supermodularity, imposing the constraint that c ≥ 0 is enough to
ensure that each potential, and hence the entire model, is log-supermodular.

The log-supermodular model above contains the Gaussian model as a special case, but it need not
produce a joint Gaussian model (it could correspond to a log-concave or log-convex distribution, but
in general, it will be neither as the a’s can be either be positive or negative). We note that we will
restrict log-supermodular models in the continuous case to log-quadratic functions for computational
reasons as well as to avoid potential overfitting from much more flexible models. Despite this
limitation, we are unaware of other works that take a similar approach in the continuous case.

4 End-to-end Training of Hybrid Models

Fitting the combined NN+CRF model to data requires selecting an appropriate loss function, e.g.,
negative conditional log-likelihood, squared error, etc., and performing gradient descent to minimize
the loss. Different loss functions will result in different updates. Example loss functions that are
popular in combined frameworks include the negative conditional log-likelihood (NLL), squared loss
(SL), and the Huber loss (HL). No matter which loss function is selected, (approximate) inference
will need to be performed on the CRF as part of the gradient update: For the NLL, this can be
reduced to performing marginal inference, and for SL, HL, or similar discriminative losses, we
need to differentiate the argmaxy p(y|x) with respect to the NN parameters, which can be done by
computing the maximum of p(·|x) using MAP inference and then applying the chain rule (construct
partial derivatives with respect to the CRF parameters and then use backpropagation).

Approximate MAP inference in CRFs with continuous random variables can be performed using
a variety of different approaches, e.g., mean-field variational inference, particle belief propagation
[20, 27], or more general approximate variational inference strategies [17, 55]. Here we use the
approximate variational methods, e.g., mean-field or the Bethe Free Energy (BFE), as they can be
easily and efficiently implemented as a recurrent NN layer to seamlessly connect with the target

4

NN output. In both cases, we can think of the resulting (approximate) variational objective as an
optimization problem over mean parameters, µ, and covariances, Σ.

In the log-supermodular case, we could apply polynomial-time approximation schemes to estimate
the MAP solution, e.g., [53, 1], but these strategies are likely to be too expensive, especially if we
want to guarantee high accuracy. Practically speaking, the approximate variational methods are
probably still preferred in practice, e.g., mean-field or the MAP inference approach of Xiong et al.
[55], as these approaches are embarrassingly parallelizable and easy to implement as a computation
layer in an ML framework like Tensorflow and Pytorch that can be seamlessly appended at the end
of the original DNN (the overall computational overhead was around 10% in our experiments, see
Table 4). The approximate variational methods are not guaranteed to return a global optimum, but
the polynomial-time approximation schemes could be used to pick a good starting point for the
approximate variational methods, e.g., by discretizing the domain and solving a simpler, approximate,
discrete log-supermodular problem, in order to avoid poor local optima (we do not adopt this approach
as it does not seem to be necessary to obtain performance improvements in practice).

5 Related Work

Historically, models based purely on CRFs have been used extensively for both stereo/monocular
depth estimation, e.g., [24, 29, 32, 31, 45, 46, 49], as well as semantic image segmentation, e.g.,
[39, 38, 58]. The key challenge when applying CRFs for these problems is that fitting the CRF model
and performing inference is typically intractable, which necessitates approximate inference, e.g.,
mean-field methods or particle belief propagation [20]. Prediction using the approximate methods
can also be slow or inaccurate, e.g., particle BP may take a long time to converge (if it does at
all). In addition, superpixels or subregions are often used to make the inference in these models
scalable. Finally, features are typically hand-constructed, which often reduces practical performance.
Motivated by the above limitations of pure CRF solutions, frameworks have sought to combine them
with DNNs, e.g., for stereo matching [31, 24], for image segmentation [30, 61, 62, 9, 48, 28, 40]
and for image colorization Messaoud et al. [37], or abandon CRFs altogether. While this list of
hybrid approaches is not exhaustive for vision applications, it is illustrative of the limitations of
many of the existing combined approaches. The end-to-end framework we will explore in the next
section differs from existing DNN+CRF approaches in key ways: (1) we use a more general class
of log-supermodular potentials, (2) our GPU implementation of the approximate inference routines
makes our approach scalable even at the pixel level for vision tasks, (3) discretization is not used to
reduce continuous inference to discrete inference, and (4) our models are trained with discriminative
losses as opposed to minimizing the negative log-likelihood.

Similarly, there has been significant work on structured prediction that combines DNNs with CRFs.
While our focus here is on log-supermodular CRFs, a number of general approaches have been
proposed, and we highlight some of the most related here. Belanger et al. [4] consider a general
framework for continuous energy minimization (SPEN). In contrast to the approach here which
combines log-supermodular CRFs with DNNs, they consider a single black-box NN energy function
(which can easily lead to overfitting in practice). Graber and Schwing [18] proposed an alternative to
SPEN that allows problem structure to be incorporated to the learning process as part of a generalized
structured SVM framework. The approach here is much simpler (and more targeted) and consequently
inference is less time consuming (hence more scalable).

6 Experimental Evaluation

In this section, we evaluate the hybrid framework for attractive smoothing using existing DNN
models developed for a variety of different machine learning applications. Below we describe the
experimental setup in detail and then present qualitative and quantitative results for each of the
application domains. All models were implemented using Tensorflow 2.2 and run on a 3× NVIDIA
Tesla V100 GPU. All source code, along with learned model weights, is available on GitHub1. In
each application, we use the following skeleton.

Discriminator Net: a DNN that takes in the problem input and produces a structured output, y.

1https://github.com/motionlife/CRFBoostedDNN

5

https://github.com/motionlife/CRFBoostedDNN

Table 1: Comparison of stereo matching models.

Model Sceneflow Virtual KITTI2
> 1% MAE > 1% MAE

GC-Net 10.3% 1.09 15.8% 0.59
GC-Net (SG) 8.83% 0.82 5.4% 0.49
GC-Net (LSM) 7.92% 0.77 3.84% 0.31
PSM-Net 12.1% 1.09 15.4% 0.58
PSM-Net (SG) 9.00% 0.78 9.3% 0.50
PSM-Net (LSM) 6.77% 0.67 5.69% 0.38
LEAStereo 7.82% 0.78 12.3% 0.52
LEAStereo (SG) 7.75% 0.75 9.2% 0.47
LEAStereo (LSM) 7.68% 0.75 7.54% 0.50
GA-Net-15 9.9% .84 - -

Table 2: Performance of DeepLabv3+ and
its CRF variant on the coco-stuff validation
data. Note that DeepLab as 41.4M parame-
ters while the CRF adds an additional .5M
parameters.

Model Pix. Acc. MIoU
DeepLab-v3+ 0.6334 0.2705
DeepLab-v3+ (LSM) 0.6553 0.2981

Parameter Net: a simple stacked hourglass convolutional net that takes the problem input and
outputs the potential function parameters. See Table 3 in the appendix for details.

CRF and Potentials: Grid CRF of size H ×W , (which gives HW nodes and 2HW edges), where
H and W are the height and width of input image(s) for the DNN. We evaluate two different types of
hybrid models: the typical Gaussian potentials from equations (1) and (2), which we denote as SG,
and the log-supermodular potentials from (3) and (4), which we denote as LSM.

Marginal inference: Approximate inference is done via gradient ascent on the mean-field lower
bound using the GPU scheme of Xiong et al. [55] with learning rate η = 0.01. The MAP assignment
is computed from the joint distribution returned by the inference routine.

6.1 Stereo Matching

Given a pair of input images (left, right), the goal of stereo matching is to compute the disparity d for
each pixel in the reference image (the left image in this experiment). Given their speed and accuracy,
end-to-end DNN solutions have become the most popular approach for stereo matching, e.g., GC-Net
[23], PSM-Net [8], GA-Net [57], CSPNs [11], LEAStereo [13], CSPNs [12], HITNET [50], etc.

We selected several architectures for evaluation, GC-Net, PSM-Net, and LEAStereo as many recent
architectures have been built from components of the first two and LEAStereo was near the top of
the KITTI 2015 leaderboard at time of submission: GC-Net was the first architecture to learn a cost
aggregation function (as opposed to hand-crafted cost aggregation functions) and also suggested
using a differentiable soft-max while PSM-Net minimizes multiple losses during training (two are
diverted from intermediate layers to prevent skewing of information).

Model Details The parameter net only takes the left image as input and outputs the potential param-
eters w for SG and a, b, c for LSM. The parameters c and w control how similar two neighbouring
pixel’s disparity should be. Intuitively, in SG, w, should be large for pixels in the same object surface
and smaller for boundary pixels. All models are fit by minimizing the Huber loss:

L(d̂, d) =
1

N

N∑
n=1

Hδ(d̂− d), where Hδ(x) =

{
1
2x

2 for |x| ≤ δ

δ(|x| − 1
2δ) otherwise.

(5)

We set δ = 1 to match the setting of Chang and Chen [8]. For consistency, all models were trained
from scratch with the Adam optimizer (β1 = 0.9, β2 = 0.999), learning rate set to 0.0001, and batch
size 6. For each training batch, input images were randomly cropped to a dimension of 256× 512.
The maximum disparity (D) is set to 192.

Datasets We evaluate the proposed approach using the Scene Flow [34] and Virtual KITTI 2 [6],
synthetic data sets are often used to pretrain DNNs that can be fine-tuned on much smaller real-world
data sets such as KITTI [36, 35]. Detailed data set descriptions can be found in Appendix B. The
training epochs for each data set are: 30 for Sceneflow and 25 for Virtual KITTI 2. Evaluations were
done on full-sized images in the respective test sets.

6

Figure 2: Visual comparison of PSM-Net and its two CRF hybrid models on Sceneflow test dataset.

Results For the experimental evaluation, we compare pure DNN architectures with combined
DNN+CRF architectures on the data sets discussed above. We use the mean absolute error between
the predicted disparity and the ground truth (MAE), sometimes referred to as end point error (EPE),
and k-pixel threshold error percentage, i.e., the fraction of pixels whose absolute error is larger than
k pixels, as our evaluation metrics. The evaluation results are computed on all regions, both occluded
and non-occluded areas, except if the pixel does not have a valid ground truth or is greater than a
fixed maximum disparity setting (D). Our aim is to investigate whether or not the combined approach
(1) results in significant performance improvements with respect to MAE and 1 pixel error over the
pure NN approaches and (2) is efficient for both training and prediction.

The CRFs add an additional half-million or so parameters to the model but does not seem to result in
a significant increase in prediction time despite the 10-20% increase in the number of parameters,
e.g., GC-Net has 2.9M while GC-Net+CRF has 3.4M while the prediction time on the Sceneflow test
set only increases by about .04s when the CRF is added. See Appendix C for additional speed/size
details. We expect that similar observations would hold in other applications as long as the number of
parameters of the parameter net and the CRF scale moderately with the dimension of y.

Table 1 presents the test set performance of the different models both with and without CRFs on the
data sets discussed above. For comparison, we also include the published performance of GA-Net
[57] on the Sceneflow data set (it was trained using the same loss function). We have the following
observations. (1) Overall, the combined approaches outperform their respective pure approaches in
terms of both MAE and 1 pixel error. On SceneFlow, the most significant performance improvements
occurred for PSM-Net, both metrics were reduced between with LSM 40%-50%. And the resulting
model had the best overall performance on Sceneflow. On Virtual KITTI2, adding LSM to GC-Net
achieved the biggest performance improvements and also resulted in the best performing model on this
data set. (2) Even the comparatively older architectures GC-Net and PSM-Net perform comparably or
better than the more recent LEAStereo when a LSM CRF is used. PSM-Net (LSM) achieves the best
Sceneflow performance while GC-Net (LSM) achieved the best Virtual KITTI2 performance. (3) The
performance improvement obtained by hybrid approaches on Sceneflow applied to the LEAStereo
model are minimal. We suspect that this is because the model search that was led to the construction of
LEAStereo was tailored to this data set. However, on Virtual KITTI2, LEAStereo’s base performance
is only slightly better than GC-NET and PSM-Net, but the performance is improved significantly by
adding a CRF. (4) The LSM CRF always outperforms the SG CRF, sometimes significantly. While
SG is a special case of LSM, we observed that LSM performed better on both train and test data.
This suggests that the added flexibility of LSM over SG does not result in significant overfitting.
Additional quantitative results can be found in the supplementary material.

A qualitative comparison over the PSM-Net models can be found in Figure 2. As expected, the
addition of the CRF appears to result in smoother local neighborhoods compared to the base model
and better predictions on regions with fine details and thin areas, e.g., the spokes of wheels and the
leaves of plants. Comparing SG with LSM, we see that SG tends to oversmooth, especially in regions

7

Figure 3: ChromaGAN versus ChromaGAN+CRF(LSM) on the ILSVRC2012 validation data set.

with a lot of fine details, as compared to LSM – this seems to be the primary difference between the
two models. Additional qualitative results can be found in the supplementary materials.

6.2 Image Colorization

Next, we considered the problem of image colorization: given a grayscale image as input, the model
needs to generate a full color image. Colorization is an ill-posed problem, requiring mapping a
real-valued luminance image to a three-dimensional color-valued one, for which a unique solution
may not exist. Many early DNN models used an encode-decoder, FCN architecture, [59, 3, 60], with
some using classification loss, e.g., Zhang et al. [59], while others used smoothed ℓ1 loss, e.g., Zhang
et al. [60] or ℓ2 loss/MSE [3]. More recent approaches have used generative adversarial networks
(GANs) to generate colorful vivid images, e.g., [52]. One common problem with models trained to
colorize images is that of color bleeding, see Figure 3 for an example of color bleeding produced
by the ChromaGAN framework [52]. Our aim is to show that the hybrid approach can smooth local
neighborhoods and mitigate color bleeding, at least in some cases.

Model Details To evaluate the hybrid approach, we used the ChromaGAN generative adversarial
network for image colorization [52]. The ChromaGAN model consists of a pair of NNs: one is a
generator network, which is responsible for generating the 2 missing color channels, the other is a
discriminator network, which is used to judge how authentic the generated color images are. We
added a grid-structured CRF whose parameters are selected via two input networks; a discriminator
network that, in this case, is selected to be the generator network in ChrmoaGAN and a parameter
net that takes the single channel image as input and produces potential parameters for the CRF. The
output of the CRF inference, combined with input lightness channel, is sent to the discriminator
during training. We report only the performance of LSM in this case as SG is a special case that only
performed worse in the previous experiments.

Dataset ILSVRC2012 [44] contains roughly 1.3 million images categorized into 1K classes. The
training/hyperparameter tuning follows that of Vitoria et al. [52], over epochs (10).

Results We evaluated the models using peak signal to noise ratio (PSNR) and structural similarity
index measure (SSIM). The SSIM value was averaged across RGB channels when calculated against
ground truth color images. Following Vitoria et al. [52], we evaluated the models on the first 1000
images from the ILSVRC2012 validation dataset, ChromaGAN has a 23.09 PSNR / 0.915 SSIM while
Chroma-GAN (LSM) has a 24.19 PSNR / 0.927 SSIM (larger is better in both cases). Qualitatively,
we found that the hybrid model can sometimes significantly reduce color bleeding. Figure 3 gives
three examples of some visual improvements that were obtained by the hybrid model, which tends to

8

Figure 4: Segmentation results on the COCO-Stuff validation set. The CRF has a smoothing effect
on the DNN output.

have less color bleeding around object boundaries, e.g., the orange spot near the dog’s tail disappears
after adding the CRF. Additional visual comparisons can be found in the supplementary material.

6.3 Semantic Segmentation

Finally, we consider the semantic segmentation problem, an image classification problem in which
each pixel in the input image is assigned an individual category, e.g., road, tree, sky. The input is a
single image, and the output is the per pixel classification.

Model Details We used here is used the DeepLabv3+ [10] architecture to evaluate the hybrid
approach. DeepLabv3+ is an encoder-decoder architecture, with an encoder network as a backbone
to extract high level features and a decoder network to do up-sampling.The input image has size of
H ×W × 3, and the output logit tensor will be of size of H ×W × C, where C is the number of
possible classes. Thus, for each pixel, there is a logit vector of size C to represent the scores of that
pixel belonging to the corresponding class. Given that each class score of neighbouring pixels should
have dependency on each other, the previous DNN+CRF model that encourages similarities between
neighbors should also make sense here. The only difference that is that is we apply a CRF for each
class but enforce that those CRFs all share the same parameters.

Dataset The COCO-Stuff dataet [7], which contains all images from the COCO-2017 dataset
(118,287 training + 5K validation) with pixel-wise annotations for 91 stuff classes, e.g., sea, sky,
river, etc., and 1 thing class for objects such as people, car, etc. COCO-Stuff does not distinguish
between things. For training, H = 512, W = 512, C = 93 (91 stuff classes, 1 class unlabeled, 1
class for things). We use the Adam optimizer with learning rate 0.0001, both models were trained on
this data set for 30 epochs with batch size 12.

Results We evaluate the learned models using Mean Intersection-Over-Union (MIoU) and Pixel
Accuracy. Table 2 displays the quantitative results: the LSM CRF yields a mild improvement with
respect to both metrics. Figure 4 shows the qualitative results of this experiment: Adding the CRF
smooths the segmentation map, eliminating some obvious prediction errors in the pure DNN model
but over-smoothing in some cases. Although the CRF cannot correct more severe issues, e.g. distinct
pavement and road, it does still produce a smoother overall result.

7 Discussion

While current trends seem to preference pure DNN solutions for challenging applications in com-
puter vision and other domains, we have demonstrated that CRFs still provide a simple tool to
smooth/regularize and encourage local consistency in DNN outputs. In addition, we showed that
attractive smoothing via continuous log-supermodular models can yield significant performance
improvements in practice. All of this is tied together in an end-to-end framework that scales using
modern GPUs and approximate variational inference.

9

The flexible framework evaluated here can easily be incorporated into existing DNN approaches, and
performance improvements in practice range from mild to significant with little additional overhead
as part of the training or inference procedures on modern GPUs. Our hope is that these results
provide enough empirical evidence to suggest that hybrid CRF+DNN frameworks be considered
when designing new frameworks/architectures for which attractive smoothing is applicable. The
experimental approach herein uses limited types of potential functions and limited types of smoothing
for simplicity. It would be interesting to consider more expressive log-supermodular potential
functions (including those of arity larger than two) in future work.

Acknowledgments

This work was supported in part by the DARPA Perceptual Task Guidance (PTG) Program under
contract number HR00112220005.

References
[1] B. Axelrod, Y. P. Liu, and A. Sidford. Near-optimal approximate discrete and continuous

submodular function minimization. In Proceedings of the Thirty-First Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), page 837–853, USA, 2020. Society for Industrial
and Applied Mathematics.

[2] F. Bach. Submodular functions: from discrete to continous domains. Mathematical Program-
ming, 175:419–459, 10 2019.

[3] F. Baldassarre, D. G. Morín, and L. Rodés-Guirao. Deep koalarization: Image colorization
using cnns and inception-resnet-v2. arXiv preprint arXiv:1712.03400, 2017.

[4] D. Belanger, B. Yang, and A. McCallum. End-to-end learning for structured prediction energy
networks. In Int. Conf. on Mach, Learn., 2017.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[6] Y. Cabon, N. Murray, and M. Humenberger. Virtual kitti 2, 2020.

[7] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in context. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[8] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 5410–5418, 2018.

[9] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848, 2018.

[10] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In Proceedings of the European
conference on computer vision (ECCV), pages 801–818, 2018.

[11] X. Cheng, P. Wang, and R. Yang. Learning depth with convolutional spatial propagation network.
IEEE Trans. Pattern Anal. Mach. Intell., 42(10):2361–2379, 2020.

[12] X. Cheng, P. Wang, and R. Yang. Learning depth with convolutional spatial propagation network.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10):2361–2379, 2020.

[13] X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond, and Z. Ge. Hierar-
chical neural architecture search for deep stereo matching. In Advances in Neural Information
Processing Systems 33 (NeurIPS), 2020.

[14] W. Cunningham. On submodular function minimization. Combinatorica, 5:185–192, 07 1985.

10

[15] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as proxy for multi-object tracking
analysis. In IEEE Conf. Comput. Vis. Pattern Recog., pages 4340–4349, 2016.

[16] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In IEEE Conf. Comput. Vis. Pattern Recog., 2012.

[17] S. Gershman, M. Hoffman, and D. Blei. Nonparametric variational inference. In Int. Conf. on
Mach, Learn., pages 235–242, 2012.

[18] C. Graber and A. Schwing. Graph structured prediction energy networks. In Adv. Neural Inform.
Process. Syst., pages 8690–8701, 2019.

[19] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for
binary images. Journal of the Royal Statistical Society: Series B (Methodological), 51(2):
271–279, 1989.

[20] A. Ihler and D. McAllester. Particle belief propagation. In Conference on Artificial Intelligence
and Statistics (AISTATS), pages 256–263, 2009.

[21] S. Iwata and J. B. Orlin. A simple combinatorial algorithm for submodular function minimiza-
tion. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1230–1237. SIAM, 2009.

[22] M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta. Composing
graphical models with neural networks for structured representations and fast inference. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29, 2016.

[23] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach, and A. Bry.
End-to-end learning of geometry and context for deep stereo regression. In Int. Conf. Comput.
Vis., pages 66–75, 2017.

[24] P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock. End-to-end training of hybrid
cnn-crf models for stereo. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1456–1465, 2017.

[25] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004.

[26] P. Liang, H. Daumé, and D. Klein. Structure compilation: trading structure for features. In Int.
Conf. on Mach, Learn., pages 592–599, 2008.

[27] T. Lienart, Y. W. Teh, and A. Doucet. Expectation particle belief propagation. In Adv. Neural
Inform. Process. Syst., pages 3609–3617, 2015.

[28] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid. Efficient piecewise training of deep structured
models for semantic segmentation. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), pages 3194–3203, 2016.

[29] B. Liu, S. Gould, and D. Koller. Single image depth estimation from predicted semantic labels.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 1253–1260. IEEE, 2010.

[30] F. Liu, G. Lin, and C. Shen. Crf learning with cnn features for image segmentation. Pattern
Recognition, 48(10):2983–2992, 2015.

[31] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images using deep
convolutional neural fields. IEEE Trans. Pattern Anal. Mach. Intell., 38(10):2024–2039, 2015.

[32] M. Liu, M. Salzmann, and X. He. Discrete-continuous depth estimation from a single image. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 716–723, 2014.

[33] D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation in
Gaussian graphical models. Journal of Machine Learning Research (JMLR), 7:2031–2064,
2006.

11

[34] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In
IEEE Conf. Comput. Vis. Pattern Recog., 2016.

[35] M. Menze and A. Geiger. Object scene flow. ISPRS Journal of Photogrammetry and Remote
Sensing (JPRS), 2018.

[36] M. Menze, C. Heipke, and A. Geiger. Joint 3d estimation of vehicles and scene flow. In ISPRS
Workshop on Image Sequence Analysis (ISA), 2015.

[37] S. Messaoud, D. Forsyth, and A. G. Schwing. Structural consistency and controllability for
diverse colorization. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[38] S. Nowozin, P. V. Gehler, and C. H. Lampert. On parameter learning in crf-based approaches to
object class image segmentation. In European conference on computer vision, pages 98–111.
Springer, 2010.

[39] N. Plath, M. Toussaint, and S. Nakajima. Multi-class image segmentation using conditional
random fields and global classification. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 817–824, 2009.

[40] E. Ricci, W. Ouyang, X. Wang, N. Sebe, et al. Monocular depth estimation using multi-scale
continuous crfs as sequential deep networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 41(6):1426–1440, 2018.

[41] N. Ruozzi. Approximate MAP inference in continuous MRFs. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), Montreal, Canada, Dec. 2015.

[42] N. Ruozzi. A lower bound on the partition function of attractive graphical models in the
continuous case. In Twentieth International Conference on Artificial Intelligence and Statistics
(AISTATS), Fort Lauderdale, FL, Apr. 2017.

[43] N. Ruozzi and S. Tatikonda. Message-passing algorithms for quadratic minimization. Journal
of Machine Learning Research (JMLR), 14:2287–2314, 2013.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

[45] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monocular images. In Adv.
Neural Inform. Process. Syst., pages 1161–1168, 2006.

[46] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d scene structure from a single still
image. IEEE Trans. Pattern Anal. Mach. Intell., 31(5):824–840, 2008.

[47] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polyno-
mial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

[48] A. G. Schwing and R. Urtasun. Fully connected deep structured networks. arXiv preprint
arXiv:1503.02351, 2015.

[49] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using belief propagation. IEEE Trans.
Pattern Anal. Mach. Intell., 25(7):787–800, 2003.

[50] V. Tankovich, C. Hane, Y. Zhang, A. Kowdle, S. Fanello, and S. Bouaziz. Hitnet: Hierarchical
iterative tile refinement network for real-time stereo matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14362–14372, June
2021.

[51] D. M. Topkis. Supermodularity and Complementarity. Princeton University Press, 2011.

12

[52] P. Vitoria, L. Raad, and C. Ballester. Chromagan: Adversarial picture colorization with semantic
class distribution. In The IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 2445–2454, 2020.

[53] A. Weller and T. Jebara. Approximating the Bethe partition function. In Proceedings of the
Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI), page 858–867, Arlington,
Virginia, USA, 2014. AUAI Press. ISBN 9780974903910.

[54] A. Willsky, E. Sudderth, and M. J. Wainwright. Loop series and bethe variational bounds in
attractive graphical models. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems, volume 20, 2007.

[55] H. Xiong, Y. Guo, Y. Yang, and N. Ruozzi. One-shot marginal MAP inference in Markov
random fields. In Uncertainty in Artificial Intelligence (UAI), 2019.

[56] G. Yang, X. Song, C. Huang, Z. Deng, J. Shi, and B. Zhou. Drivingstereo: A large-scale dataset
for stereo matching in autonomous driving scenarios. In IEEE Conf. Comput. Vis. Pattern
Recog., 2019.

[57] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr. GA-Net: Guided aggregation net for end-to-end
stereo matching. In IEEE Conf. Comput. Vis. Pattern Recog., pages 185–194, 2019.

[58] L. Zhang and Q. Ji. Image segmentation with a unified graphical model. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(8):1406–1425, 2009.

[59] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In ECCV, 2016.

[60] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros. Real-time user-guided
image colorization with learned deep priors. arXiv preprint arXiv:1705.02999, 2017.

[61] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S.
Torr. Conditional random fields as recurrent neural networks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1529–1537, 2015.

[62] H. Zhou, J. Zhang, J. Lei, S. Li, and D. Tu. Image semantic segmentation based on fcn-crf
model. In 2016 International Conference on Image, Vision and Computing (ICIVC), pages 9–14.
IEEE, 2016.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

