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1 Implementation details

1.1 Training details

In the proposed framework, we employ ResNet38 [7] and PointNet++ [4] as an image classifier and a
point cloud classifier, respectively. As we introduced in Section 3 of the main paper, we add a linear
layer for acquiring pixel- or point-wise class prediction from the features. For training the image
classifier, we use a poly learning rate which multiplies (1− iter

max iter )
power to the initial learning rate.

As in [3]. we set the initial learning rate and the power as 0.01 and 0.9, respectively. In the training
process, we sample one image per point cloud and bridge them with the help of the corresponding
view matrix. We also tested using multiple images at once; however, the performance gain was
marginal when we consider the increase in memory requirements and training times.

In the first phase, we individually train both 2D and 3D classifiers with the classification loss of
each domain. After that, we jointly train them using the proposed 2D-to-3D and 3D-to-2D losses,
in addition to the classification loss. Here, in the second phase, please note that we first train our
framework without the 3D-to-2D loss for the first few epochs. Although we pre-trained the 3D
network in the first phase and thereby it can extract meaningful 3D features for segmentation to some
degree, it is true that the 2D network shows much better semantic segmentation capability in the first
phase (refer to the 2D and 3D baselines in Table 4 of the main paper). Since this imbalance might
lead to unstable joint training, we strengthen the 3D network with 2D-to-3D loss in the early epochs
of the second phase.

1.2 Data augmentations

As we explained in Section 4.1 of the main paper, we augment the images and point clouds before we
feed them to our framework. In this subsection, we provide our augmentation methods in detail.

Image augmentation We first re-scale the longer axis of the input image to a random size in the
range of [256, 512], and crop a 256×256 size patch from the resized image. Here, we empirically
observe that using a bigger patch size is ineffective in terms of classification, since having a wider
relative receptive field is crucial for understanding the scene from the image. On the other hand,
when we use a smaller patch size, fine details of the image could not be preserved. After that, we
randomly apply horizontal flipping (p = 0.5), and adjust the color distribution of the image by using
color jittering [2] with the following parameters: brightness=0.3, contrast=0.3, saturation=0.3, and
hue=0.1. We find that color jittering is essential since the frames of ScanNetV2 [1] have a wide
variety in terms of brightness and saturation. We also observe that some frames are spoiled by severe
motion blurs. Enhancing such frames with off-the-shelf modules (e.g. deblurring network) could be
effective for improving our framework.

Point cloud augmentation For augmenting the input point cloud, we sub-sample 40k points from
the original point cloud. When there are less than 40k points, we allow repetition. We apply random
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Figure 1: Comparison between the results of projection with and without the depth-based filtering.
From (a) to (f): a point cloud, an image, depth map corresponding to the image, projected 3D GT
without filtering, projected 3D GT with filtering, and 2D semantic segmentation GT of the image.

flipping (p = 0.5) to the sampled point cloud in both horizontal and vertical directions. We also
adjust the point cloud by using random rotation of [-5,5] degrees around the upright axis. Note that
we leverage axis alignment information given from the ScanNetV2 [1] dataset for train and val sets,
as in WyPR [5].

2 Details on rendering

With a given view matrix, we project the 3D features and 3D CAMs to the image plane. Here, as
explained in Section 3.2 of the main paper, we discard the points located outside of the image grid.
Also, we filter the points of the occluded object which should not exist on the image. For filtering
the occlusion, we exploit the depth map corresponding to the image provided by the ScanNetV2
dataset as a reference. We could also render a depth map from the mesh (generated from the point
cloud). Then, the points having the same depth as the reference depth are preserved during projection,
while the other points are filtered. With the filtering process, we can safely reject the occluded
points that should not be trained by 2D CAMs. Figure 1 compares the results of projection with and
without the filtering. In the figure, for better understanding, we visualize the projection results of
ground truth (GT) semantic segmentation labels of the point cloud. Since the projection is done by
matrix-vector multiplication, the overall rendering process is differentiable. Thereby the gradients
obtained from the 2D-to-3D loss (L2d→3d

joint ) between the projected 3D CAM and 2D pseudo-label can
be back-propagated to the point cloud classifier, as visualized in the Fig. 2 of the main paper.

3 Semantic segmentation results

In Table 1, we show the class-wise segmentation performance of the proposed framework and the other
3D WSSS studies [5, 6]. We can observe that our framework outperforms all of the existing methods
by a large gap in both train and val sets. Even though we did not employ refinement techniques such
as denseCRF or retraining used in MPRM [6], the proposed method achieves remarkable performance
with the help of the proposed 2D-3D joint learning. We also provide the 2D class-wise segmentation
performance of the proposed framework and the 2D baseline (2D WSSS) in Table 2. We can observe
that our framework outperforms the baseline, thanks to the segmentation capability transferred from
the 3D domain via L3d→2d

joint . The results support the superiority of the proposed framework, which
successively unifies the benefit of WSSS in both 2D and 3D domains.
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Table 1: Class-wise IoU on ScanNetV2 [1] train and val split. We compare the results of
the proposed framework with those of the existing 3D WSSS works [5, 6]. Here, “refine" de-
notes refinement techniques (denseCRF or retraining) employed by MPRM [6]. For simplicity,
we abbreviate cabinet/window/bookshelf /picture/counter/curtain/shower curtain/other furniture as
cab./win./B.S./pic./cnt./cur./S.C./O.F., respectively. Bold numbers represent the best results.

Method split refine wall floor cab. bed chair sofa table door win. B.S. pic. cnt. desk cur. fridge S.C. toilet sink tub O.F. mIoU
WyPR [5] train No 59.3 31.5 6.4 58.3 31.6 47.5 18.3 17.9 36.7 34.1 6.2 36.1 24.3 67.2 8.7 38.0 17.9 28.9 35.9 8.2 30.7
MPRM [6] train No 56.1 54.8 32.0 69.6 49.5 67.7 46.6 41.3 44.2 71.5 28.3 21.3 49.2 71.8 38.1 42.8 43.6 20.3 49.0 33.8 46.6
MPRM [6] train Yes 58.0 57.3 33.2 71.8 50.4 69.8 47.9 42.1 44.9 73.8 28.0 21.5 49.5 72.0 38.8 44.1 42.4 20.0 48.7 34.4 47.4

Ours train No 72.6 89.7 32.7 71.3 70.0 73.0 52.9 38.6 56.0 77.0 17.4 42.4 53.8 74.6 49.5 74.9 80.0 36.5 77.4 42.7 59.1
WyPR [5] val No 58.1 33.9 5.6 56.6 29.1 45.5 19.3 15.2 34.2 33.7 6.8 33.3 22.1 65.6 6.6 36.3 18.6 24.5 39.8 6.6 29.6
MPRM [6] val No 55.7 50.7 23.1 57.5 47.5 53.5 39.2 32.6 41.8 63.6 19.7 19.2 39.8 66.3 22.2 44.1 49.1 23.4 43.0 28.5 41.0
MPRM [6] val Yes 59.4 59.6 25.1 64.1 55.7 58.7 45.6 36.4 40.3 67.0 16.1 22.6 42.9 66.9 24.1 39.6 47.0 21.2 44.7 28.0 43.2

Ours val No 69.6 90.0 27.9 61.0 68.7 62.7 52.3 34.1 42.0 65.2 5.8 42.6 44.4 60.4 25.3 33.5 70.9 38.6 66.5 31.4 49.6

Table 2: 2D Class-wise IoU on ScanNetV2 [1] frames in train and val split. We compare
the results of the proposed framework with the 2D-only WSSS baseline. For simplicity, we
abbreviate cabinet/window/bookshelf /picture/counter/curtain/shower curtain/other furniture as
cab./win./B.S./pic./cnt./cur./S.C./O.F., respectively. Bold numbers represent the best results.

Method split wall floor cab. bed chair sofa table door win. B.S. pic. cnt. desk cur. fridge S.C. toilet sink tub O.F. mIoU
2D WSSS train 52.3 59.6 32.5 59.6 43.3 48.1 41.3 34.4 36.2 42.8 25.7 5.7 30.6 39.0 30.6 38.0 43.1 29.5 48.1 20.2 38.0

Ours train 68.8 82.1 41.8 73.6 58.1 62.1 57.9 43.7 51.9 58.4 20.8 36.0 49.5 62.9 44.4 68.7 69.5 33.4 69.7 35.6 54.4
2D WSSS val 52.9 57.6 28.2 53.6 40.8 45.2 39.7 29.4 31.2 42.4 22.4 3.7 26.1 31.2 25.8 16.4 37.2 27.3 34.0 20.7 33.3

Ours val 68.2 78.8 36.0 60.3 52.5 47.1 52.8 37.9 40.3 49.4 11.9 25.7 38.4 43.2 33.2 41.6 58.4 33.2 51.5 30.5 44.5

Figure 2 shows comparison between the CAMs of uni-domain baselines and the proposed framework
in both 2D and 3D domains. We also provide example of 3D CAM in Fig. 3. Figure 4 and Figure 5
show more semantic segmentation results of the proposed framework in both 2D and 3D domains.
Compared to the uni-domain baselines (2D WSSS and 3D WSSS), we can observe that the proposed
framework achieves much more accurate and precise results, in both terms of CAMs and semantic
segmentation results. The results strongly support that our method successfully unifies the benefits of
the 2D and 3D domain as we intended.

4 Experiments regarding the class imbalance

In the field of (indoor) point cloud segmentation, a class imbalance is one of the most hindering
factors. As we mentioned in line 79 of the main paper, some classes such as wall (97.3%) or floor
(99.3%) commonly exist in most of the point clouds. One can also find the class frequency of the
ScanNetV2 dataset in Table 1 of the MPRM [6].

For fully supervised cases, re-weighting based on class frequency could be helpful, as in many other
similar tasks. On the other hand, in the case of WSSS, the severe class imbalance of ScanNetV2
dataset is difficult to be addressed with re-weighting only. For example, only 0.7% of the point cloud
samples do not include the floor category. In such a challenging case, it is hard to expect the network
to find meaningful classification cues, and thereby the quality of CAM is also poor.

We experimentally verified the efficacy of frequency-based re-weighting. In this experiment, we train
the 3D network with re-weighted classification loss only. We observe that the re-weighting strategy
does not make a meaningful improvement as shown in the Table 3.

Table 3: Class-wise IoU on ScanNetV2 [1] train split. We compare 3D baseline while ablating the
frequency-based re-weighting strategy. For simplicity, we abbreviate the name of each category.

Reweight wall floor cab. bed chair sofa table door win. B.S. pic. cnt. desk cur. fridge S.C. toilet sink tub O.F. mIoU
No 47.6 13.7 10.6 38.7 0.7 53.2 14.5 5.2 20.8 30.2 6.2 5.8 22.4 27.5 0.9 20.2 2.9 5.8 24.1 1.6 17.9
Yes 57.3 12.5 13.1 37.0 6.6 41.2 19.5 15.0 23.9 26.8 0.1 7.4 10.8 37.9 2.3 4.3 10.4 2.2 20.7 8.9 17.9
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Figure 2: Comparisons of 2D and 3D CAMs of the baselines and the proposed framework. For each
block of CAMs, from (a) to (d): 3D CAM of 3D WSSS baseline, ours 3D CAM, 2D CAM of 2D
WSSS baseline, and ours 2D CAM. Color code follows that of the ScanNetV2 [1] dataset.
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(a) Input (b) GT

(c) 3D CAM of window (d) 3D CAM of chair

(e) 3D CAM of floor (f) 3D CAM of desk

Figure 3: Example of 3D CAMs. We can observe that our 2D-3D joint framework well localizes the
region of each class.
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Figure 4: Qualitative comparison of 2D/3D semantic segmentation results of uni-domain baselines
and the proposed 2D-3D joint framework. From left to right: input point clouds and images, results
of uni-domain 2D WSSS and 3D WSSS, our results, and ground truths. A color map of the 20 classes
of ScanNetV2 [1] is provided at the top of the figure, where the black color denotes the ignore index.
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Figure 5: Qualitative comparison of 2D/3D semantic segmentation results of uni-domain baselines
and the proposed 2D-3D joint framework. From left to right: input point clouds and images, results
of uni-domain 2D WSSS and 3D WSSS, our results, and ground truths. A color map of the 20 classes
of ScanNetV2 [1] is provided at the top of the figure, where the black color denotes the ignore index.
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