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Abstract

The aim of weakly supervised semantic segmentation (WSSS) is to learn semantic
segmentation without using dense annotations. WSSS has been intensively studied
for 2D images and 3D point clouds. However, the existing WSSS studies have fo-
cused on a single domain, i.e. 2D or 3D, even when multi-domain data is available.
In this paper, we propose a novel joint 2D-3D WSSS framework taking advantage
of WSSS in different domains, using classification labels only. Via projection,
we leverage the 2D class activation map as self-supervision to enhance the 3D
semantic perception. Conversely, we exploit the similarity matrix of point cloud
features for training the image classifier to achieve more precise 2D segmentation.
In both directions, we devise a confidence-based scoring method to reduce the
effect of inaccurate self-supervision. With extensive quantitative and qualitative
experiments, we verify that the proposed joint WSSS framework effectively trans-
fers the benefit of each domain to the other domain, and the resulting semantic
segmentation performance is remarkably improved in both 2D and 3D domains.
On the ScanNetV2 benchmark, our framework significantly outperforms the prior
WSSS approaches, suggesting a new research direction for WSSS.

1 Introduction

Semantic segmentation is a fundamental problem in the field of computer vision. Recently, learning-
based semantic segmentation methods have achieved remarkable performance. However, they usually
rely on strong supervision such as pixel-wise (2D) or point-wise (3D) dense semantic labels. Since
dense labels are time-consuming and labor-intensive to annotate, the labeling process has remained
the main obstacle to applying semantic segmentation to real problems. Weakly supervised semantic
segmentation (WSSS) has flourished to learn semantic segmentation by using inexpensive weak
labels (e.g. bounding boxes or class labels).

WSSS using class labels has been widely studied in the 2D domain (image) and has recently also been
scaled into the 3D domain (point cloud). For acquiring pixel- or point-wise class predictions without
any spatial supervision, the existing 2D and 3D WSSS studies have employed Class Activation Maps
(CAM) [35] extracted from a classifier. Since CAM usually localizes the discriminative regions of
each class (which be used as cues for classification by classifier), one can acquire pseudo-labels for
semantic segmentation from the CAM. While the studies have shown promising results, they focus
on using the data of a single domain and place less emphasis on the information of other domains
that might have complementary properties.

Fig. 1 visualizes the complementary advantages of 2D and 3D WSSS. With rich and dense features
from a CNN-based architecture, 2D WSSS succeeds in the semantic perception of images. However,
the 2D CAM is usually not sharp at the object boundary and the segmentation result tends to be
imprecise as shown in (b3). On the other hand, 3D WSSS is advantageous in terms of segmentation,
since the input point cloud contains the 3D geometry of the scene. However, due to the severe class
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Figure 1: Comparison of results from single 2D or 3D domain WSSS and the proposed multi-domain
WSSS. The second column shows the results of 3D WSSS (b1, b2) and 2D WSSS (b3). 3D WSSS
misclassifies the semantics of the objects (red boxes), while the 2D WSSS generates imprecise
prediction at object boundaries (yellow boxes). Compared to the uni-domain results, the proposed
2D-3D joint WSSS framework achieves much more precise and complete semantic segmentation
results in both domains (c1-c3), by unifying the benefits of multi-domain data.

imbalance in 3D data (e.g. wall or floor exist in almost every scene) and the sparse nature of the point
cloud, 3D WSSS difficulty in predicting the semantics as in (b1) and (b2). The results of 2D and 3D
WSSS show different tendencies originating from the distinct domains, and they are complementary
for achieving semantic segmentation of the scene.

Upon this background, we propose a novel 2D-3D WSSS framework that jointly targets both domains
of image and point cloud. For unifying the complementary strengths of both domains, we propagate
the benefit of one domain to the other domain via self-supervision, and vice versa. It enables our
framework to individually perform 2D and 3D WSSS, without requiring the paired input data in the
inference phase. We obtain a 2D pseudo-label from the 2D CAM of the image classifier and make
3D CAM follow it, which enhances the semantic perception of the point cloud classifier. On the other
hand, to transfer the segmentation capability of 3D CAM to 2D, we construct a correlation matrix
between the 3D features. The image classifier is then trained to generate 2D features having a similar
correlation matrix to that of the 3D, which relieves the impreciseness problem of 2D CAM. In both
directions, to prevent the networks from being spoiled by inaccurate self-supervision, the framework
obtains a confidence score for each region and rejects erroneous predictions.

With extensive qualitative and quantitative experiments, we verify that the proposed joint framework
effectively transfers the benefit of each domain to the other domain as visualized in (c1-c3) of Fig. 1.
As a result, in both image and point cloud domains, the semantic segmentation performance is
remarkably enhanced simultaneously. For example, on the ScanNetV2 [5] benchmark, our method
significantly outperforms the existing WSSS studies, demonstrating its superiority. Further, with
an experiment on generalization capability to the S3DIS dataset, we verify that the gain of our
joint framework could be extended to the unobserved data. The proposed framework is the first
multi-domain approach for the field of WSSS, which is not only effective for learning both semantics
and segmentation but also practical for being applied in real cases. We strongly believe that 2D-3D
joint learning is a promising direction for conquering semantic segmentation with class labels only.
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Table 1: Summary of related works in the field of WSSS. Compared to the prior single 2D or 3D
domain works, our method targets both 2D and 3D domains by using image-level and scene-level
class labels only. CLS and SS denote class labels and semantic segmentation labels, respectively.

Domains 2D 3D 2D+3D
Methods [11, 13, 1, 32, 24, 16, 3, 7, 25] [20, 31, 8, 33, 34] MPRM[29] WyPR[22] Proposed

Weak Labels CLS
(image)

SS
(few points)

CLS
(subcloud)

CLS
(scene)

CLS
(image and scene)

2 Related works

In this section, we introduce the existing studies on 2D/3D WSSS and clarify the uniqueness of the
proposed WSSS method that targets both domains in a simultaneous manner. Table 1 shows the
setting of the weak labels we used and those of existing studies. Note that the proposed framework is
the first method that exploits the complementary strengths of WSSS in the 2D and 3D domains, using
image- and scene-level class labels only.

WSSS in 2D domain 2D WSSS with image-level class labels only [11, 13, 1, 32, 24, 16, 3, 7, 25]
has been widely studied for the last decade. Since the class labels do not provide any spatial
supervision, most WSSS studies have exploited a CAM for localizing the regions of each class.
Although the CAM can serve as an acceptable estimate for localization, they are usually activated in
the most discriminative regions only, rather than capturing whole object regions. Moreover, the CAM
is sensitive to the scale variance of the input image and less precise at the boundary of the objects. To
relieve these issues, existing works have proposed various techniques such as refining [11, 13, 1],
adversarial erasing [32, 24, 16], sub-categorical classification [3], and cross-image attention [7, 25].
However, their problem definition and benchmark dataset [6, 18] mainly focus on the 2D domain and
less consider 3D structures of the scene, which are valuable for solving the aforementioned issues.

WSSS in 3D domain Point-wise dense semantic segmentation labeling for a 3D point cloud is
notorious for being difficult to annotate (22.3 min) [29]. To resolve this, several studies [20, 31,
8, 33, 34] have been conducted to learn semantic segmentation with only partially labeled points.
However, since acquiring partial point-wise annotation is still expensive even under the “One Thing
One Click" setting (2 min) [20], a few studies have been conducted for exploiting less expensive class
labels (15 sec) [29]. MPRM [29] samples subclouds from the full scene and annotates them, since
using subcloud-level class labels can relieve the class imbalance issue (e.g. wall or floor) commonly
appearing in almost every scene). Recently, WyPR [22] jointly targets semantic segmentation and
object detection of a point cloud with scene-level class labels only. The studies have shown the
feasibility of WSSS in the 3D domain; however, due to the sparse and irregular nature of the point
cloud, the performance of 3D WSSS is limited compared to the 2D WSSS.

Semantic segmentation in combined 2D-3D domains To exploit both 2D and 3D data for semantic
segmentation, several semantic segmentation studies have been conducted for uni-directional[12, 4]
or bi-directional[10] feature projection between the 2D and 3D domains, in a fully-supervised setting.
[28, 15] leveraged the 2D semantic segmentation for learning the 3D semantic segmentation with
multi-view or virtual-view settings; however, they still require a dense 2D GT. [26] proposed to
use 3D information as guidance for enhancing 2D WSSS using bounding boxes. Recently, [9, 17]
incorporated 3D priors for self-supervised learning of 2D networks to achieve 3D-aware scene
recognition. Unlike the existing studies, our framework is the first WSSS approach that jointly unifies
the complementary benefits of 2D and 3D domains, by using the image-level and scene-level class
labels only.

3 Method

In this section, we introduce the proposed 2D-3D joint framework for learning WSSS in both domains.
Figure 2 shows our overall framework.
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Figure 2: Our overall framework. As inputs, we use a point cloud P and an image Ik sampled from a
set of images corresponding to the point cloud, where the projection for the image is given as Vk.
Note that the image is captured from the real scene. An image classifier F and a point cloud classifier
G are trained to extract 2D outputs (Z2d and A2d) and 3D outputs (Z3d and A3d), respectively. To
bridge the 2D and 3D domains, the 3D outputs are projected onto the image plane by using Vk. For
3D-to-2D, we construct a correlation matrix of 2D features (S2d) and make it to follow that of the
projected 3D features (S3d,p). For 2D-to-3D, we generate 2D pseudo-label M2d from 2D CAM and
make projected 3D CAM follow it. Note that blue dashed lines denote back-propagation of the losses.

3.1 Acquiring CAM of each dimension

Following the prior works with the class labels only, we exploit a CAM to localize the class regions
from the image or point cloud. We assume that a set of K images I = {I1, · · · , IK} and a point
cloud P are obtained from a certain scene. Ik is an RGB image with a size of H ×W , and P is a set
of N points where each point is represented by its 3D coordinate (XYZ) and color (RGB), as in [22].
A view matrix Vk (perspective projection matrix) of the camera for the image Ik is also given, as
in many point cloud datasets [5, 2]. As weak supervision, we use the image-level class label t2d
and scene-level class label t3d, where both labels are represented as C-dimensional binary vectors.
C denotes the total number of classes, and the classes are non-exclusive since multiple classes can
co-exist in a single image (or point cloud).

As visualized in Fig. 2, we train an image classifier F to extract a 2D feature map Z2d ∈ RD×H×W .
A single linear layer having D input channels and C output channels then serves as a classification
head for making pixel-wise class prediction A2d ∈ RC×H×W . Similarly, a point cloud classifier G is
trained to provide point-wise features Z3d ∈ RD×N and point-wise class prediction A3d ∈ RC×N .
Here, we directly employ A2d and A3d as the CAM of each domain, and refer to them as 2D CAM
and 3D CAM throughout this paper. For both networks, we use the GAP (Global Average Pooling)
layer to average the pixel- or point-wise predictions along the spatial dimension as follows:

y2d =
1

HW

H∑
i=1

W∑
j=1

A2d
:,i,j and y3d =

1

N

N∑
n=1

A3d
:,n, (1)

where y2d ∈ RC and y3d ∈ RC denote image-level and scene-level class prediction, respectively. To
promote the 2D and 3D CAMs to be activated on the corresponding regions of classes, the classifiers
are trained with classification loss as following, where ℓbce denotes the binary cross entropy loss.

L2d
cls = ℓbce(y

2d, t2d) and L3d
cls = ℓbce(y

3d, t3d). (2)
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3.2 From 2D to 3D: Transferring semantic capability

We are inspired by an observation that the information contained in 2D and 3D data is not only distinct
but also complementary. The proposed framework aims to jointly learn WSSS in both domains and
unify their strengths. For joint learning of both domains, we could directly provide information
from one domain to the other domain via feature paths using projection, as in [10]. However, in the
inference phase, a model including the feature path requires the paired set of data of both domains,
which greatly limits the practical use case.

Therefore, instead of directly swapping the features, we devise our framework to provide information
from one domain to the other domain as a form of self-supervision during the training process
only. It enables the proposed 2D-3D framework to separately process the data of each domain – our
framework can perform 2D WSSS and 3D WSSS individually in the inference phase, without using
the input data from the other domain.

We use the view matrices of images for bridging the 2D and 3D domains, as visualized in Fig. 2.
The projection from 3D homogeneous coordinates to the 2D pixel coordinates in Ik is formulated as
follows:

[uk
n, v

k
n, 1]

T = Vk[xn, yn, zn, 1]
T , (3)

where (xn, yn, zn) is the coordinate of the nth point in the point cloud P and (uk
n, v

k
n) is the

destination of the projected point in Ik. We denote the projection function with the view matrix Vk

as proj(·,Vk). For simplicity, we omit k throughout this paper.

With a given V, the 3D point features Z3d and 3D CAM A3d are projected onto the image plane.
Here, we discard the points located outside of the image grid. Also, we filter the points of the
occluded object which should not exist on the image. The projected 3D features Z3d,p ∈ RD×Nv and
3D CAM A3d,p ∈ RC×Nv can be obtained as follows:

Z3d,p = proj(Z3d,V) and A3d,p = proj(A3d,V), (4)

where Nv denotes the number of preserved points. Note that the projection process is differentiable,
and therefore the gradients can be back-propagated (see blue dashed lines in Fig. 2).

Once the projected 3D CAM is acquired, we bridge the 2D CAM and 3D CAM at the pixels where
the projected points exist. To leverage the semantic advantages of the 2D domain for improving
3D CAM, we obtain a pseudo-label map M2d from the 2D CAM. Since there is usually no explicit
background class in indoor scenes, we regard the class with maximum prediction score as a predicted
class at each pixel as follows:

M2d
i,j = argmax

c∈{1,...,C}
(t2dc ·A2d

c,i,j), (5)

where the non-existing classes are ignored by using the given image-level class label t2d.

We apply point-wise classification loss to the 3D CAM to follow the acquired 2D pseudo-label.
However, unlike GT supervision, the predicted 2D pseudo-labels may include inaccurate signals and
cannot be fully trusted. To address this, we regard the maximum score of class prediction of each
pixel as a metric for the confidence of that pixel. The confidence map W2d is defined as follows:

W2d
i,j = max(A2d

:,i,j). (6)

We define the 2D-to-3D loss that transfers 2D semantic capability to 3D network as

L2d→3d
joint =

1

Nv

Nv∑
n=1

W2d
un,vnℓbce(A

3d,p
:,n ,M2d

un,vn), (7)

where the (un, vn) is a pixel coordinate of the nth projected point as we denoted. Using maximum
logit as a confidence score can reduce the contributions of such less confident pixels to the loss, and
prevent 3D CAM from learning with erroneous self-supervision. We verify that this confidence-based
scoring method brings actually increases the WSSS performance by a large gap, which will be
demonstrated in Section 4.
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3.3 From 3D to 2D: Transferring segmentation capability

Thanks to the well-preserved geometrical structures of the point cloud, the 3D WSSS can be advanta-
geous for segmenting the scenes compared with 2D WSSS. However, unlike 2D-to-3D loss utilizing
2D pseudo-labels, this benefit cannot be directly leveraged to mitigate the impreciseness of 2D CAM
due to the class imbalance issue and low semantic perception capability of the 3D CAM. In this paper,
to unlock the segmentation potentials of the point cloud classifier, we train the image classifier to
generate 2D features having a similar correlation matrix with that of the 3D features.

Motivated by [19], we construct a correlation matrix S3d,p from the projected 3D features Z3d,p, by
using the following equation:

S3d,p
a,b = Z3d,p

:,a · Z3d,p
:,b , (8)

where (a, b) denotes a pair of the projected points. Similarly, for the pixels corresponding to the
projected points, S2d is computed from 2D features Z2d as follows:

S2d
a,b = Z2d

:,ua,va · Z2d
:,ub,vb

, (9)

where the (ua, va) and (ub, vb) denote pixel coordinates of the ath and bth projected point, respec-
tively. Note that we map the features on a unit hypersphere by normalization, before computing
the correlation matrices. Similar to the 2D-to-3D loss, we construct W3d,p, the confidence of the
correlation matrix of projected 3D features, by multiplying the confidence at each point as follows:

W3d,p
a,b = max(A3d,p

:,a ) ·max(A3d,p
:,b ). (10)

The confidence-based 3D-to-2D loss is then defined as follows:

L3d→2d
joint =

1

N2
v

Nv∑
a=1

Nv∑
b=1

W3d,p
a,b |S2d

a,b − S3d,p
a,b |1. (11)

In summary, we apply the sum of the classification and the joint loss functions for training our
framework as following equation, where λ is a weighting parameter.

Ltotal = L2d
cls + L3d

cls + L2d→3d
joint + λL3d→2d

joint . (12)

4 Experiments

4.1 Implementation details

Framework The proposed framework is implemented with PyTorch. ResNet38 [30] and Point-
Net++ [21] are employed as backbones for the image classifier and point cloud classifier, respectively.
The image classifier is initialized with the weights pre-trained on ImageNet [23]. We augment the
input point cloud with sub-sampling, random flipping, and random rotation. For the image, random
resizing/cropping, horizontal flipping, and color jittering [14] are applied. We set λ = 1 in Eq. 12.
The model is trained on two Tesla V100 GPUs with batch size 16 for 200 epochs. The initial learning
rate is set to 0.003, and be decayed by 0.1 at epoch 120, 160, 180 as in [22]. More details can be
found in Supplementary Material.

Dataset and metric Following the existing 3D WSSS studies [29, 22], we conduct experiments on
ScanNetV2 [5] dataset (MIT license, we agreed to the terms of use), which contains indoor scenes
such as offices or bathrooms. ScanNetV2 is composed of 1513 scans with annotations (semantic
segmentation GT, camera poses, etc.) and 100 test scans serving as a benchmark. We follow the
official split, where there exist 1201 train scans and 312 val scans. For the 2D data, we use the
provided RGB frames and the corresponding camera view matrices. We sample only 1% of all
provided frames, which is equivalent to using around 17 frames per scene on average. Note that
the proposed label setting is less expensive than that of MPRM [29] (using around 17 class-labeled
subclouds per scene), since annotating class-level labels is even easier on images than on point clouds.
For evaluating the semantic segmentation performance, we use the mean intersection over union
(mIoU) as a metric on both the 2D and 3D domains. Since the GT for the test set is not publicly
available, test performance is evaluated on the ScanNet evaluation server.
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Table 2: Ablation study of the proposed framework. The semantic segmentation performance (mIoU,
%) is evaluated on the official train and val splits of the ScanNetV2 [5]. From left to the right, each
loss term denotes image-level 2D classification loss ( L2d

cls), scene-level 3D classification loss ( L3d
cls),

2D-to-3D loss (L2d→3d
joint ), and 3D-to-2D loss (L3d→2d

joint ). Confidence-based scoring denotes using W
(in Eq. 6 and Eq. 10). Bold numbers represent the best results.

Domain L2d
cls L3d

cls L2d→3d
joint L3d→2d

joint
Confidence-based

scoring Train Val

2D

✓ 38.0 33.3
✓ ✓ ✓ 47.8 39.2
✓ ✓ ✓ ✓ 50.0 41.6
✓ ✓ ✓ ✓ ✓ 54.4 44.5

3D

✓ 17.9 16.2
✓ ✓ ✓ 51.3 43.8
✓ ✓ ✓ ✓ 53.5 45.6
✓ ✓ ✓ ✓ ✓ 59.1 49.6

Figure 3: Qualitative comparison of 2D/3D CAMs. 3D CAMs – (a1) uses scene-level classification
loss (L3d

cls) only, (a2) uses 2D-to-3D loss (L2d→3d
joint ), and (a3) uses bidirectional (2D-to-3D and 3D-to-

2D, i.e., L2d→3d
joint + L3d→2d

joint ) joint loss. 2D CAMs – (b1) uses image-level classification loss (L2d
cls)

only, (b2) uses 3D-to-2D loss (L3d→2d
joint ), and (b3) uses bidirectional joint loss. More qualitative

comparison and samples of 2D and 3D CAMs can be found in Supplementary Material.

4.2 Ablation studies

To demonstrate the advantage of the proposed joint learning framework, we conduct an ablation
study, as shown in Table 2. For each domain, the first row shows the result of our baseline setting,
where only the image- or scene-level classification loss of each domain (L2d

cls or L3d
cls) is applied. As

reported in prior works [29, 22], we also observe that the 3D WSSS suffers from the class imbalance
of scene-level class labels and thereby completely fails to understand the semantics of the objects, as
visualized in (a1) of Fig. 3. On the other hand, as shown in (b1), 2D WSSS shows the capability to
roughly localize the region of each class on the image. However, due to the lack of geometrical 3D
information, the 2D CAM fails to be precise at the object boundary. This illustrates the motivation of
the proposed 2D-3D joint framework.

A benefit of the 2D-to-3D loss (L3d→2d
joint ) is shown in the second row of the 3D domain in Table 2.

The train and val performance of 3D CAM are significantly increased from 17.9% and 16.2% to
51.3% and 43.8%, respectively. The 3D CAMs in Fig. 3 (a2) show much more accurate results
with the help of the 2D-to-3D joint loss. Here, to clarify the benefit of the 2D-to-3D loss, we also
conduct an additional experiment. In this experiment, instead of the joint loss, we apply an additional
classification loss to the point cloud classifier by using the image-level class labels. This setting
is similar to that of PCAM [29]; however, the classification is done on the image level, not on the
subcloud level. It achieves 43.9% and 39.8% on train and val split respectively, which are the almost
equivalent performance to PCAM (43.1% and 38.1%) but clearly lower than using our 2D-to-3D loss
(51.3% and 43.8%). The result indicates that the performance gain of the proposed 2D-to-3D loss
not only comes from relieving the class imbalance problem of the 3D domain but also effectively
transferring the better semantics of the 2D domain to the 3D domain.
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Table 3: Performance (mIoU, %) comparison with other state-of-the-art 3D WSSS methods [29, 22]
on ScannetV2 [5] train, val, and test split. Class-wise IoUs can be found in Supplementary Material.
Bold numbers represent the best results, while underlined numbers are the second best results.

Methods Backbones Weak Labels Train Val Test

PCAM[29]
KPConv [27]

Scene 22.1 - -
Subcloud 43.1 38.1 -

MPRM[29] Scene 24.4 - -
Subcloud 47.4 43.2 41.1

MIL-seg[22] PointNet++ [21] Scene - 20.7 -
WyPR[22] 30.7 29.6 24.0
proposed PointNet++ Scene+Image 59.1 49.6 47.4

The results also show that the 3D-to-2D loss (L3d→2d
joint ) enhances the performance of 2D WSSS, from

38.0% and 33.3% to 47.8% and 39.2%, respectively. Thanks to the geometrical information provided
by the 3D domain in the form of a correlation matrix, as visualized in Fig. 3 (b2), the generated 2D
CAMs are much more precise at the object boundary when being trained with the 3D-to-2D loss. The
results strongly support our design intentions: the 2D-to-3D loss provides rich semantics from 2D to
3D, while the 3D-to-2D loss transfers the segmentation capability of 3D to 2D.

Further, we quantitatively verify that the confidence-based scoring strategy is effective in both the
2D-to-3D and 3D-to-2D directions, by suppressing the self-supervision at inaccurate regions while
preserving reliable guidance. Finally, by using the bidirectional (2D-to-3D and 3D-to-2D) joint
losses, we even further improve the semantic segmentation performance in both domains (the fourth
row of each domain in Table 2 and (a3)/(b3) in Fig. 3). It shows the superiority of the proposed joint
framework, which unlocks the complementary potential of 2D and 3D domains and unifies them.

Here, we can observe that the performance of 2D WSSS is quite lower than that of 3D WSSS after
we apply joint losses. One of the main reasons is the limited FoV (Field of View) of the perspective
camera that captures the images. When only the corner of an object is captured in the image, it is
almost impossible to correctly perceive the object. Therefore, classification results and corresponding
2D CAMs could be also inaccurate. To relieve the issue, during the training process, we filter
2D CAM with ground truth image-level class labels and suppress confusing regions. However,
misclassification that occured in the inference phase is difficult to be addressed in our framework.
Extending the proposed framework using the cameras with large FoV (e.g. omnidirectional camera)
can be an interesting future direction.

4.3 Segmentation results

In Table. 3, we compare the point cloud semantic segmentation performance of the proposed frame-
work with that of the other 3D WSSS methods [29, 22]. This shows the superiority of the proposed
2D-3D joint framework, surpassing the other methods by more than 6% in every split. Although
we use additional 2D image data and image-level class labels compared to WyPR [22], annotating
additional image-level class labels is not very expensive, particularly when we consider the significant
performance gain. Compared with MPRM [29] using subcloud-level labels, the annotating cost is
rather inexpensive at the image-level compared to the subcloud-level, while the proposed framework
outperforms MPRM by a significant margin. It is also noteworthy that the proposed framework
does not employ the two-stage retraining technique or dense conditional random field (CRF), unlike
MPRM. In summary, the proposed 2D-3D joint learning method outperforms the existing 3D WSSS
methods in both terms of label efficiency and performance.

Figure 4 visualizes qualitative comparisons of the proposed framework and baselines, in both 2D
and 3D domains. Compared with the result learned with a single 2D or 3D domain, our framework
shows significantly better results in terms of accuracy of semantics and preciseness of segmentation.
With our 2D-3D joint framework for WSSS, the complementary advantages of both domains are
effectively combined. We can observe that the unified benefits of multi-domains achieve substantial
semantic segmentation results, compared to uni-domain baselines. There are a few limitations such
as thin objects (e.g. legs of a table) in the 3D domain, fine details in the 2D domain, and sensitivity to
the pose quality. Nevertheless, our framework achieves a strong baseline for the 2D-3D joint learning
of WSSS. Additional semantic segmentation results are provided in Supplementary Material.
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Figure 4: Qualitative comparison of 2D/3D semantic segmentation results of uni-domain baselines
and the proposed 2D-3D joint framework. From left to right: input (projected) point clouds and
images, results of uni-domain 2D WSSS and 3D WSSS, our joint WSSS results, and ground truths.
We visualize the region of the point cloud corresponding to the images by red or blue circles. A color
map of the 20 classes of ScanNetV2 [5] is provided at the top of the figure, where the black color
denotes the ignore index.

4.4 Generalization Capability

Most of the existing (indoor) point cloud datasets [5, 2] have obtained the point cloud from a
sequence of RGBD frames, using 3D reconstruction techniques such as Structure from Motion (SfM).
Therefore, in addition to the 3D point clouds, such datasets usually provide 2D images and the poses
of the 2D images. The proposed joint learning framework targets such paired multi-domain datasets.
Throughout Sec 4, we demonstrated that unifying the complementary advantages of multi-domain
data could bring remarkable improvements in both 2D and 3D WSSS.

Nevertheless, we agree that the paired multi-domain data is not trivial to acquire in usual, especially
when we want to apply our framework to the novel data of the unobserved scene domains. Compared
to the existing 2D or 3D WSSS methods which require single-domain data (e.g. images only or point
cloud only), the difficulty to acquire the multi-domain dataset is one of the limitations of the proposed
joint WSSS framework.
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Table 4: Quantitative comparisons of the generalization capability between the proposed joint learning
framework and our baselines. The semantic segmentation performance (mIoU, %) is evaluated on the
official val splits of the S3DIS [2] dataset. The loss terms follow the denotation of Table 2. We use
confidence-based scoring by default. Bold numbers represent the best results.

Domain L2d
cls L3d

cls L2d→3d
joint L3d→2d

joint Val

2D
✓ 36.9
✓ ✓ ✓ 43.3
✓ ✓ ✓ ✓ 49.5

3D
✓ 17.5

✓ ✓ ✓ 48.0
✓ ✓ ✓ ✓ 54.4

To relieve this issue, we experimentally verify the generalization capability of the proposed method
using the S3DIS [2] dataset, as in WyPR [22]. In this experiment, we first train our model on the
ScanNetV2 dataset only and then test the trained model on validation set of the S3DIS dataset. We
evaluate the performance only on the overlapped class between the ScanNetV2 and S3DIS datasets.
Here, it is noteworthy that we perform 2D WSSS and 3D WSSS individually, without using the input
data from the other domain. Thanks to our practical design philosophy, we could feed the 3D point
clouds only for the 3D branch and 2D images only for the 2D.

Table 4 shows the generalization capability of our method by comparing it with our baselines. Similar
to the tendency in Table 2, the proposed 2D-3D joint loss provides significant performance gain
in both 2D and 3D domains, even on the dataset unobserved during the training. Especially, the
proposed framework still outperforms the 3D WSSS performance of WyPR [22] on the S3DIS dataset
(22.3%) by a large gap. The results strongly support that the complementary advantages of 2D and 3D
domains are preserved on the other dataset, even without any further fine-tuning or domain-specific
adaptation.

Although the proposed joint framework requires paired multi-domain data during training, thanks
to the demonstrated generalization capability, our framework could be scaled into processing the
unobserved general data. From a practical perspective, this generalizability of the proposed method
is a strong contribution to the field of WSSS.

5 Conclusion

WSSS has been widely studied for relieving the annotation cost of semantic segmentation in both 2D
and 3D domains. However, the existing studies have been focused on domain-specific methods. In this
paper, we propose a novel 2D-3D joint framework for WSSS in both 2D and 3D domains. Motivated
by the complementary nature of the 2D and 3D domains, we devise our framework to effectively
transfer the benefit of one domain to the other domain in a simultaneous manner. We bridge the 2D
pixels and 3D points via projection and leverage the 2D CAM as self-supervision for improving the
semantic perception of the 3D CAM. To transfer the geometrical structure of the 3D scene to the
2D domain, we exploit a correlation matrix of 3D features for training the 2D features. For both
directions, we propose a confidence-based scoring strategy to suppress less accurate self-supervision
and make the framework learn from the reliable regions only. With extensive experiments, we verify
that the proposed 2D-to-3D and 3D-to-2D joint loss effectively unifies the distinct benefits of both
domains, while relieving the disadvantages. On the ScanNetV2 dataset, the proposed framework
significantly outperforms the single-domain baselines and the other state-of-the-art methods. Further,
with an experiment on the S3DIS dataset, we demonstrate the generalization capability of our method,
which supports its practicality. We believe that 2D-3D joint learning is a new and promising research
direction for WSSS, and this paper provides a strong baseline for it.
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