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Abstract

We consider optimization problems in which the goal is to find a k-dimensional
subspace of Rn, k << n, which minimizes a convex and smooth loss. Such
problems generalize the fundamental task of principal component analysis (PCA)
to include robust and sparse counterparts, and logistic PCA for binary data, among
others. This problem could be approached either via nonconvex gradient methods
with highly-efficient iterations, but for which arguing about fast convergence
to a global minimizer is difficult or, via a convex relaxation for which arguing
about convergence to a global minimizer is straightforward, but the corresponding
methods are often inefficient in high dimensions. In this work we bridge these
two approaches under a strict complementarity assumption, which in particular
implies that the optimal solution to the convex relaxation is unique and is also
the optimal solution to the original nonconvex problem. Our main result is a
proof that a natural nonconvex gradient method which is SVD-free and requires
only a single QR-factorization of an n⇥ k matrix per iteration, converges locally
with a linear rate. We also establish linear convergence results for the nonconvex
projected gradient method, and the Frank-Wolfe method when applied to the convex
relaxation.

1 Introduction

We consider the problem of finding a k-dimensional subspace of Rn, k << n, which minimizes a
given objective function, where we identify a subspace with its corresponding projection matrix. That
is, we consider the following optimization problem:

min f(X) subject to X 2 Pn,k := {QQ> | Q 2 Rn⇥k
, Q>Q = I}. (1)

Throughout this work and unless stated otherwise, we assume that f(·) is convex, �-smooth (gradient
Lipschitz) and, for ease of presentation, we also assume that the gradientrf(·) is a symmetric matrix
over the space of n⇥ n symmetric matrices Sn1.

Problems of interest that fall into this model include among others robust counterparts of PCA,
which are based on the smooth and convex Huber loss (see concrete examples in Section 4), logistic
PCA [15], and sparse PCA [26]. Note that in Problem (1) we are interested in the low-dimensional
subspace itself (as opposed to the projection of the data onto it, as in many other formulations), which
is important for instance when the end goal is to perform dimension reduction, which is one of the
most important applications of PCA-style methods.

1in case the gradient is not a symmetric matrix at some point X 2 Sn, then denoting it by rnonsymf(X),
we can always take its symmetric counterpart rf(X) = 1

2 (rnonsymf(X) +rnonsymf(X)>) and, unless stated
otherwise, our derivations throughout this work will remain the same
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Motivated by high-dimensional problems, we are interested in highly efficient (in particular in terms of
the dimension n) first-order methods for Problem (1). Moreover, we are interested in establishing, at
least locally, fast convergence to the global minimizer, despite the fact that Problem (1) is nonconvex.
Subspace recovery/optimization problems similar to Problem (1) have received significant interest in
recent years, see for instance [25, 28, 4, 17, 18, 11, 16, 22, 23] however, different from these works,
our approach will not assume that f(·) admits a very specific structure (e.g., a linear or quadratic
function), or will be based on a specific underlying statistical model. Instead, we will be interested in
deterministic conditions that may hold for quite general f(·) (which is convex and smooth), and may
render quite a wide variety of problems “well-posed” for efficient optimization.

We begin by briefly describing two natural dimension-efficient first-order methods for tackling
Problem (1). One such method is the nonconvex projected gradient method which follows the
dynamics:

Xt+1  ⇧Pn,k [Xt � ⌘trf(Xt)], (2)

where ⇧Pn,k [·] denotes the Euclidean projection onto the set Pn,k (note that since this set is nonconvex,
in general, the projection need not be unique), and ⌘t > 0 is the step-size. Given the gradientrf(Xt),
the runtime to compute Xt+1 is dominated by the computation of the projection. It is well known that
the Euclidean projection is given by the projection matrix which corresponds to the span of the top k

eigenvectors of the matrix Xt � ⌘trf(Xt). While accurate computation of this projection requires
a (thin) singular value decomposition (SVD) of a n⇥ n matrix, which amounts to O(n3) runtime,
it can also be approximated up to sufficiently small error using fast iterative methods, such as the
well-known orthogonal iteration method [10] (aka subspace iteration method [24]). The orthogonal
iteration method finds a n⇥ k matrix Q with orthonormal columns which approximately span the
subspace spanned by the k leading eigenvectors of a given positive semidefinite n ⇥ n matrix A,
by repeatedly applying the iterations: (Q,R) QR-FACTORIZE(AQ), where QR-FACTORIZE(·)
denotes the QR factorization of a matrix, i.e., Q 2 Rn⇥k has orthonormal columns. Every iteration
of this method takes in worst case only O(kn2) time. When the gradient rf(Xt) admits a favorable
structure such as sparsity or a low-rank factorization, the runtime to approximate the projection onto
Pn,k using the orthogonal iteration method could be significantly improved.

Another natural approach to tackle Problem (1) is to exploit the fact that each X 2 Pn,k could be
factored as X = QQ>, Q 2 Rn⇥k having orthonormal columns, and to apply gradient steps w.r.t.
this factorization. This leads to the following dynamics, which we refer to as Gradient Orthogonal

Iteration:

Zt+1  Qt � ⌘t
@f(QQ>)

@Q

���
Qt

= Qt � ⌘trf(QtQ
>
t )Qt,

(Qt+1,Rt+1) QR-FACTORIZE(Zt+1), (3)

where the QR-factorization step is required to ensure that Qt+1Q>
t+1 is also a projection matrix.

As opposed to the Dynamics (2), which as discussed, an efficient implementation of will require to
run a QR-based iterative method to compute the Euclidean projection onto Pn,k on each iteration,
the Dynamics (3) only requires a single QR factorization per iteration, and thus, given the gradient
matrixrf(QtQ>

t ), the next iterate Qt+1 can be computed in overall O(n2
k) time. As mentioned

above, this runtime could be further significantly improved if the multiplication rf(QtQt)Qt could
be carried out faster than O(n2

k) (for instance when the gradient is sparse or admits a low-rank
factorization), since all other operations require only O(k2n) time (e.g., factorizing of Zt+1).

Obtaining provable guarantees on the fast local convergence of the Dynamics (3) to a global optimal

solution of Problem (1) is the main contribution of this work.

While both Dynamics (2), (3) apply efficient iterations, since they are inherently nonconvex, arguing
about their convergence to a global optimal solution of (1) is difficult in general. An alternative is to
replace Problem (1) with a convex counterpart, for which, arguing about the convergence of first-order
methods to a global optimal solution is well understood. Consider the convex set Fn,k = conv(Pn,k),
where conv(·) denotes the convex-hull operation. Fn,k is also called the Fantope and it is known to
admit the following important characterization: Fn,k = {X 2 Sn | I ⌫ X ⌫ 0,Tr(X) = k}, where
A ⌫ 0 denotes that A is a positive semidefinite matrix (PSD), see for instance [20]. This leads to the
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convex problem:
min f(X) subject to X 2 Fn,k = {X 2 Sn | I ⌫ X ⌫ 0,Tr(X) = k}. (4)

A well known first-order method applicable to (4) is the Frank-Wolfe method (aka conditional
gradient) [12], which for the convex Problem (4) follows the dynamics:

Vt  argmin
V2Pn,k

Tr(Vrf(Xt)), Xt+1  (1� ⌘t)Xt + ⌘tVt, ⌘t 2 [0, 1]. (5)

It follows from Ky Fan’s maximum principle [7] that computing Vt amounts to computing the
projection matrix onto the span of the k eigenvectors corresponding to the k smallest eigenvalues of
rf(Xt), and hence can be carried out efficiently using the orthogonal iterations method or similar
methods, similarly to the computation of the projection in (2)) discussed above. 2 Note however that
the Frank-Wolfe iterates will not be, in general, low rank, and only yield a O(1/t) convergence rate
[12].

1.1 The eigengap assumption and strict complementarity

We now turn to discuss our only non-completely standard assumption on Problems (1), (4), which
will underly all of our contributions, and in particular will facilitate our local linear convergence rates.
Assumption 1 (Main assumption). An optimal solution X⇤

to the convex Problem (4) is said to

satisfy the eigen-gap assumption with parameter � > 0, if �n�k(rf(X⇤))��n�k+1(rf(X⇤)) � �.

Assumption 1 in particular implies the following theorem which states that the convex relaxation (4)
exactly recovers the unique and optimal solution to the nonconvex Problem (1). This is one aspect in
which Assumption 1 captures “well-posed” instances of Problem (1). The proof is in the appendix.
Theorem 1. If an optimal solution X⇤

to Problem (4) satisfies Assumption 1 with some parameter

� > 0, then it has rank k, i.e., X⇤ 2 Pn,k, and it is the unique optimal solution to both Problem (4)
and Problem (1).

Assumption 1 is tightly related to the convex Problem (4) through the concept of strict-

complementarity, which is a classical concept in constrained continuous optimization theory [1]. A
similar connection between an eigengap in the gradient at an optimal solution and strict comple-
mentarity has been already established in [5] for low-rank matrix optimization problems, where the
underlying convex set is either the nuclear norm ball of matrices or the set of PSD matrices with unit
trace. Now we establish a similar relationship for the convex relaxation (4) and the Fantope, which is
slightly more involved. Let us write the Lagrangian of the convex Problem (4):

L(X,Z1,Z2, s) = f(X)� hZ1,Xi � hZ2, I�Xi � s(Tr(X)� k),

where the dual matrix variables Z1,Z2 are constrained to be PSD, i.e., Z1 ⌫ 0,Z2 ⌫ 0.

The KKT conditions state that X⇤, (Z⇤
1,Z

⇤
2, s

⇤) are corresponding optimal primal-dual solutions if
and only if the following conditions hold:

1. I ⌫ X⇤ ⌫ 0,Tr(X⇤) = k,Z⇤
1 ⌫ 0,Z⇤

2 ⌫ 0, 2. rf(X⇤) = Z⇤
1 � Z⇤

2 + s
⇤I,

3. hZ⇤
1,X

⇤i = hZ⇤
2, I�X⇤i = 0.

Condition 3 is known as complementarity. Since Z⇤
1,Z

⇤
2 are PSD and 0 � X⇤ � I, this further

implies that Z⇤
1X

⇤ = 0,Z⇤
2(I�X⇤) = 0, which in turn implies that

range(X⇤) ✓ nullspace(Z⇤
1) ^ range(I�X⇤) ✓ nullspace(Z⇤

2).

Definition 1. A pair of primal-dual solutions X⇤
, (Z⇤

1,Z
⇤
2, s

⇤) for Problem (4) is said to satisfy strict

complementarity, if range(X⇤) = nullspace(Z⇤
1) _ range(I �X⇤) = nullspace(Z⇤

2), which is the

same as: rank(Z⇤
1) = n� rank(X⇤) _ rank(Z⇤

2) = rank(X⇤).

Theorem 2. If an optimal solution X⇤
for Problem (4) with rank(X⇤) = k satisfies strict comple-

mentarity for some corresponding dual solution, then �n�k(rf(X⇤))�
�n�k+1(rf(X⇤)) > 0. Conversely, if an optimal solution X⇤

for Problem (4) satisfies

�n�k(rf(X⇤))� �n�k+1(rf(X⇤)) > 0, then it satisfies strict complementarity for every

corresponding dual solution.

2We note that one can also consider projection-based first-order methods for Problem (4), such as the
projected gradient method, however in general, the projection onto the Fantope Fn,k will not be a low-rank
matrix and hence its computation will require an expensive SVD computation (see details in the sequel).
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The proof is given in the appendix. Strict complementarity has played a central role in several recent
works, both for establishing linear convergence rates for first-order methods, e.g., [29, 6, 8, 5], and
improving the runtime of projected gradient methods due to SVD computations, for low-rank matrix
optimization problems, e.g., [9, 13].

1.2 Additional related work

Efficient gradient methods for low-rank nonconvex optimization have received significant interest
in recent years, here we mention only a few. [2, 21] gave deterministic guarantees on the local
convergence to a global minimizer of factorized gradient descent for certain low-rank optimization
problems, under the mild assumption that a low-rank global minimizer exists. However, these results
cannot capture constraints such as those in our Problem (1) which encode projection matrices. [4],
which considers nonconvex gradient methods for low-rank statistical estimation, also considers
constraints that cannot capture projection matrices as in Problem (1). An exception is a specific case
they consider of linear objective functions. Moreover, even for linear functions such as the specific
sparse PCA objective they consider, their analysis requires several non-trivial conditions to hold (e.g.
local descent, local smoothness etc), which they only show to hold under Gaussian data.

1.3 Notation

Throughout this work we let k·k denote the Euclidean norm for vectors in Rn and the spectral norm
(largest singular value) for matrices in Rm⇥n or Sn. We let k·kF denote the Frobenius (Euclidean)
norm for matrices. For a matrix X 2 Sn, we let �i(X) denote the ith largest eigenvalue of X. We let
h·, ·i denote the standard inner-product for both spaces Rn and Sn.

2 Overview of Results

2.1 Main result

Our main novel contribution is the proof of the following theorem regarding the local linear conver-
gence of the gradient orthogonal iteration (3) to the optimal solution of Problems (4), (1).
Theorem 3. [Local linear convergence of gradient orthogonal iteration] Suppose Assumption 1

holds true for some optimal solution X⇤
to Problem (4) with some parameter � > 0. Let G �

supX2Fn,k
krf(X)k. Consider the sequence {Qt}t�1 generated by Dynamics (3) with a fixed

step-size ⌘t = ⌘ = 1
5max{�,G} for all t � 1, and when initialized with Q1 2 Pn,k such that

kQ1Q>
1 �X⇤kF  min{1,

q
�
2}

⌘�
2(1+⌘�) . Then, we have that

8t � 1 : f(QtQ
>
t )� f(X⇤) 

�
f(Q1Q

>
1 )� f(X⇤)

�
exp

⇣
� �(t� 1)

40max{�, G}

⌘
.

While, as stated above, this is not the first work to consider strict complementarity conditions
for bridging convex and nonconvex methods for low-rank optimization, previous works such as
[8, 5, 9, 13] consider gradient methods that rely on (nearly) exact (low-rank) SVD computations on
each iteration, whereas Theorem 3 considers the more efficient SVD-free Dynamics (3), that requires
only a single QR-factorization of an n⇥ k matrix per iteration, which is much faster and simpler to
implement. Accordingly, the proof is also considerably more challenging and requires new ideas.

2.2 Additional results

We also prove the following two theorems regarding the local linear convergence of the projected
gradient Dynamics (2) and the Frank-Wolfe Dynamics (5). These extend the results in [9, 8] from
optimization over the set of positive semidefinite matrices with unit trace to the Fantope.
Theorem 4. [Local linear convergence of nonconvex PGD] Suppose Assumption 1 holds true for

some optimal solution X⇤
to Problem (4) with some parameter � > 0. Consider the sequence

{Xt}t�1 generated by Dynamics (2) with a fixed step-size ⌘t = ⌘ = 1/� for all t � 1, and when

initialized with X1 2 Fn,k such that kX1 �X⇤kF  �
4� . Then, for all t � 1 it holds that
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1. rank(Xt+1) = k, and thus, given Xt and rf(Xt), Xt+1 can be computed via a rank-k

SVD,

2. f(Xt)� f(X⇤)  (f(X1)� f(X⇤)) · exp(�⇥(�/�)(t� 1))).

Theorem 5. [Local linear convergence of Frank-Wolfe] Suppose Assumption 1 holds true for

some optimal solution X⇤
to Problem (4) with some parameter � > 0. Consider the sequences

{(Xt,Vt)}t�1 generated by Dynamics (5) when ⌘t is chosen via line-search. Then, there exists

T0 = O
�
k(�/�)3

�
such that,

8t � T0 : f(Xt+1)� f(X⇤) 
�
f(Xt)� f(X⇤)

�⇣
1�min{ �

12�
,
1

2
}
⌘
.

Moreover, for all t � 1, the rank-k matrix Vt satisfies kVt �X⇤k2F = O

⇣
�
2

�3

�
f(Xt)� f(X⇤)

�⌘
.

What if Assumption 1 fails? In case Assumption 1 does not hold or holds with negligible parame-
ter �, not all is lost, since by considering weaker versions of Assumption 1, which consider eigen-gaps
between higher eigenvalues, we can still guarantee that X⇤ (an optimal solution to Problem (4)) has
low rank, and that at least the projected gradient method (when applied to Problem (4)), locally, will
require only a low-rank SVD to compute the projection onto the Fantope, while guaranteeing the
standard convergence rate of O(1/t) (not linear rate as when Assumption 1 holds).
Theorem 6. Let X⇤ 2 Fn,k be some optimal solution to Problem (4) and let µ1 � µ2 � ...µn denote

the eigenvalues of �rf(X⇤). Let r be the smallest integer such that r � k and µr � µr+1 > 0.

Then, it holds that rank(X⇤)  r. Moreover, consider the projected gradient dynamics w.r.t. Problem

(4) given by, Xt+1  ⇧Fn,k [Xt � �
�1rf(Xt)]. For any r

0 2 {r, . . . , n� 1}, if kX1 �X⇤kF 
µk�µr0+1

4� , then it holds that,

1. 8t � 1, rank(Xt+1)  r
0
, i.e., given Xt andrf(Xt), Xt+1 can be computed via a rank-r

0

SVD.

2. {Xt}t�1 converges with the standard PGD rate: f(Xt)� f(X⇤) = O(�kX1 �X⇤k2F /t).
Remark 1. Note that via the parameter r

0
, Theorem 6 offers a flexible tradeoff between the radius of

the ball in which PGD needs to be initialized in (increasing r
0

increases the radius), and the rank of

the iterates which in turn, implies an upper-bound on the rank of SVD computations required for the

projection, which controls the runtime of each iteration.

Remark 2. Theorem 6 may be in particular interesting when f(·) is subspace-monotone in the sense

that for any two subspaces S1 ✓ S2 ✓ Rn
and their corresponding projection matrices P1,P2 2 Sn,

it holds that f(P2)  f(P1). In this case, given an optimal solution X⇤
to the convex Problem

(4) with eigen-decomposition X⇤ =
Pr

i=1 �iuiu>
i , when k < r << n, using a projection matrix

P⇤ =
Pr

i=1 uiu>
i which satisfies f(P⇤)  minX2Pn,k f(X) may be of interest. For instance, it

is not hard to show that f(·) of the form f(X) =
Pm

i=1 gi(kqi �Xqik), where gi(·) is monotone

non-decreasing and {qi}mi=1 ⇢ Rn
, is subspace-monotone.

The complete proofs of Theorems 3, 4, 5, 6, as well as additional results, are given in the appendix.
Below we give the main ideas in the proof of Theorem 3.

3 Proof Sketch of Theorem 3

3.1 Preliminaries

Lemma 1 (Euclidean projection onto the Fantope). Let X 2 Sn and consider its eigen decom-

position X =
Pn

i=1 �iuiu>
i . The Euclidean projection ⇧Fn,k [X] is given by: ⇧Fn,k [X] =Pn

i=1 �
+
i (✓)uiu>

i , where �
+
i (✓) = min(max(�i � ✓, 0), 1), and ✓ satisfies the equationPn

i=1 �
+
i (✓) = k. Moreover, 8r 2 {k, ..., n � 1} it holds that rank(⇧Fn,k(X))  r if and

only if
Pr

i=1 min(�i � �r+1, 1) � k.

Remark 3. Lemma 1 implies that if rank(X)  r, then only the top r components in the SVD of X
are needed to compute ⇧Fn,k [X], i.e., a rank-r SVD of X. Moreover, given the rank-(r+1) SVD, we

can check the condition
Pr

i=1 min(�i � �r+1, 1) � k, to verify whether the projection has rank  r.
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The following lemma lower bounds, under Assumption 1, the radius of the ball around the unique
optimal solution X⇤ inside-which, the PGD mapping w.r.t. the Fantope Fn,k with a fixed step-size, is
guaranteed to produce rank-k matrices, i.e., matrices in Pn,k, which means that it coincides precisely
with the PGD mapping w.r.t. the nonconvex set Pn,k, given by the Dynamics (2).
Lemma 2. Let X⇤ 2 Fn,k be an optimal solution to Problem (4) which satisfies Assumption 1 with

some parameter � > 0, and let ⌘ > 0. For any X 2 Fn,k which satisfies kX�X⇤kF 
⌘�

2(1 + ⌘�)
,

it holds that rank(⇧Fn,k [X� ⌘rf(X)]) = k.

The following lemma establishes that under Assumption 1, Problem (4) has a quadratic growth
property. This property is known to facilitate linear convergence rates of gradient methods [19, 14].
Lemma 3 (Quadratic Growth). Let X⇤ 2 Fn,k be an optimal solution to Problem (4) for which

Assumption 1 holds with some � > 0. Then, 8X 2 Fn,k : kX�X⇤k2F 
2

�
(f(X)� f(X⇤)).

3.2 Gradient Orthogonal Iteration Analysis

We outline the proof of our main algorithmic result — the local linear convergence result of the
gradient orthogonal iteration (3) given in Theorem 3. For convenience, we rewrite the Dynamics (3)
as Algorithm 1 below which also introduces notation that will be helpful throughout the analysis.
Throughout this section we also introduce the auxiliary sequence {Xt}t�1 ⇢ Fn,k given by: X1 =
Y1 and Xt+1 = ⇧Fn,k [Yt � ⌘rf(Yt)] for all t � 1.

At a high-level, our analysis of Algorithm 1 relies on the following two components:

1. Using Lemma 2 we can argue that, in the proximity of X⇤, rank(Xt) = k, i.e., Xt 2 Pn,k.
This implies that Xt is the projection matrix onto the span of top k eigenvectors of Wt.

2. We view Qt as the outcome of applying one iteration of the orthogonal iterations method
[10, 24] to Wt (see also discussion in the Introduction). Combined with the previous point,
this allows to argue that Yt = QtQ>

t is sufficiently close to the projected gradient update
Xt, which drives the convergence.

Algorithm 1 Gradient Orthogonal Iteration

1: initialization: Y1 = Q1Q>
1 for some Q1 2 Rn⇥k such that Q>

1 Q1 = I
2: for t = 1, 2... do

3: Wt+1  Yt � ⌘rf(Yt)
4: (Qt+1,Rt+1) QR-FACTORIZE(Wt+1Qt) (that is Qt+1Rt+1 = Wt+1Qt)
5: Yt+1  Qt+1Q>

t+1
6: end for

The following key lemma establishes the connection between the sequence {Yt}t�1 produced by
Algorithm 1, and the corresponding sequence of exact projected gradient steps {Xt}t�1. The proof
relies on an original extension of the classical orthogonal iteration method (see [10]).
Lemma 4. Fix some iteration t � 1. Suppose that ⌘ < 1/G, Xt+1 2 Pn,k, and kXt+1 �YtkF <

p
2. It holds that, kXt+1 �Yt+1k2F  1

1� 1
2kXt+1�Ytk2

F

⇣
⌘G

1�⌘G

⌘2
kXt+1 �Ytk2F .

Proof of Lemma 4. Let us write the eigen-decomposition of Wt+1 = Yt � ⌘rf(Yt) as:

Wt+1 = V⇤V> = [V1 V2]


⇤1 0
0 ⇤2

� 
V>

1
V>

2

�
,

where V1 2 Rn⇥k
,⇤1 2 Rk⇥k correspond to the largest k eigenvalues.

The main part of the proof will be to prove that kV>
2 Qt+1k2F  1

�2
min(V

>
1 Qt)

⇣
⌘G

1�⌘G

⌘2
kV>

2 Qtk2F .

Note that by definition of Xt+1 we have that,
Xt+1 = argmin

X2Fn,k

kX�Wt+1k2F =
(a)

argmin
X2Pn,k

kX�Wt+1k2F =
(b)

argmax
X2Pn,k

hX,Wt+1i = V1V
>
1 ,
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where (a) follows from the assumption of the lemma that Xt+1 2 Pn,k, and (b) follows since all
matrices in Pn,k have the same Frobenius norm.
This further implies that

�2
min(V

>
1 Qt) = �k(V

>
1 QtQ

>
t V1) =

kX

i=1

�i(V
>
1 QtQ

>
t V1)�

k�1X

j=1

�j(V
>
1 QtQ

>
t V1)

� Tr(V>
1 QtQ

>
t V1)� (k � 1)�1(V

>
1 QtQ

>
t V1) � Tr(Xt+1Yt)� (k + 1)

=

✓
k � 1

2
kXt+1 �Ytk2F

◆
� (k � 1) = 1� 1

2
kXt+1 �Ytk2F . (6)

Thus, under the assumption that kXt+1 �YtkF <
p
2, we have that (V>

1 Qt) is invertible.

Since (Qt+1,Rt+1) is the QR factorization of Wt+1Qt, using the eigen-decomposition of Wt+1

we can write Qt+1Rt+1 = V⇤V>Qt. Multiplying both sides from the left by V> we get,

V>

1 Qt+1

V>
2 Qt+1

�
Rt+1 =


⇤1 0
0 ⇤2

� 
V>

1 Qt

V>
2 Qt

�
,

which leads to the two equations:

⇤1V
>
1 Qt = V>

1 Qt+1Rt+1, (7)

⇤2V
>
2 Qt = V>

2 Qt+1Rt+1. (8)

Under the assumption that ⌘ < 1/G, using Weyl’s inequality we have that �k(Wt+1)
� �k(Yt)�⌘�1(rf(Yt)) > 0, and so ⇤1 is invertible. Since from (6) we have that �min(V>

1 Qt) >
0, it follows that rank(⇤1V>

1 Qt) = k and thus, from Equation (7) we have that V>
1 Qt+1 and Rt+1

are both invertible and we can write Rt+1 = (V>
1 Qt+1)�1⇤1V>

1 Qt.

Multiplying both sides of Equation (8) from the right with R�1
t+1, we get

V>
2 Qt+1 = ⇤2V

>
2 Qt

�
(V>

1 Qt+1)
�1⇤1V

>
1 Qt

��1
= ⇤2V

>
2 Qt(V

>
1 Qt)

�1⇤�1
1 V>

1 Qt+1.

Now we can use this to bound kV>
2 Qt+1k2F :

kV>
2 Qt+1k2F = k⇤2V

>
2 Qt(V

>
1 Qt)

�1⇤�1
1 V>

1 Qt+1k2F


(a)
k(V>

1 Qt)
�1k22k⇤�1

1 k22kV>
1 Qt+1k22k⇤2k22kV>

2 Qtk2F 
(b)

kV>
2 Qtk2F

�2
min(V

>
1 Qt)

✓
�k+1(Wt+1)

�k(Wt+1)

◆2

,

(9)

where (a) follows from the inequalities kABkF  min{kAkF kBk2, kAk2kBkF },
kABk2  kAk2kBk2, and (b) follows from the eigen-decomposition of Wt+1 and by noting that
since V1,Qt+1 both have orthonormal columns, it holds that kV>

1 Qt+1k2  1.

We upper-bound �k+1(Wt+1)/�k(Wt+1) by using Weyl’s inequality as follows:

�k+1(Wt+1)

�k(Wt+1)
 �k+1(Yt) + ⌘�1(�rf(Yt))

�k(Yt) + ⌘�n(�rf(Yt))
 ⌘G

1� ⌘G
, (10)

where we have used the fact that Yt 2 Pn,k, and so �k(Yt) = 1,�k+1(Yt) = 0.

Plugging (10) into (9) we indeed obtain,

kV>
2 Qt+1k2F 

1

�2
min(V

>
1 Qt)

✓
⌘G

1� ⌘G

◆2

kV>
2 Qtk2F . (11)

Now, for the final part of the proof, we note that kV>
2 Qt+1k2F = Tr(V2V>

2 Yt+1) =
Tr((I � Xt+1)Yt+1) = k � Tr(Xt+1Yt+1) = 1

2kXt+1 �Yt+1k2F , and similarly, kV>
2 Qtk2F =

1
2kXt+1 �Ytk2F . Plugging these observations and (6) into (11), we obtain the lemma.

The following lemma is the main step in the proof of the convergence rate of Algorithm 1.
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Lemma 5. Let us denote ht = f(Yt) � f(X⇤) for all t � 1. Fix some iteration t of Algorithm 1,

and suppose that ⌘  1
5max{�,G} , Xt+1 2 Pn,k, and that kXt+1 �YtkF  1. Denote the constants

C0 = 2
⇣

⌘G
1�⌘G

⌘2
, C1 = 2(1+⌘G)C0

1�2⌘��2C0(1+⌘G) . It holds that, ht+1 
⇣
1� ⌘�

4(1+C1)

⌘
ht, where � > 0 is

the constant from Assumption 1.

Proof. Using the �-smoothness of f(X), for any X 2 Fn,k and ⌘  1

�
it holds that

f(X)  f(Yt) + hX�Yt,rf(Yt)i+
1

2⌘
kX�Ytk2F


(a)

f(Yt) + hX�Yt,rf(Yt)i+ ⌘
�1hYt,Yt �Xi

= f(Yt) + ⌘
�1hYt �X,Yt � ⌘rf(Yt)i, (12)

where (a) follows since using the fact that Yt 2 Pn,k, we have that for any X 2 Fn,k it holds that
kXk2F  k = kYtk2F = hYt,Yti.
Since Xt+1 = ⇧Fn,k [Yt � ⌘rf(Yt)] = argminX2Fn,k kX� (Yt � ⌘rf(Yt))k2F , and by the
assumption of the lemma that Xt+1 2 Pn,k, using the first-order optimality condition, it can be
shown that for all Z 2 Fn,k: hXt+1 � Z,Yt � ⌘trf(Yt)i � 0, see Lemma 6. This implies that for
all Z 2 Fn,k:

hYt+1,Yt � ⌘rf(Yt)i = hXt+1,Yt � ⌘rf(Yt)i � hXt+1 �Yt+1,Yt � ⌘rf(Yt)i �
hZ,Yt � ⌘rf(Yt)i � hXt+1 �Yt+1,Yt � ⌘rf(Yt)i �
hZ,Yt � ⌘rf(Yt)i � kXt+1 �Yt+1k2F kWt+1k2, (13)

where the last inequality is due to Lemma 8, which uses again the facts that Xt+1 2 Pn,k

and Xt+1 = argminX2Fn,k kX� (Yt � ⌘rf(Yt))k2F , which in turn imply that Xt+1 =
argmaxX2Pn,khX,Wt+1i, and recalling that Wt+1 = Yt � ⌘rf(Yt).

Setting X = Yt+1 in (12) and plugging-in (13), we have that for any Z 2 Fn,k it holds that,

f(Yt+1)  f(Yt) + ⌘
�1

�
hYt � Z,Yt � ⌘rf(Yt)i+ kXt+1 �Yt+1k2F kWt+1k2

�

= f(Yt) + hZ�Yt,rf(Yt)i+
1

2⌘
kZ�Ytk2F +

1

⌘
kXt+1 �Yt+1k2F kWt+1k2

 f(Yt) + hZ�Yt,rf(Yt)i+
1

2⌘
kZ�Ytk2F +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F , (14)

where the last inequality is due to the following upper-bound on kWt+1k2:

kWt+1k2 = kYt � ⌘rf(Yt)k2  kYtk2 + ⌘krf(Yt)k2  1 + ⌘G.

In particular, setting Z = (1� ↵)Yt + ↵X⇤ for some ↵ 2 [0, 1], we get that

f(Yt+1)  f(Yt) + ↵hX⇤ �Yt,rf(Yt)i+
↵
2

2⌘
kX⇤ �Ytk2F +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F .

Subtracting f(X⇤) from both sides, using the convexity of f(·), and Lemma 3 gives

ht+1 
⇣
1� ↵+

↵
2

⌘�

⌘
ht +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F .

Setting ↵ = ⌘�/2 (note that since ⌘  1/G, we have that ↵ 2 [0, 1]), gives

ht+1 
⇣
1� ⌘�

4

⌘
ht +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F . (15)

We now continue to upper-bound the term kXt+1 �Yt+1k2F . Using Lemma 9, which apply standard
arguments in the analysis of first-order methods, that rely only on the facts that Xt+1 = ⇧Fn,k [Yt �
⌘rf(Yt)] and that f(·) is smooth and convex, we have that

kXt+1 �Ytk2F 
⌘

1� ⌘�
(f(Yt)� f(Xt+1)) . (16)
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Let us set Z = Xt+1 in (14) to obtain that

f(Yt+1)  f(Yt) + hXt+1 �Yt,rf(Yt)i+
1

2⌘
kXt+1 �Ytk2F +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F

 f(Xt+1) +
1

2⌘
kXt+1 �Ytk2F +

1 + ⌘G

⌘
kXt+1 �Yt+1k2F ,

where the last inequality is due to convexity of f(·). Rearranging and using Lemma 4 along with the

notation C0 = 2
⇣

⌘G
1�⌘G

⌘2
, we have f(Xt+1) � f(Yt+1)� 1

⌘

⇣
1
2 + C0(1 + ⌘G)

⌘
kXt+1 �Ytk2F .

Plugging into (16) we obtain

kXt+1 �Ytk2F 
⌘

1� ⌘�

⇣
f(Yt)� f(Yt+1) +

1

⌘

⇣1
2
+ C0(1 + ⌘G)

⌘
kXt+1 �Ytk2F

⌘
,

and rearranging we obtain

kXt+1 �Ytk2F 
1

1� 1+2C0(1+⌘G)
2(1�⌘�)

⌘

1� ⌘�
(f(Yt)� f(Yt+1)) =

2⌘(ht � ht+1)

2(1� ⌘�)� 1� 2C0(1 + ⌘G)
.

Using Lemma 4 again we have, kXt+1 �Yt+1k2F  2⌘C0

1�2⌘��2C0(1+⌘G) (ht � ht+1). Plug-

ging back into (15) we obtain ht+1 
⇣
1� ⌘�

4

⌘
ht +

2(1+⌘G)C0

1�2⌘��2C0(1+⌘G) (ht � ht+1). Denoting

C1 = 2(1+⌘G)C0

1�2⌘��2C0(1+⌘G) , we finally obtain ht+1  1
1+C1

⇣
1� ⌘�

4 + C1

⌘
ht =

⇣
1� ⌘�

4(1+C1)

⌘
ht, as

required. The only thing left is to choose a feasible step size. We have to require: 1� 2⌘� � 2C0(1+
⌘G) > 0. The latter holds for any ⌘  1

5max{�,G} .

4 Numerical Simulations

Due to lack of space, some of the implementation details and results are deferred to the appendix. We
consider two models for robust recovery of a low-dimensional subspace from noisy samples: 1. a
spiked covariance model, and 2. a sparsely corrupted entries model. In both models we minimize a
robust loss based on the Huber function, which is convex and smooth, over the Fantope. We generate
random instances and solve them to high precision (duality gap < 10�10) and take the resulting point
X⇤ as the optimal solution. We measure the eigen-gap in rf(X⇤) (as in Assumption 1), and we
compare the recovery error w.r.t. the naive PCA solution XPCA which simply computes the leading
subspace of the empirical covariance. The results are given in Table 1. For both models the recovery
error is significantly lower than that of naive PCA, which demonstrates the usefulness of the chosen
models . We see that the eigen-gap assumption indeed holds with substantial values of �.

Noise prob. (p) 0.05 0.1 0.2 0.3 0.4 0.5
# Model 1: spiked covariance #

Eigen-gap (�) 3.21 2.87 2.36 2.04 1.501 1.03
kX⇤ �PkF 0.0047 0.0075 0.012 0.016 0.022 0.0298

kXPCA �PkF 0.045 0.072 0.115 0.157 0.212 0.292
# Model 2: sparsely corrupted entries #

Eigen-gap (�) 5.72 5.49 5.15 4.81 4.38 3.79
kX⇤ �PkF 0.049 0.067 0.097 0.111 0.134 0.148

kXPCA �PkF 0.148 0.199 0.291 0.335 0.401 0.439

Table 1: Recovery and eigen-gap results for the spiked covariance and sparsely corrupted entries
models with varying noise probabilities. P is the projection matrix onto the ground truth subspace.
n = 100, k = 10, sample size m = 500. Results are averages of 20 i.i.d. experiments.

We additionally test the empirical convergence of nonconvex PGD (Dynamics (2)) and the gradient
orthogonal iteration method (GOI, Dynamics (3)) on the two models. We initialize both methods
with the PCA solution XPCA and use the same fixed step-size for both. We examine the convergence
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of both methods in terms of recovery error and approximation error (w.r.t. the objective function).
Additionally, to showcase the benefit of avoiding exact SVD computations (as employed by non-
convex PGD) and using only a single QR factorization per iteration (as in GOI), we compare the
runtimes of GOI and nonconvex PGD, but we exclude the time it takes to compute the gradient
on each iteration and only account for the time it takes to perform either a rank� k SVD or a QR
factorization, where both algorithms were implemented in Python and we have used the built-in
functions NUMPY.LINALG.EIGH and NUMPY.LINALG.QR to compute thin-SVDs and QR factoriza-
tions, respectively. Finally, we verify during the run of nonconvex PGD, that on each iteration, the
projection onto Pn,k is indeed the same as the projection onto the Fantope Fn,k (see Remark 3),
which suggests that nonconvex PGD indeed converges to the global minimum.

The results for the spiked covariance model are given in Figure 1 (the results for the sparsely corrupted
entries model are very similar and given in the appendix). It can be seen that indeed the distance
between the iterates of the two methods decays very quickly and so the graphs of the recovery and
approximation errors of both methods coincide. We see that both methods demonstrate a linear
convergence rate (w.r.t. the objective). We also see the significant savings in runtime when replacing
a thin-SVD computation (in nonconvex PGD) with only a single QR factorization (in GOI).

Figure 1: Convergence of PGD and GOI for the spiked covariance model with p = 0.1. 1st and
3rd panels from the left show the recovery error (P is the ground truth projection matrix) and
approximation error w.r.t. objective value of PGD, respectively. Convergence of GOI is omitted since
it coincides with that of PGD. 2nd panel from the left shows the distance (in Frobenius norm) between
the iterates of PGD (Xt) and those of GOI (Yt). The rightmost panel shows the approximation error
(in log scale) vs. time, when only the time to compute matrix factorizations is taken into account.

Importance of warm-start initalization: We examine the performance of nonconvex PGD over
Pn,k (Dynamics (2)) for the spiked covariance model considered above, but this time, when initialized
with a random (uniformly distributed) projection matrix. We compare it with convex PGD which
optimizes over the Fantope Fn,k and uses a full-rank SVD to compute the projection. We use the
same step-size as before. We see in Figure 2 (right panel) two trends. First, we clearly see that PGD
w.r.t. Pn,k and Fn,k produce very different iterates which in particular implies that, as opposed to the
case of warm-start initializaion, the projections of convex PGD onto the Fantope, throughout most of
the run are not rank-k. Second, we see that nonconvex PGD is significantly slower than convex PGD.
Thus, while both methods eventually converge to the same error, this suggests that far from a global
minimizer, the behaviour of nonconvex gradient methods is indeed significantly different than in the
local proximity of one, which supports the fact that our theoretical guarantees only hold in a local
neighbourhood of a minimizer.

Figure 2: Convergence of PGD for the spiked covariance model with p = 0.1 over the Fantope Fn,k

with a full-rank SVD, and over Pn,k with rank-k SVD, when initialized with the PCA solution (left
panel) and with random initialization (right panel). In the left panel the plots exactly coincide.
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