
EZNAS: Evolving Zero-Cost Proxies For Neural
Architecture Scoring

Yash Akhauri1 J. Pablo Muñoz2 Nilesh Jain2 Ravi Iyer2
1Cornell University 2Intel Labs

ya255@cornell.edu
{pablo.munoz,nilesh.jain,ravishanker.iyer}@intel.com

1 Appendix

1.1 NASBench-201 and NDS

For image classification, we utilize the NASBench-201 Dong and Yang [2020] and NDS Radosavovic
et al. [2019] NAS search spaces for our evolutionary search as well as testing. NASBench-201
consists of 15,625 neural networks trained on the CIFAR-10, CIFAR-100 and ImageNet-16-120
datasets. Neural Networks in Network Design Spaces (NDS) uses the DARTS Liu et al. [2019]
skeleton. The networks are comprised of cells sampled from each of AmoebaNet Real et al. [2019],
DARTS Liu et al. [2019], ENAS Pham et al. [2018], NASNet Zoph et al. [2018] and PNAS Liu et al.
[2018]. There exists approximately 5000 neural network architectures in each NDS design space.

1.2 Sequential Program Representation

Figure 1: Our sequential program representation.

Our initial attempts at discovering ZC-NASMs
took a different approach to program representa-
tion. The sequential program representation de-
scribed in Figure 1 posed no structural limitations
on the program. We have 22 static memory ad-
dresses, which contained network statistics and
are referenced with integers 0-21. To store in-
termediate tensors generated by the program, we
allocate 80 dynamic memory addresses, which can
be over-written during the program execution as
well. To store intermediate scalars generated by
the program, we allocate 20 memory addresses.
As seen in Figure 1, we represent the programs
as integers, where each instruction is expressed
as 4 integers. The first integer provides the write
address, the second integer provides the operation
ID and the third and fourth integers provide the read addresses for the operation. We initialize valid
random integer arrays and convert them to programs to evaluate and fetch the fitness (score-accuracy
correlation). We allow Mate, InsertOP, RemoveOP, MutateOP & MutateOpArg as variation
functions. The Mate function takes two individuals, and takes the first half of each individual. Then,
these components are interpolated to generate a new individual. The InsertOP function inserts an
operation at a random point in the program. The RemoveOP function removes an operation at a ran-
dom point in the program. The MutateOP changes a random operation in program without changing
read/write addresses. The MutateOpArg function simply replaces one of the read arguments of any
random instruction with another argument from the same address space (dynamic address argument
cannot be replaced by a scalar address argument).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 2: (Left) Experiment demonstrating the effect of seed on our score-accuracy correlation for
neural network initialization with a batch size of 1. (Right) Effect of seed on our score-accuracy
correlation with a batch size of 1. CIFAR and ImageNet abbreviated as CF and IN respectively. This
test was done on each design space over 7 seeds for 400 Neural Networks.

While we are able to discover weak ZC-NASMs with this formulation, we observe that there are too
many redundancies in the programs discovered. Program length bloating as well as operations that
do not contribute to the final output were frequently observed. Due to these issues, the evolution
time evaluation of individual fitness quickly became an intractable problem. To address this, we
change our program representation to a expression tree representation in the results reported in the
paper. This representation necessitates contribution of each operation to the final output, which means
there is no redundant compute. While the sequential program representation is valid, we believe
that significant engineering efforts are required to ensure discovery of meaningful programs. Our
sequential program representation is directly inspired by the formulation used in AutoML-Zero Real
et al. [2020]. AutoML-Zero makes significant approximations in the learning task to evolutionarily
discover MLPs. While AutoML-Zero has a much larger program space to search for, approximations
in computing individual fitness are not feasible in our formulation as generating exact score-accuracy
correlation is an important factor in selecting individuals with high fitness.

1.3 Noise and Perturbation for Network Statistics

To generate network statistics, we use three types of input data. The first is simply a
single random sample from the dataset (e.g. a single image or a batch of images from
CIFAR-10). To generate a noisy input, we simply use the default torch.randn func-
tion as input = torch.randn(data_sample.shape). The third type of input we pro-
vide is a data-sample which has been perturbed by random noise (input = data_sample +
0.01**0.5*torch.randn(data_sample.shape)).

1.4 Network Initialization Seed Test

In Figure 2 (Left), we use different seeds to change the initialization and input tensors, but keep
the neural architectures being sampled fixed in the respective spaces. The variance in the score
accuracy correlation is much lesser than in Figure 2 (Right) where the seed also controls the neural
architectures being sampled. This shows the true variation in our EZNAS-A ZC-NASM with respect
to network initialization.

Figure 3: Experiment demonstrating the ability to discover ZC-NASMs with an alternate net-
work statistics collection strategy and to_scalar function. Experiments are named as EZNAS-
(Statistics Collection Structure)-(to_scalar). Two statistics collection structures are tested. (R-C-B)
is a ReLU-Conv2D-BatchNorm2D structure, (C-B-R) is a Conv2D-BatchNorm2D-ReLU structure.
(to_scalar) can be Mean or L2.

2

Figure 4: Full correlation table. Each column represents the dataset evolution was performed on.
The DARTS-CIFAR10 column is the EZNAS-A NASM. Each row represents the dataset the best
discovered NASM program was tested on. Best score-accuracy KTR in bold and underlined. Second
best score-accuracy KTR in italics and underlined. These tests are done by evolving on 100 neural
networks and testing on the test task dataset (1000 randomly sampled neural networks on NASBench-
201 and 200 randomly sampled neural networks on NDS). The network statistics were generated
with a batch size of 1.

1.5 Hardware used for evolution and testing

Our evolutionary algorithm runs on Intel(R) Xeon(R) Gold 6242 CPU with 630GB of RAM. Our
RAM utilization for evolving programs on a single Image Classification dataset was approximately
60GB. RAM utilization can vastly vary (linearly) based on the number of neural network statistics
that are being used for the evolutionary search. Our testing to generate the statistics for the seed
experiments as well as the final Spearman ρ and Kendall Tau Rank Correlation Coefficient is done on
an NVIDIA DGX-2 server with 4 NVIDIA V-100 32GB GPUs.

1.6 Varying network statistics and to_scalar

In Figure 3, we detail 3 tests while evolving on the NDS_DARTS CIFAR-10 search space in an iden-
tical fashion to EZNAS-A (referred to as EZNAS-(R-C-B)-(Mean) here). EZNAS-(C-B-R)-(Mean)
and EZNAS-(C-B-R)-(L2) correspond to alternate to_scalar and network statistics collection
tests respectively. We demonstrate that while EZNAS-(R-C-B)-(Mean) is more effective, we are
able to discover ZC-NASMs with all three formulations.

1.7 Hyper-parameters for discovering EZNAS-A

num_generation: 15
population_size: 50
tournament_size: 4
MU: 25
lambda_ : 50
crossover_prob: 0.4
mutation_prob: 0.4
min_tree_depth: 2
max_tree_depth: 10

3

References
[1] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architec-

ture search, 2020.

[2] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search, 2018.

[3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search,
2019.

[4] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architec-
ture search via parameter sharing, 2018.

[5] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition, 2019.

[6] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search, 2019.

[7] Esteban Real, Chen Liang, David R. So, and Quoc V. Le. Automl-zero: Evolving machine
learning algorithms from scratch, 2020.

[8] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architec-
tures for scalable image recognition, 2018.

4

Op ID Operation Description
Output: C, Input: A, B

OP0 Element-wise Sum C = A+B
OP1 Element-wise Difference C = A-B
OP2 Element-wise Product C = A*B
OP3 Matrix Multiplication C = A@B
OP4 Lesser Than C = (A<B).bool()
OP5 Greater Than C = (A>B).bool()
OP6 Equal To C = (A==B).bool()

OP7 Log A[A<=0] = 1
C = torch.log(A)

OP8 AbsLog A[A==0] = 1
C = torch.log(torch.abs(A))

OP9 Abs C = torch.abs(A)
OP10 Power C = torch.pow(A, 2)
OP11 Exp C = torch.exp(A)

OP12 Normalize C = (A - Amean)/Astd
C[C!=C] = 0

OP13 ReLU C = torch.functional.F.relu(A)
OP14 Sign C = torch.sign(A)
OP15 Heaviside C = torch.heaviside(A, values=[0])
OP16 Element-wise Invert C = 1/A
OP17 Frobenius Norm C = torch.norm(A, p=’fro’)
OP18 Determinant C = torch.det(A)

OP19 LogDeterminant C = torch.logdet(A)
C[C!=C]=0

OP20 SymEigRatio

A = A.reshape(A.shape[0], -1)
A = A@A.T
A = A + A.T
e,v = torch.symeig(A, eigenvectors=False)
C = e[-1]/e[0]

OP21 EigRatio

A = A.reshape(A.shape[0], -1)
A = torch.einsum(’nc,mc->nm’, [A,A])
e,v = torch.eig(A)
C = (e[-1]/e[0])[0]

OP22 Normalized Sum C = torch.sum(A)/A.numel()
OP23 L1 Norm torch.sum(abs(A))/A.numel()

OP24 Hamming Distance
A = Heaviside(A)
B = Heaviside(B)
C = sum(A!=B)

OP25 KL Divergence C = torch.nn.KLDivLoss(’batchmean’)(A,B)

OP26 Cosine Similarity

A = A.reshape(A.shape[0], -1)
B = B.reshape(B.shape[0], -1)
C = torch.nn.CosineSimilarity()(A, B)
C = torch.sum(C)

OP27 Softmax C = torch.functional.F.softmax(A)
OP28 Sigmoid C = torch.functional.F.sigmoid(A)
OP29 Ones Like C = torch.ones_like(A)
OP30 Zeros Like C = torch.zeros_like(A)
OP31 Greater Than Zero C = A>0
OP32 Less Than Zero C = A<0
OP33 Number Of Elements C = torch.Tensor([A.numel()])

Table 1: List of operations available for the genetic program.

5

	Appendix
	NASBench-201 and NDS
	Sequential Program Representation
	Noise and Perturbation for Network Statistics
	Network Initialization Seed Test
	Hardware used for evolution and testing
	Varying network statistics and to_scalar
	Hyper-parameters for discovering EZNAS-A

