
Appendix

The appendix is organized as follows.

• In Appendix A we bound the L2(X, ⇢) metric entropy of the linearized model. This is necessary to
bound the operator deviation TK � Tn.

• In Appendix B we bound the Hessian of the network and introduce some technical lemmas. This is
necessary in order to relate the network to the linearized model.

• In Appendix C we bound the quantity k(TK � T t
n
)rtkL2(X,⇢). This section contains the bulk of

the proof for the main result Theorem 3.5.
• In Appendix D we put the aforementioned results together to prove Theorem 3.5.
• In Appendix E we explain the merit of Assumption 3.6.
• In Appendix F we describe the details of our experiments with a link to the relevant code.

A Covering Number for the Linearized Model

Our approach to generalization will be based on metric entropy (see, e.g., Wainwright, 2019), a
fundamental tool in learning theory. We recall some basic definitions.
Definition A.1. Let V be a vector space with seminorm k•k. For a subset A ⇢ V we say that B is a
proper ✏-covering of A if B ⇢ A and for all a 2 A there exists b 2 B such that ka� bk  ✏.

Since we will concern ourselves solely with proper coverings we may remove the adjective “proper”
when discussing ✏-coverings. A closely related notion is the ✏-covering number.
Definition A.2. Let V be a vector space with seminorm k•k and let A ⇢ V . For ✏ > 0 we define the
proper ✏-covering number of A, denoted N (A, k•k , ✏), by

N (A, k•k , ✏) = min
N : N is proper ✏-covering of A

|N |.

It is also useful to define the covering number of a set K with respect to another set L.
Definition A.3. Let K and L be two subsets of a vector space V . We define N (K,L) as the smallest
n 2 N such that there exists v(1), . . . , v(n) 2 K satisfying

K ⇢

n[

i=1

(v(i) + L).

Now consider a model flin(x; ✓) that is potentially nonlinear in x but affine in ✓. The motivating
example is the following NTK model

flin(x; ✓) = f(x; ✓0) + hr✓f(x; ✓0), ✓ � ✓0i.

We will be interested in deriving covering numbers for such classes of functions. Since translation by
a fixed function does not change the covering number we will for convenience assume the model is
linear in ✓. Thus we will consider models of the form

flin(x; ✓) = hg(x), ✓i.

The function g can be nonlinear and thus x 7! flin(x; ✓) is typically nonlinear. For the NTK model
we have g(x) = r✓f(x; ✓0). Let X be our input space and let ⌫ be some measure on X . We consider
L2(X, ⌫) where

khk2
L2(X,⌫) =

Z

X

|h(x)|2d⌫(x).

Throughout we will assume that kgk2 2 L2(X, ⌫) i.e.
R
X
kgk22 d⌫ < 1. We will be interested in

deriving covering numbers for classes of functions

CA := {flin(x; ✓) : ✓ 2 A}
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where A ⇢ ⇥ is some subset of parameter space ⇥. For now we will assume that ⇥ = Rp. We
observe that

kflin(•; ✓1)� flin(•; ✓2)k
2
L2(X,⌫) =

Z

X

|hg(x), ✓1 � ✓2i|
2d⌫(x)

=

Z

X

(✓1 � ✓2)
T g(x)g(x)T (✓1 � ✓2)d⌫(x) = (✓1 � ✓2)

T

Z

X

g(x)g(x)T d⌫(x)

�
(✓1 � ✓2).

Thus of primary importance is the symmetric positive semidefinite matrix M :=
R
X
g(x)g(x)T d⌫.

When ⌫ is a probability measure and flin(x; ✓) is the NTK model we have that

M = Ex⇠⌫

⇥
r✓f(x; ✓0)r✓f(x; ✓0)

T
⇤

is the (uncentered) gradient covariance matrix, which can be interpreted as the Fisher Information
Matrix (FIM) for the squared loss. The two most interesting cases are when ⌫ is the true input
distribution or ⌫ = 1

n

P
n

i=1 �xi is the empirical distribution arising from the training samples. In
the former case M is the true (uncentered) gradient covariance matrix and in the latter case M is
the (uncentered) empirical covariance. For neural networks the FIM tends to have a very skewed
spectrum (is approximately low rank), and thus the relations between the spectrum of M and the
covering number will be particularly relevant. We will define the seminorm k•k

M
as

kvk
M

:=
p

vTMv.

The following lemma relates the covering number N (CA, k•kL2(X,⌫) , ✏) to N (A, k•k
M

, ✏).

Lemma A.4. Let N ⇢ A ⇢ Rp. Then N is a proper ✏-covering of A with respect to the seminorm
k•k

M
if and only if CN is a proper ✏-covering of CA with respect to the L2(X, ⌫) norm.

Proof. As we argued before we have that

kflin(•; ✓1)� flin(•; ✓2)k
2
L2(X,⌫) = (✓1 � ✓2)

T

Z

X

g(x)g(x)T d⌫(x)

�
(✓1 � ✓2)

= (✓1 � ✓2)
TM(✓1 � ✓2) = k✓1 � ✓2k

2
M

.

For each function in h 2 CA pick a representative parameter ✓̂(h) 2 A so that h = flin(•; ✓̂(h)) (if
M is strictly positive definite ✓̂(h) is unique). We can choose the mapping h 7! ✓̂(h) so that the
image of CN under this mapping is N . Suppose N is an ✏-covering for A with respect to k•k

M
. Then

for each ✓ 2 A we can choose ✓0 such that k✓� ✓0kM  ✏. Well then for any h 2 CA we can consider
✓̂(h) and choose ✓0 2 N such that ✏ �

��✓̂(h) � ✓0
��
M

=
��flin(•; ✓̂(h)) � flin(•; ✓0)

��
L2(X,⌫)

.
It follows that CN is an ✏-covering of CA. Conversely suppose now that CN is an ✏-covering of
CA with respect to k•k

L2(X,⌫). Well then for any ✓ 2 A we can consider flin(x; ✓) and take
h 2 CN such that kflin(•; ✓)� h(•)k

L2(X,⌫)  ✏. However since h(•) = flin(•; ✓̂(h)) we have that
✏ �

��flin(•; ✓)� flin(•; ✓̂(h))
��
2
=
��✓ � ✓̂(h)

��
M

. Thus ✓̂(CN ) = N is an ✏-covering for A.

Thus covering the space CA in L2(X, ⌫) reduces to covering a subset of Euclidean space under the
seminorm k•k

M
. By a change of coordinates we will assume without loss of generality that M is

diagonal. Let M1/2 be the square root of M and let �1 � · · · � �p � 0 be the eigenvalues of M1/2.
We note that

{v 2 Rp : kvk
M

 1} =

(
v 2 Rp :

pX

i=1

�2
i
v2
i
 1

)
.

Thus the unit ball in Rp determined by k•k
M

is the ellipsoid with half-axis lengths ��1
i

(if �i = 0
we consider the ellipsoid as being infinite along that dimension). For a general vector a 2 Rp with
nonnegative entries we define the ellipse

Ea :=

(
v 2 Rp :

pX

i=1

v2
i

a2
i

 1

)
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where in the sum if ai = 0 we interpret v
2
i

a2
i

as 0 if vi = 0 and infinity otherwise. Ea is the ellipse
with half-axis lengths a1, a2, . . . , an. We will also let Bk

r
⇢ Rk denote the closed Euclidean ball in

dimension k of radius r, specifically

Bk

r
:= {v 2 Rk :

kX

i=1

v2
i
 r}.

Our main study will be bounding N (A, k•k
M

, ✏) when A = {✓ 2 Rp : k✓k2  R} = Bp

R
. This

amounts to covering a Euclidean ball with ellipsoids determined by k•k
M

. Fortunately, there are well
established results for coverings involving ellipsoids. Let � = (�1, . . . ,�p)T denote the spectrum of
M1/2 and let M�1/2 denote the pseudo-inverse of M1/2. Let L denote the closed unit ball in Rp

under the seminorm k•k
M

. In geometric terms N (Bp

R
, k•k

M
, ✏) = N (Bp

R
, ✏L). We claim that up

to an application of M1/2 or M�1/2, covering Bp

R
with translates of ✏L is equivalent to covering

ER
✏ �

with translates of Bp

1 . This is formalized in the following lemma.

Lemma A.5. Let M 2 Rp⇥p be a symmetric positive semidefinite matrix and let � =
(�1, . . . ,�p)T 2 Rp denote the eigenvalues of M1/2. Then N (Bp

R
, k•k

M
, ✏) = N (ER

✏ �
, Bp

1).

Proof. By a change of basis we can assume without loss of generality that M is diagonal. Let L
denote the closed unit ball of Rp under k•k

M
. We note that in geometric terms N (Bp

R
, k•k

M
, ✏) =

N (Bp

R
, ✏L). Since we can dilate by 1/✏ we can replace R with R/✏ and ✏ with 1. Thus for

convenience we will assume for now that ✏ = 1. We note that if v(1), . . . , v(n) form an L covering of
Bp

R
as in

Bp

R
⇢

n[

i=1

(v(i) + L),

then

ER� = M1/2(Bp

R
) ⇢

n[

i=1

(M1/2v(i) +M1/2(L)) ⇢
n[

i=1

(M1/2v(i) +Bp

1).

Thus M1/2v(1), . . . ,M1/2v(n) forms a Bp

1 covering of ER�. Conversely suppose v(1), . . . , v(n)

satisfy

ER� ⇢

n[

i=1

(v(i) +Bp

1)

and let P be the projection onto span{ei : �i 6= 0} where ei denotes the ith standard basis vector.
Then

P (Bp

R
) = M�1/2(ER�) ⇢

n[

i=1

(M�1/2v(i) +M�1/2(Bp

1)) =
n[

i=1

(M�1/2v(i) + P (L)).

However L is infinitely long along the dimensions outside im(P ), and thus

Bp

R
⇢

n[

i=1

(M�1/2v(i) + L).

Thus M�1/2v(1), . . . ,M�1/2v(n) form an L covering of Bp

R
. We conclude that N (Bp

R
, L) =

N (ER�, B
p

1). Thus for general ✏ > 0 we have that N (Bp

R
, k•k

M
, ✏) = N (Bp

R
, ✏L) =

N (Bp

R/✏
, L) = N (ER

✏ �
, Bp

1).

We will let vol(•) denote volume in the standard Lebesgue sense. If a 2 Rp is a vector with positive
entries we recall that the volume of an ellipsoid Ea is given by the formula

vol(Ea) = vol(Bp

1)
pY

i=1

ai.

When most of the ai are very small we have that Ea is very thin and has small volume and thus we
expect the covering number to be small. Coverings for ellipsoids are well established with roots in
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geometric functional analysis. The following lemma is phrased the same as Theorems 1 and 2 in
Dumer (2006). The result dates back to classic results in geometric functional analysis. Specifically
a similar result for more general convex bodies is sketched at the end of Chapter 5 in Pisier (1989)
which also appeared in Gordon et al. (1987, Proposition 1.7). We don’t need the additional generality
for our purposes. We will offer the simplest proof needed for our purposes for completeness and
clarity.
Lemma A.6 (Dumer 2006; Pisier 1989; Gordon et al. 1987). Let a 2 Rp be a vector with nonnegative
entries. Let J = {i : ai > 1}, K =

P
i2J

log(ai), � 2 (0, 1/2), and µ� = |{i : a2
i
> (1 � �)2}|.

Then the proper covering number N (Ea, B
p

1) satisfies

K  logN (Ea, B
p

1)  K + µ� log

✓
3

�

◆
.

Proof. We first prove the lower bound. Let J = {i : ai > 1}, m = |J |, and let P be the orthogonal
projection onto span{ei : i 2 J} where ei denotes the standard basis. Suppose v(1), . . . , v(n) are the
centers of a Bp

1 covering of Ea, specifically

Ea ⇢

n[

i=1

(v(i) +Bp

1).

Well then

P (Ea) ⇢
n[

i=1

P (v(i) +Bp

1) =
n[

i=1

(Pv(i) +Bm

1 ).

Well then by the standard volume estimate we get that

n · vol(Bm

1 ) � vol

 
n[

i=1

(Pv(i) +Bm

1 )

!
� vol(P (Ea))

and thus
n �

vol(P (Ea))

vol(Bm
1 )

=
Y

i2J

ai.

Now we prove the upper bound. Let � 2 (0, 1/2) and let J� = {i : a2
i
> (1� �)2}, µ� = |J� |, and

let P be the orthogonal projection onto span{ei : i 2 J�}. We first notice that if v 2 Ea we have
that k(I � P )vk2  1� �, indeed because for v 2 Ea

X

i/2J�

v2
i

(1� �)2


X

i/2J�

v2
i

a2
i

 1.

Thus if v(1), . . . , v(n) are the centers of a proper B
µ�
� covering of P (Ea) then by the triangle

inequality they also induce a proper Bp

1 covering of Ea. Thus let v(1), . . . , v(n) be a maximal subset
of P (Ea) such that for i 6= j

��v(i) � v(j)
��
2
> �. By maximality v(1), . . . , v(n) form a Bµ�

� covering
of P (Ea). Well then the balls v(i) +B

µ�

�/2 are all disjoint and contained in P (Ea) +B
µ�

�/2. Thus by
the volume estimates

n · vol(B
µ�

�/2) = vol

 
n[

i=1

(v(i) +B
µ�

�/2)

!
 vol

⇣
P (Ea) +B

µ�

�/2

⌘
.

Thus

n 

vol
⇣
P (Ea) +B

µ�

�/2

⌘

vol(B
µ�

�/2)
.

Note that Bµ�

1��
⇢ P (Ea) and thus Bµ�

�/2 ⇢
�

2(1��)P (Ea). Now let k•k
P (Ea)

be the norm on Rµ�

such that P (Ea) is the unit ball. Then note for v, w such that v 2 P (Ea) and w 2 B
µ�

�/2 we have that

kv + wk
P (Ea)

 kvk
P (Ea)

+ kwk
P (Ea)

 1 +
�

2(1� �)
.
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We conclude that P (Ea) +B
µ�

�/2 ⇢

⇣
1 + �

2(1��)

⌘
P (Ea). Therefore

n 

vol
⇣
P (Ea) +B

µ�

�/2

⌘

vol(B
µ�

�/2)


vol
h⇣

1 + �

2(1��)

⌘
P (Ea)

i

vol(B
µ�

�/2)
=

✓
2

�
+

1

1� �

◆µ� Y

i2J�

ai.

Note that since � < 1/2 we have that 1
1��

< 1
�

. Therefore 2
�
+ 1

1��


3
�

. Moreover
Q

i2J�
ai Q

i2J
ai. Thus

n 

✓
2

�
+

1

1� �

◆µ� Y

i2J�

ai 

✓
3

�

◆µ� Y

i2J

ai.

After taking logarithms we get the desired result.

From the Lemmas A.5 and A.6 we see that the covering number N (Bp

R
, k•k

M
, ✏) will depend on

how many eigenvalues of M lie above a certain threshold. Let A 2 Rp be a symmetric positive
semidefinite square matrix with eigenvalues �1 � �2 � · · · � �p � 0. We define the effective rank
of A at scale ✏ as

p̃(A, ✏) = |{i : �i > ✏}|.

This measures the number of dimensions within B1 whose image under A can be larger than ✏ in
Euclidean norm. We will also define

|A|>c =
Y

i:�i>c

�i,

which can be thought of the determinant of A after removing some eigenvalues. We then have our
main result.
Theorem A.7. Let g : X ! Rp such that kgk2 2 L2(X, ⌫). Let C = {x 7! hg(x), ✓i : k✓k2  R},
� 2 (0, 1/2). Define M 2 Rp⇥p by

M =

Z

X

g(x)g(x)T d⌫(x).

Then the proper covering number N (C, k•k
L2(X,⌫) , ✏) satisfies

log

����
R

✏
M1/2

����
>1

 logN (C, k•k
L2(X,⌫) , ✏)  log

����
R

✏
M1/2

����
>1

+p̃

✓
R

✏
M1/2, (1� �)

◆
log

✓
3

�

◆
.

Proof. We have by Lemmas A.4 and A.5 that N (C, k•k
L2(X,⌫) , ✏) = N (Bp

R
, k•k

M
, ✏) =

N (ER
✏ �

, Bp

1) where � = (�1, . . . ,�p)T 2 Rp is the vector of eigenvalues of M1/2. Well then
by applying Lemma A.6 with a = R

✏
� we have that

log

����
R

✏
M1/2

����
>1

 logN (ER
✏ �

, B1)  log

����
R

✏
M1/2

����
>1

+ p̃

✓
R

✏
M1/2, (1� �)

◆
log

✓
3

�

◆
.

The desired result thus follows.

Corollary A.8. Let g : X ! Rp such that kgk2 2 L2(X, ⌫). Let C = {x 7! hg(x), ✓i : k✓k2  R},
� 2 (0, 1/2). Define M 2 Rp⇥p by

M =

Z

X

g(x)g(x)T d⌫(x).

Then the proper covering number N (C, k•k
L2(X,⌫) , ✏) satisfies

logN (C, k•k
L2(X,⌫) , ✏) = Õ

✓
p̃

✓
M1/2,

3✏

4R

◆◆
.
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Proof. This follows from setting � = 1/4 and the fact that

log

����
R

✏
M1/2

���� = log

0

@
Y

�i>✏/R

R

✏
�i

1

A

 p̃(M1/2, ✏/R) log

✓
R�1
✏

◆

 p̃

✓
M1/2,

3✏

4R

◆
log

✓
R�1
✏

◆
.

B Bounding the Network Hessian and other Technical Items

B.1 Main Hessian Bound

For a fixed input x we will let H(x, ✓) := r
2
✓
f(x; ✓) denote the Hessian of the network with respect

to the parameters. We will use the following result, which follows from the proof of a result by Liu
et al. (2020a, Theorem 3.3), which we state here explicitly for reference.
Theorem B.1 (Reformulation of Liu et al. 2020a, Theorem 3.3). Let f(x; ✓) be a general neural
network of the form specified in Section 2.3 which can be a fully connected network, CNN, ResNet or a
mixture of these types. Let m be the minimum of the hidden layer widths and assume maxl

ml
m

= O(1).
Given any fixed R � 1 and x 2 X then with probability at least 1� Cme�c log2(m)

sup
✓2B(✓0,R)

kH(x, ✓)k
op

= Õ

 
R
p
m


max

⇢
1,

R
p
m

��O(L)
!
.

In particular if
p
m � R then

sup
✓2B(✓0,R)

kH(x, ✓)k
op

= Õ

✓
R
p
m

◆
.

The constants c, C > 0 depend on the architecture but are independent of the width.

Discussion of the statement of Theorem B.1 We note that our statement of Theorem B.1 is not
exactly the same as the result of Liu et al. (2020a, Theorem 3.3). Liu et al. (2020a) do not explicitly
write the failure probability and the dependence of the Hessian bound on R in the statement of the
theorem. In Theorem B.1 we write the failure probability and dependence on the radius R according
to the proof2 provided by the authors Liu et al. (2020a). We also add the assumption maxl

ml
m

= O(1)

to the hypothesis. This assumption is so that the initial weight matrices satisfy 1
p
m

��W (l)
0

��
op

= O(1)
with high probability (see Lemma B.2). This condition on the initial weight matrices appears in
the proof by Liu et al. (2020a). The authors Liu et al. (2020a) do not need to explicitly add this
assumption because they perform the proof for the case where all the layers have equal width for
simplicity of presentation, while stating that the proof generalizes to the case where the layers do not
have equal width.

Exponential dependence on depth We note that under the Õ notation in Theorem B.1 there are
constants that depend exponentially on the network depth L. For this reason it is essential that the
depth L be treated as constant. We will now briefly explain how the term max{1, R/

p
m}

O(L) arises
in the bound in Theorem B.1. For simplicity assume the network is fully connected at each layer
(the same form of argument holds for the other cases). Let ⇠(✓) = maxl

1
p
m

��W (l)
��
op

. With high
probability over the initialization we have that ⇠(✓0) = O(1) (see Lemma B.2). Furthermore for ✓
such that k✓ � ✓0k2  R we have that ⇠(✓)  ⇠(✓0) +

R
p
m

= O(max{1, R/
p
m}). It turns out that

2We communicated with the authors to better understand the dependence of the bound on the quantity R.
Nevertheless we accept full liability for any misinterpretation of their proof.
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the features ↵(l) at each layer l satisfy 1
p
m

��↵(l)
��
2
= O(⇠O(L)). Well for ✓ such that k✓ � ✓0k2  R

as stated before we have that ⇠(✓) = O(max{1, R/
p
m}). Consequently for such ✓ we get that

1
p
m

��↵(l)
��
2
= O(⇠O(L)) = O(max{1, R/

p
m}

O(L)). The Hessian bound inherits dependence
on the quantity O(max{1, R/

p
m}

O(L)) from its dependence the normalized feature 1
p
m

��↵(l)
��
2

norms.

Antisymmetric initialization and the Hessian We will now explain how the antisymmetric
initialization trick will not hinder us from bounding the Hessian via Theorem B.1. Let f(x; ✓) denote
any model of the form specified in Section 2.3 where ✓ 2 Rp. Let ✓̃ =

⇥
✓

✓
0

⇤
where ✓, ✓0 2 Rp. Recall

the antisymmetric initialization trick defines the model

fASI(x; ✓̃) :=
1
p
2
f(x; ✓)�

1
p
2
f(x; ✓0)

which takes the difference of two rescaled copies of the model f(x; •) with parameters ✓ and ✓0 that
are optimized freely. We then note that the Hessian of fASI has the block diagonal structure

r
2
✓̃
fASI(x; ✓̃) =

1
p
2


r

2
✓
f(x; ✓) 0
0 �r

2
✓0f(x; ✓0)

�
=

1
p
2


H(x, ✓) 0

0 �H(x, ✓0)

�
.

Well then it is not too hard to show that���r2
✓̃
fASI(x; ✓̃)

���
op

 max
h
kH(x, ✓)k

op
, kH(x, ✓0)k

op

i
.

Now recall that the antisymmetric initialization trick initializes ✓0 ⇠ N(0, I) then sets ✓̃0 =
⇥
✓0
✓0

⇤
.

Furthermore note that if
���✓̃ � ✓̃0

���
2
 R then k✓ � ✓0k2  R and k✓0 � ✓0k2  R. Thus if ✓0 is an

initialization such that the conclusion of Theorem B.1 holds for the model f(x; ✓) then the same
conclusion holds for fASI(x; ✓̃) with initialization ✓̃0.

B.2 Definition of the Convolution Operation

In this subsection we will formally define the convolution operation ⇤ introduced in Section 2.3. We
use the same convention for the convolution operation as Liu et al. (2020a). A convolutional layer of
the network has the form

↵(l) =  l(✓
(l),↵(l�1)) = !

✓
1

p
ml�1

W (l)
⇤ ↵(l�1)

◆
.

Here W (l)
2 RK⇥ml⇥ml�1 is an order-3 tensor where K denotes the filter size, ml is the number

of output channels, and ml�1 is the number of input channels. The input ↵(l�1)
2 Rml�1⇥Q is a

matrix with ml�1 rows as channels and Q columns as pixels. The output of the layer  l is of size
Rml⇥Q. From now on we will drop the superscripts and just denote W = W (l) and ↵ = ↵(l). The
convolution operation is defined as

(W ⇤ ↵)i,q =
KX

k=1

ml�1X

j=1

Wk,i,j↵j,q+k�
K+1

2
.

This can be reformulated as follows. For each k 2 [K] define the matrices W [k] := Wk,i,j and
(↵[k])j,q := ↵

j,q+k�
K+1

2
. Then the convolution operation can be rewritten as

(W ⇤ ↵) =
KX

k=1

W [k]↵[k].

Under this reformulation the convolutional layer can be rewritten as

 (W,↵) = !

 
KX

k=1

1
p
ml�1

W [k]↵[k]

!
.

By treating each W [k] as if it were a weight matrix in a fully connected layer, the convolutional layers
can be treated similarly to fully connected layers. Thus when we refer to weight matrices in the
context of a convolutional layer we are referring to the matrices W [k].
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B.3 Technical Lemmas

This section will cover some miscellaneous technical lemmas that will be of significance later. The
following lemma bounds the operator norm of the weight matrices at initialization.
Lemma B.2. Let f(x; ✓) be a neural network of the form specified in Section 2.3. Assume m � d
and maxl

ml
m

 A. Then with probability at least 1� C exp(�cm) over the initialization ✓0 each
weight matrix W0 at initialization satisfies

1
p
m

kW0k  2
p

A+ 1.

The constant C > 0 depends on the architecture but is independent of the width m.

Proof. Fix a weight matrix W 2 Rml⇥ml�1 in the model. Following Vershynin (2012, Corollary
5.35) we have with probability at least 1� 2 exp(�t2/2) over the initialization

kW0kop 
p
ml +

p
ml�1 + t

and thus
1

p
m

���W (l)
0

���
op



p
ml

p
m

+

p
ml�1
p
m

+
t

p
m

 2
p

A+
t

p
m
.

Thus by setting t =
p
m and taking the union bound over all weight matrices in the model (which

depends on the architecture) we get the desired result.

We now state for reference the following lemma which follows from the proof in (Liu et al., 2020a).
Lemma B.3. Let R � 1 and let f(x; ✓) be a neural network of the form specified in Section 2.3. If
✓0 is an initialization such that each weight matrix W0 satisfies 1

p
m

��W (l)
0

��
2
= O(1) then

sup
x2X

sup
✓2B(✓0,R)

kr✓f(x; ✓)k2 = O

 
max

⇢
1,

R
p
m

�O(L)
!
.

In particular if
p
m � R then

sup
x2X

sup
✓2B(✓0,R)

kr✓f(x; ✓)k2 = O (1) .

As a consequence of the previous lemma we get the following high probability bound on the gradients
norm kr✓f(x; ✓)k2.
Lemma B.4. Let R � 1 and let f(x; ✓) be a neural network of the form specified in Section 2.3.
Assume that m � d, maxl

ml
m

= O(1), and
p
m � R. Then with probability at least 1�C exp(�cm)

over the initialization ✓0 we have that

sup
x2X

sup
✓2B(✓0,R)

kr✓f(x; ✓)k2 = O(1).

The constant C > 0 depends on the architecture but is independent of the width m

Proof. This follows immediately from Lemma B.2 and Lemma B.3.

The following lemma bounds the kernel deviations K✓
�K✓0 in terms of the network Hessian.

Lemma B.5. Let S = {z1, . . . , zk} ⇢ X . Let B = supx2X sup
✓2B(✓0,R) kr✓f(x; ✓)k and let

Hmax = maxz2S sup
✓2B(✓0,R) kH(z, ✓)k

op
. Then for ✓ 2 B(✓0, R)

max
i,j2[k]

|K✓(zi, zj)�K✓0(zi, zj)|  2BHmaxR.
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Proof. We have that

|K✓(zi, zj)�K✓0(zi, zj)|

 kr✓f(zi; ✓)k kr✓f(zj ; ✓)�r✓f(zj ; ✓0)k+ kr✓f(zi; ✓)�r✓f(zi; ✓0)k kr✓f(zj ; ✓0)k

 2BHmaxR.

Here we have used the fact that

kr✓f(zi; ✓)�r✓f(zi; ✓0)k2 =

����
Z 1

0
H(zi, s✓ + (1� s)✓0)(✓ � ✓0)ds

����
2



Z 1

0
kH(zi, s✓ + (1� s)✓0)kop k✓ � ✓0k2  HmaxR.

The following lemma provides a trivial bound on k✓t � ✓0k2.
Lemma B.6.

k✓t � ✓0k2 

p
t

p
2
kr̂0kRn 

p
t

p
2
kf⇤

k
L1(X,⇢) .

Proof.

k✓t � ✓0k2 

Z
t

0
k@s✓sk2 ds =

Z
t

0
k@✓L(✓s)k2 ds 

p

t

Z
t

0
k@✓L(✓s)k

2
2 ds

�1/2

=
p

t

Z
t

0
�@sL(✓s)ds

�1/2
=

p

t [L(✓0)� L(✓t)]
1/2



p

t [L(✓0)]
1/2 =

p
t

p
2
kr̂0kRn



p
t

p
2
kf⇤

k
L1(X,⇢)

where the second inequality above follows from the Cauchy-Schwarz inequality and the final in-
equality follows from the fact that kr̂0kRn = kykRn  kf⇤

k
L1(X,⇢) from the antisymmetric

initialization.

C Convergence of the Operators

Throughout this section K(x, x0) will be a fixed continuous, symmetric, positive definite kernel. We
will let  := maxx2X K(x, x). We note that since K is continuous and X is compact we have that
 < 1. We will thus treat  as a constant. We also note that since K is a kernel for any x, x0

2 X
we have the inequality K(x, x0) 

p
K(x, x)

p
K(x0, x0)  .

We will let K✓(x, x0) = hr✓f(x; ✓),r✓f(x0; ✓)i denote the NTK for a specific parameter ✓.
In this section ✓0 will be treated as fixed. We will show that for fixed ✓0 we have bounds on
k(TK � T s

n
)rskL2(X,⇢) that hold with high probability over the sampling of S = (x1, . . . , xn).

By the Fubini-Tonelli theorem this suffices to get bounds that hold with high probability over the
parameter initialization ✓0 ⇠ µ and data sampling S ⇠ ⇢⌦n as long as one makes sure that the
appropriate events are measureable on the product space. Fortunately, due to the continuity of
K✓(x, x0) and H(x, ✓) with respect to x, x0 and ✓ we can avoid such issues and we thus will not
address measureability line-by-line.

In this section we will bound k(TK � T s
n
)rskL2(X,⇢) for all s such that k✓s � ✓0k2  R. This

will be done by bounding k(TK � Tn)rskL2(X,⇢) and k(Tn � T s
n
)rskL2(X,⇢) separately. At a

high level k(Tn � T s
n
)rskL2(X,⇢) will be small whenever K0 � Ks is small. On the other hand

k(TK � Tn)rskL2(X,⇢) will be small whenever n is large enough relative to the complexity of the
function class {f(x; ✓) : ✓ 2 B(✓0, R)}. If sup

✓2B(✓0,R) kH(x, ✓)k2 was uniformly small over x
then the kernel deviations K0�Ks would be bounded and the complexity of {f(x; ✓) : ✓ 2 B(✓0, R)}
would be controlled by the complexity of the linearized model flin(x; ✓) = hr✓f(x; ✓0), ✓ � ✓0i.
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However, Theorem B.1 only gives us the ability to bound kH(x, ✓)k for finitely many values of x.
For this reason we will need to do somewhat elaborate gymnastics using Rademacher complexity to
form estimates that only require the evaluation of sup

✓2B(✓0,R) kH(x, ✓)k over finitely many values
of x.

Let F denote some family of real valued functions and let S = (z1, . . . , zk) be a finite point set. We
define

F|S = {(g(z1), . . . , g(zk)) : g 2 F}

to be the set of all vectors in Rk formed by restricting a function in F to the point set S. Now let
✏ 2 Rk be a vector with entries that are i.i.d. Rademacher random variables, i.e. ✏i ⇠ Unif{+1,�1}.
We define the (unnormalized) Rademacher complexity of F|S .

URad(F|S) := E✏ sup
v2F|S

hv, ✏i = E sup
g2F

kX

i=1

✏ig(xi).

We will use the following classic result, see e.g. Telgarsky (2021, Theorem 13.1)
Theorem C.1. Let F be given with g(z) 2 [a, b] a.s. for all g 2 F . Then with probability at least
1� � over the sampling of z1, . . . , zn

sup
g2F

"
E[g(Z)]�

1

n

nX

i=1

g(zi)

#


2

n
URad(F|S) + 3(b� a)

r
log(2/�)

2n
.

We will also make use of the following lemma which is also classic, see e.g. Telgarsky (2021, Lemma
13.3)
Lemma C.2. Let ` : Rn

! Rn be a vector of univariate C-lipschitz functions. Then URad((` �
F)|S)  C · URad(F|S).

Using this we will now prove the following technical lemma. For the purpose of this lemma
x1, . . . , xn will be treated as fixed and the randomness will be over a ghost sample S0 = (x0

1, . . . , x
0

n
).

Lemma C.3. Let R � 1 and B = supx2X sup
✓2B(✓0,R) kr✓f(x, ✓)k2 . Consider x1, . . . , xn 2 X

to be fixed. Then let

F = {x 7!
1

n

nX

i=1

|K✓(x, xi)�K✓0(x, xi)|
2 : ✓ 2 B(✓0, R)}.

Let x0

1, . . . , x
0

n
be sampled i.i.d. from ⇢. Let S = (x1, . . . , xn) and S0 = {x0

1, . . . , x
0

n
} and define

Hmax := max
z2S[S0

sup
✓2B(✓0,R)

kH(z, ✓)k
op

Then with probability at least 1 � � over the sampling of x0

1, . . . , x
0

n
we have that every g 2 F

satisfies

Ex⇠⇢[g(x)]  12B2H2
max

R2 + 12B4

r
log(2/�)

2n
.

Proof. We note that for ✓ 2 B(✓0, R)

|K✓(x, xi)�K✓0(x, xi)|
2
 [|K✓(x, xi)|+ |K✓0(x, xi)|]

2
 [2B2]2 = 4B4.

Therefore for all g 2 F we have that g(x) 2 [0, 4B4] a.s. Then by Theorem C.1 we have with
probability at least 1� � over the sampling of S0 = {x0

1, . . . , x
0

n
}

sup
g2F

"
Ex⇠⇢[g(x)]�

1

n

nX

i=1

g(x0

i
)

#


2

n
URad(F|S0) + 12B4

r
log(2/�)

2n
.

Then we note that for any z, z0 2 S [ S0 we by Lemma B.5 that ✓ 2 B(✓0, R) implies

|K✓(z, z0)�K✓0(z, z0)|  2BHmaxR.
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It follows that for any member of F|S[S0 is bounded in infinity norm by 4B2H2
max

R2. Thus for any
g 2 F we have that

1

n

nX

i=1

g(x0

i
)  4B2H2

max
R2

and
1

n
URad(F|S0)  4B2H2

max
R2.

Therefore for any g 2 F we have that

Ex⇠⇢[g(x)] 
1

n

nX

i=1

g(x0

i
) +

2

n
URad(F|S0) + 12B4

r
log(2/�)

2n

 12B2H2
max

R2 + 12B4

r
log(2/�)

2n
.

Using the previous lemma we can now bound k(Tn � T t
n
)rtkL2(X,⇢).

Lemma C.4. Let R � 1 and B = supx2X sup
✓2B(✓0,R) kr✓f(x, ✓)k2 . Let S = (x1, . . . , xn) and

S0 = (x0

1, . . . , x
0

n
) be two independent sequences of i.i.d. samples from ⇢. Define

Hmax := max
z2S[S0

sup
✓2B(✓0,R)

kH(z, ✓)k
op

.

Then with probability at least 1� � over the sampling of S and S0 we have that for any ✓t such that
k✓t � ✓0k2  R,

��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kf⇤
k
2
L1(X,⇢)


kK �K0k

2
L2(X2,⇢⌦⇢) + 12B2H2

max
R2 + Õ

✓
B4

p
n

◆�
.

Proof. We note that

��(Tn � T t

n
)rt(x)

�� =

�����
1

n

nX

i=1

[K(x, xi)�Kt(x, xi)]rt(xi)

�����

 kr̂tkRn

"
1

n

nX

i=1

|K(x, xi)�Kt(x, xi)|
2

#1/2
 kr̂0kRn

"
1

n

nX

i=1

|K(x, xi)�Kt(x, xi)|
2

#1/2

where we have used the property kr̂tkRn  kr̂0kRn from gradient flow. Well from the inequality
(a+ b)2  2(a2 + b2) we have that

1

n

nX

i=1

|K(x, xi)�Kt(x, xi)|
2


2

n

nX

i=1

|K(x, xi)�K0(x, xi)|
2 +

2

n

nX

i=1

|K0(x, xi)�Kt(x, xi)|
2.

For conciseness let

h1(x) :=
1

n

nX

i=1

|K(x, xi)�K0(x, xi)|
2

ht

2(x) :=
1

n

nX

i=1

|K0(x, xi)�Kt(x, xi)|
2.

Then by the above we have that
��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kr̂0k
2
Rn

⇥
Ex⇠⇢[h1(x)] + Ex⇠⇢[h

t

2(x)]
⇤
.

11



Well we note that |K(x, x0)|   and |K0(x, x0)|  B2 uniformly over x, x0. Now consider the
random variables Zi := kK(•, xi)�K0(•, xi)k

2
L2(X,⇢) where the randomness is over the sampling

of xi. Then we have that |Zi|  [+B2]2 a.s. Thus by Hoeffding’s inequality we have that

P
 
1

n

nX

i=1

Zi � Ex1⇠⇢[Z1] > s

!
 exp

✓
�ns2

2[+B2]4

◆
.

Thus with probability at least 1� � over the sampling of x1, . . . , xn

1

n

nX

i=1

Zi  Ex1⇠⇢[Z1] +

p
2[+B2]2

p
log(1/�)

p
n

. (7)

Now note that

1

n

nX

i=1

Zi = Ex⇠⇢[h1(x)] Ex1⇠⇢[Z1] = kK �K0k
2
L2(X2,⇢⌦⇢) .

Thus whenever (7) holds we have that

Ex⇠⇢[h1(x)]  kK �K0k
2
L2(X2,⇢⌦⇢) +

p
2[+B2]2

p
log(1/�)

p
n

= kK �K0k
2
L2(X2,⇢⌦⇢) + Õ

✓
B4

p
n

◆
.

On the other hand we have by Lemma C.3 for any fixed x1, . . . , xn that with probability 1� � over
the sampling of x0

1, . . . , x
0

n
i.i.d. from ⇢ we have that for all ✓ 2 B(✓0, R)

Ex⇠⇢

"
1

n

nX

i=1

|K✓(x, xi)�K✓0(x, xi)|
2

#
 12B2H2

max
R2 + 12B4

r
log(2/�)

2n
. (8)

Whenever the above holds we have that for any ✓t such that k✓t � ✓0k2  R we have that

Ex⇠⇢[h
t

2(x)]  12B2H2
max

R2 + 12B4

r
log(2/�)

2n
= 12B2H2

max
R2 + Õ

✓
B4

p
n

◆
.

Thus combining these together we have with probability at least (1� �)2 � 1� 2� over the sampling
of x1, . . . , xn, x0

1, . . . , x
0

n
that Equations (7) and (8) hold simultaneously for all ✓ 2 B(✓0, R). In

such a case we have that for all ✓t such that k✓t � ✓0k2  R that

Ex⇠⇢[h1(x)] + Ex⇠⇢[h
t

2(x)]  kK �K0k
2
L2(X2,⇢⌦⇢) + 12B2H2

max
R2 + Õ

✓
B4

p
n

◆
.

Well then
��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kr̂0k
2
Rn

⇥
Ex⇠⇢[h1(x)] + Ex⇠⇢[h

t

2(x)]
⇤

 2 kr̂0k
2
Rn


kK �K0k

2
L2(X2,⇢⌦⇢) + 12B2H2

max
R2 + Õ

✓
B4

p
n

◆�

 2 kf⇤
k
2
L1(X,⇢)


kK �K0k

2
L2(X2,⇢⌦⇢) + 12B2H2

max
R2 + Õ

✓
B4

p
n

◆�
.

In the last line above we have used the fact that kr̂0kRn = kykRn  kf⇤
k
L1(X,⇢) from the

antisymmetric initialization. The desired result follows after replacing � with �/2 in the previous
argument.

From Lemma C.4 we get the following corollary.
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Corollary C.5. Let R � 1, B = supx2X sup
✓2B(✓0,R) kr✓f(x, ✓)k2 . Let S = (x1, . . . , xn) and

S0 = (x0

1, . . . , x
0

n
) be two independent sequences of i.i.d. samples from ⇢. Define

Hmax := max
z2S[S0

sup
✓2B(✓0,R)

kH(z, ✓)k
op

.

Then with probability at least 1� � over the sampling of S and S0 we have that for any ✓t such that
k✓t � ✓0k2  R

��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kf⇤
k
2
L1(X,⇢) kK �K0k

2
L2(X2,⇢⌦⇢) + ✏

provided that B = Õ(1), Hmax = Õ(✏1/2/R) and n = ⌦̃(✏�2).

Proof. We have by Lemma C.4 with probability at least 1� � over the sampling of S, S0

��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kf⇤
k
2
L1(X,⇢)


kK �K0k

2
L2(X2,⇢⌦⇢) + 12B2H2

max
R2 + Õ

✓
B4

p
n

◆�
.

Thus if B = Õ(1) then Hmax = Õ(✏1/2/R) and n = ⌦̃(✏�2) is sufficient to ensure that
��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kf⇤
k
2
L1(X,⇢) kK �K0k

2
L2(X2,⇢⌦⇢) + ✏.

Now we will begin the work to bound k(TK � Tn)rskL2(X,⇢). The following technical lemma bounds
the Rademacher complexity of the difference between the network f(x; ✓) and the linearization
flin(x; ✓) = hr✓f(x; ✓0), ✓ � ✓0i in terms of the Hessian norm for finitely many values z 2 X .

Lemma C.6. Let R � 1, F = {x 7! f(x; ✓) � flin(x; ✓) : ✓ 2 B(✓0, R)}, B =
supx2X sup

✓2B(✓0,R) kr✓f(x; ✓)k, and let S = (z1. . . . , zn) ⇢ X . Furthermore let

Hmax := max
z2S

sup
✓2B(✓0,R)

kH(z, ✓)k
op

.

Then
sup
g2F

kgk
L1(X,⇢)  2BR

and
sup
g2F

max
z2S

|g(z)| 
1

2
R2Hmax.

In particular
1

n
URad((F [ �F)

|S
) 

1

2
R2Hmax.

Proof. We note that
|f(x; ✓)� flin(x; ✓)|  |f(x; ✓)|+ |flin(x; ✓)|.

Well then using the fact that f(•; ✓0) = 0 from the antisymmetric initialization we get

|f(x; ✓)| = |f(x; ✓)� f(x; ✓0)| =

����
Z 1

0
hr✓f(x; ✓s+ (1� s)✓0), ✓ � ✓0ids

����



Z 1

0
|hr✓f(x; ✓s+ (1� s)✓0), ✓ � ✓0i|  B k✓ � ✓0k  BR.

On the other hand

|flin(x; ✓)| = |hr✓f(x; ✓0), ✓ � ✓0i|  kr✓f(x; ✓0)k2 k✓ � ✓0k2  BR.

Thus
sup

✓2B(✓0,R)

kf(•; ✓)� flin(•; ✓)kL1(X,⇢)  2BR
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and the first conclusion follows. Furthermore by the Lagrange form of the remainder in Taylor’s
theorem we have for z 2 S

|f(z; ✓)� flin(z; ✓)| =

����(✓ � ✓0)
T
H(z, ⇠)

2
(✓ � ✓0)

���� 
1

2
k✓ � ✓0k

2
2 kH(z, ⇠)k

op

where ⇠ is some point on the line between ✓ and ✓0. Thus if we set

Hmax := max
z2S

sup
✓2B(✓0,R)

kH(z, ✓)k
op

we have that
|f(z; ✓)� flin(z; ✓)| 

1

2
R2Hmax

for all ✓ 2 B(✓0, R). Therefore 1
n
URad((F [ �F)

|S
)  1

2R
2Hmax and the desired result follows.

We now introduce another technical lemma that provides Rademacher complexity and L1 norm
bounds for the linear model x 7! hr✓f(x; ✓0), ✓i.
Lemma C.7. Let R � 1, F = {x 7! hr✓f(x; ✓0), ✓i : k✓k2  2R}. Let B =
supx2X sup

✓2B(✓0,R) kr✓f(x; ✓)k. Then

sup
g2F

kgk
L1(X,⇢)  2BR

and
1

n
URad(F|S) 

2BR
p
n

.

Proof. By Cauchy-Schwarz
|hr✓f(x; ✓0), ✓i|  2BR

and thus kgk
L1(X,⇢)  2BR for all g 2 F . Now let ✏ 2 Rn be a vector with i.i.d Rademacher

entries ✏i ⇠ Unif{+1,�1}. Then as was shown by Bartlett & Mendelson (2003, Lemma 22)

E✏

"
sup

✓2B(✓0,2R)

nX

i=1

✏ihr✓f(xi, ✓0), ✓i

#
= 2RE✏

�����

nX

i=1

✏ir✓f(xi; ✓0)

�����
2

 2R

2

4E✏

�����

nX

i=1

✏ir✓f(xi; ✓0)

�����

2

2

3

5
1/2

= 2R

2

4E✏

2

4
X

1i,jn

✏i✏jhr✓f(xi; ✓0),r✓f(xj ; ✓0)i

3

5

3

5
1/2

= 2R

vuut
nX

i=1

K✓0(xi, xi)

 2RB
p
n.

where the first inequality above is an application of Jensen’s inequality. The Rademacher complexity
bound then follows from the bound above.

The following lemma compares the L2(X, ⇢) norm to that of its empirical counterpart L2(X, b⇢) for
the function classes discussed in Lemmas C.6 and C.7.
Lemma C.8. Let R � 1, F1 = {x 7! f(x; ✓) � flin(x; ✓) : ✓ 2 B(✓0, R)}, F2 = {x 7!

hr✓f(x; ✓0), ✓i : k✓k2  2R}, and B = supx2X sup
✓2B(✓0,R) kr✓f(x; ✓)k. Then with probability

at least 1� � over the sampling of S = (x1, . . . , xn)

sup
g2F1[F2

���kgk2
L2(X,⇢) � kgk2

L2(X,b⇢)

���  4BR3Hmax + Õ

✓
B2R2

p
n

◆
.
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where ⇢̂ = 1
n

P
n

i=1 �xi is the empirical measure induced by x1, . . . , xn and

Hmax := max
z2S

sup
✓2B(✓0,R)

kH(z, ✓)k
op

.

Proof. Let F = {|g|2 : g 2 F1 [ F2}. Note that by Lemmas C.6 and C.7 we have that for
g 2 F1 [F2 that kgk

L1(X,⇢)  2BR. Thus every g 2 F satisfies g(x) 2 [0, 4B2R2] a.s. Well then
by Theorem C.1 we have with probability at least 1� � over the sampling of S = (x1, . . . , xn) that

sup
g2F

"
Ex⇠⇢[g(x)]�

1

n

nX

i=1

g(xi)

#


2

n
URad(F|S) + 12B2R2

r
log(2/�)

2n
.

Well note that x2 is 4BR Lipschitz on the interval [�2BR, 2BR]. Then by Lemma C.2 we have that

URad(F|S)  4BR · URad((F1 [ F2)|S).

Well then we have that

URad((F1 [ F2)|S)  URad((F1 [ �F1 [ F2)|S)  URad((F1 [ �F1)|S) + URad((F2)|S)

where we have used the property that if A,A0 are vector classes such that supu2Ah✏, ui � 0 and
supu2A0h✏, ui � 0 for all ✏ 2 {1,�1}n then URad(A [ A0)  URad(A) + URad(A0). Well by
Lemma C.6 we have that

1

n
URad((F1 [ �F1)|S) 

1

2
R2Hmax.

On the other hand by Lemma C.7 we have that

1

n
URad((F2)|S) 

2BR
p
n

.

Therefore combining these two bounds we get that

1

n
URad((F1 [ F2)|S) 

1

2
R2Hmax +

2BR
p
n

and thus
1

n
URad(F|S) 

4BR

n
· URad((F1 [ F2)|S)  4BR


1

2
R2Hmax +

2BR
p
n

�
.

Therefore by putting everything together we have that

sup
g2F

"
Ex⇠⇢[g(x)]�

1

n

nX

i=1

g(xi)

#
 8BR


1

2
R2Hmax +

2BR
p
n

�
+ 12B2R2

r
log(2/�)

2n

= 4BR3Hmax +
16B2R2

p
n

+ 12B2R2

r
log(2/�)

2n
.

By repeating the same argument for the class �F and taking a union bound we have with probability
at least 1� 2� that

sup
g2F

�����Ex⇠⇢[g(x)]�
1

n

nX

i=1

g(xi)

�����  4BR3Hmax +
16B2R2

p
n

+ 12B2R2

r
log(2/�)

2n
.

The above can be reinterpreted as

sup
g2F1[F2

���kgk2
L2(X,⇢) � kgk2

L2(X,b⇢)

���  4BR3Hmax +
16B2R2

p
n

+ 12B2R2

r
log(2/�)

2n

= 4BR3Hmax + Õ

✓
B2R2

p
n

◆
.

The desired result then follows from replacing � with �/2 in the previous argument.
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Now we are ready to provide a bound on the quantity k(TK � Tn)r(•; ✓)kL2(X,⇢) for ✓ satisfying
k✓ � ✓0k2  R.
Lemma C.9. Let R � 1 and let B and Hmax be defined as in Lemma C.8. Let C = {x 7!

flin(x; ✓)� f⇤(x) : ✓ 2 B(✓0, R)}. Then there are quantities � and � such that

� = Õ

 
BR
p

log(N (C, L2(X, ⇢), ✏))
p
n

!

and

� = 4BR3Hmax + Õ

✓
B2R2

p
n

◆

such that with probability at least 1� � over the sampling of x1, . . . , xn

sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)kL2(X,⇢)  �+ 
hp

R4H2
max

+ 2�+
p

4✏2 + 2�
i
.

Proof. We will define rlin(x; ✓) = flin(x; ✓)� f⇤(x). Well then we have that

k(TK � Tn)r(•; ✓)kL2(X,⇢)

 k(TK � Tn)rlin(•; ✓)kL2(X,⇢) + k(TK � Tn)(f � flin)(•; ✓)kL2(X,⇢) .

Now let E be a proper ✏-covering of C = {rlin(x; ✓) : ✓ 2 B(✓0, R)} with respect to L2(X, ⇢).
Furthermore assume E is of minimal cardinality so that |E| = N (C, L2(X, ⇢), ✏). Then for any
rlin(•; ✓) we can choose ✓̂ 2 B(✓0, R) so that rlin(•; ✓̂) 2 E and

���rlin(•; ✓)� rlin(•; ✓̂)
���
L2(X,⇢)

 ✏.

Well then

k(TK � Tn)rlin(•; ✓)kL2(X,⇢)



���(TK � Tn)rlin(•; ✓̂)
���
L2(X,⇢)

+
���(TK � Tn)(rlin(•; ✓)� rlin(•; ✓̂))

���
L2(X,⇢)

.

We note that for any rlin(x; ✓) 2 C that

|rlin(x; ✓)|  |flin(x; ✓)|+ |f⇤(x)| = |hr✓f(x; ✓0), ✓ � ✓0i|+ |f⇤(x)|

 BR+ kf⇤
k
L1(X,⇢) =: S.

To handle the term
��(TK � Tn)rlin(•; ✓̂)

��
L2(X,⇢)

, for g 2 E we define the random variables
Zi := g(xi)Kxi � Ex⇠⇢[g(x)Kx] taking values in the separable Hilbert space H where H is the
RKHS associated with K. We note that (Tn � TK)g is equal to 1

n

P
n

i=1 Zi. Well then note that
kg(x)KxkH = |g(x)| kKxkH  kgk

L1(X,⇢)

p
K(x, x)  S1/2 a.s. Well then

kZikH  kg(xi)KxikH + kEx⇠⇢[g(x)Kx]kH

 S1/2 + Ex⇠⇢ kg(x)KxkH  2S1/2.

Then using Hoeffding’s inequality for random variables taking values in a separable Hilbert space
(see Rosasco et al. 2010, Section 2.4) we have

P
 �����

1

n

nX

i=1

Zi

�����
H

> s

!
 2 exp

⇣
�ns2/2[2S1/2]2

⌘
.

Thus by the union bound and the fact that 1
n

P
n

i=1 Zi = (Tn � TK)g we have that

P
✓
max
g2E

k(Tn � TK)gk
H

> s

◆
 2|E| exp

⇣
�ns2/2[2S1/2]2

⌘
.
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By setting

s =
2
p
2 · S1/2

r
log
⇣

2|E|

�

⌘

p
n

= Õ

 
BR
p

log(N (C, L2(X, ⇢), ✏))
p
n

!

we get that with probability at least 1� � over the sampling of x1, . . . , xn

max
g2E

k(Tn � TK)gk
H

 s

and thus from the inequality k•k
L2(X,⇢) 

p
�1 k•kH we get

max
g2E

k(Tn � TK)gk
L2(X,⇢)  s

p
�1  s

p
. (9)

On the other hand we must bound
���(TK � Tn)(rlin(•; ✓)� rlin(•; ✓̂))

���
L2(X,⇢)

and
k(TK � Tn)(f � flin)(•; ✓)kL2(X,⇢) .

Well note since K(•, •)   pointwise it follows by Cauchy-Schwarz that for any h

|TKh(x)| =

����
Z

K(x, s)h(s)d⇢(s)

����   khk
L2(X,⇢)

and similarly

|Tnh(x)| =

����
Z

K(x, s)h(s)db⇢(s)
����   khk

L2(X,b⇢) .

Therefore

k(TK � Tn)hkL2(X,⇢)  k(TK � Tn)hkL1(X,⇢)  kTKhk
L1(X,⇢) + kTnhkL1(X,⇢)

 [khk
L2(X,⇢) + khk

L2(X,b⇢)].

Thus we will bound rlin(•; ✓)� rlin(•; ✓̂) and (f �flin)(•; ✓) in L2(X, ⇢) and L2(X, b⇢). Well since
✓ 2 B(✓0, R) we have that (f � flin)(•; ✓) 2 F1 where F1 is defined as in Lemma C.8. On the other
hand we note that rlin(x; ✓)� rlin(x; ✓̂) = hr✓f(x; ✓0), ✓� ✓̂i. Note that since ✓, ✓̂ 2 B(✓0, R) we
have that

��✓ � ✓̂
��
2
 2R. Thus rlin(•; ✓)� rlin(•; ✓̂) 2 F2 where F2 is defined as in Lemma C.8.

Thus by Lemma C.8 separate from the randomness before we have with probability at least 1� �
over the sampling of x1, . . . , xn

sup
g2F1[F2

���kgk2
L2(X,⇢) � kgk2

L2(X,b⇢)

���  4BR3Hmax + Õ

✓
B2R2

p
n

◆
:= �. (10)

Well note that by Lemma C.6 we have that for each i 2 [n]

|f(xi; ✓)� flin(xi; ✓)| 
1

2
R2Hmax

and consequently

kf(•; ✓)� flin(•; ✓)kL2(X,b⇢) 
1

2
R2Hmax.

On the other hand we had by the selection of ✓̂ that
���rlin(•; ✓)� rlin(•; ✓̂)

���
L2(X,⇢)

 ✏.

Now for conciseness let h1 = f(•; ✓)� flin(•; ✓) and h2 = rlin(•; ✓)� rlin(•; ✓̂). Then by (10) we
have

kh1k
2
L2(X,⇢)  kh1k

2
L2(X,b⇢) + � 

1

4
R4H2

max
+ �
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and
kh2k

2
L2(X,b⇢)  kh2k

2
L2(X,⇢) + �  ✏2 + �.

This implies

kh1k
2
L2(X,⇢) + kh1k

2
L2(X,b⇢) 

1

2
R4H2

max
+ �

kh2k
2
L2(X,⇢) + kh2k

2
L2(X,b⇢)  2✏2 + �.

Thus using the inequality a+ b 
p
2(a2 + b2)1/2 for a, b � 0 combined with the previous estimates

we have

kh1kL2(X,⇢) + kh1kL2(X,b⇢) 
p

2

r
1

2
R4H2

max
+ � =

p
R4H2

max
+ 2�

and
kh2kL2(X,⇢) + kh2kL2(X,b⇢) 

p

2
p
2✏2 + � =

p
4✏2 + 2�.

Thus we have just shown that assuming (10) holds that

k(TK � Tn)h1kL2(X,⇢)  [kh1kL2(X,⇢) + kh1kL2(X,b⇢)]  
p
R4H2

max
+ 2�

and
k(TK � Tn)h2kL2(X,⇢)  [kh2kL2(X,⇢) + kh2kL2(X,b⇢)]  

p
4✏2 + 2�.

Then by taking a union bound we can assume with probability at least 1� 2� that (9) and (10) hold
simultaneously. In which case our previous estimates combine to give us the bound

k(TK � Tn)r(•; ✓)kL2(X,⇢)



���(TK � Tn)rlin(•; ✓̂)
���
L2(X,⇢)

+ k(TK � Tn)h1kL2(X,⇢) + k(TK � Tn)h2kL2(X,⇢)

 s
p
+ 

hp
R4H2

max
+ 2�+

p
4✏2 + 2�

i
.

We now note that as long as (9) and (10) hold the same argument runs through for any ✓ 2 B(✓0, R).
Thus with probability at least 1� 2�

sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)kL2(X,⇢)  s
p
+ 

hp
R4H2

max
+ 2�+

p
4✏2 + 2�

i
.

The desired conclusion follows by setting � = s
p
 and replacing � with �/2 in the previous

argument.

From Lemma C.9 we get the following corollary.
Corollary C.10. Let R � 1 and

B = sup
x2X

sup
✓2B(✓0,R)

kr✓f(x, ✓)k2 .

Then with probability at least 1� � over the sampling of x1, . . . , xn we have that

sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)k
2
L2(X,⇢)  ✏

provided that B = Õ(1), Hmax = Õ(✏/R3) and n = ⌦̃(R4/✏2) where the expressions under the Õ
and ⌦̃ notation do not depend on the values x1, . . . , xn.

Proof. After substituting ✏1/2 for ✏ in Lemma C.9 we have that with probability at least 1� � over
the sampling of x1, . . . , xn

sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)kL2(X,⇢)  �+ 
hp

R4H2
max

+ 2�+
p

4✏+ 2�
i
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where

� = Õ

 
BR
p
log(N (C, L2(X, ⇢), ✏1/2))

p
n

!
,

� = 4BR3Hmax + Õ

✓
B2R2

p
n

◆
,

and
C = {x 7! flin(x; ✓)� f⇤(x) : ✓ 2 B(✓0, R)}.

Now define
F :=

Z

X

r✓f(x; ✓0)r✓f(x; ✓0)
T d⇢(x).

Since translation by a fixed function does not change the covering number we have by Corollary A.8
that

logN (C, L2(X, ⇢), ✏1/2) = Õ

✓
p̃

✓
F 1/2 3✏1/2

4R

◆◆
= Õ

✓
p̃

✓
F,

9✏

16R2

◆◆
.

Well using the fact that p̃(A, ✏)  Tr(A)
✏

we have that

p̃

✓
F,

9✏

16R2

◆


16R2Tr(F )

9✏
.

Well we note that
Tr(F ) = Tr(Ex⇠⇢[r✓f(x; ✓0)r✓f(x; ✓0)

T ]) = Ex⇠⇢Tr(r✓f(x; ✓0)r✓f(x; ✓0)
T )

= Ex⇠⇢ kr✓f(x; ✓0)k
2
 B2.

Therefore assuming B = Õ(1) we have that

� = Õ

 
R
p
logN (C, L2(X, ⇢), ✏1/2)

p
n

!
= Õ

✓
R2

✏1/2
p
n

◆
.

Thus n = ⌦̃(R4/✏2) suffices to ensure that � = O(✏1/2). Now we must bound

� = 4BR3Hmax + Õ

✓
B2R2

p
n

◆
.

We note that whenever B = Õ(1) we have that Hmax = Õ(✏/R3) and n = ⌦̃(R4/✏2) guarantees
that � = O(✏). Finally we have that Hmax = Õ(✏/R3) ⇢ Õ(✏1/2/R2) suffices to ensure that
R4H2

max
= O(✏). Thus given all these conditions are met we have that

�+ 
hp

R4H2
max

+ 2�+
p

4✏+ 2�
i
= O(✏1/2).

The desired result then follows from setting the constants under the Õ and ⌦̃ notation appropriately.

The following lemma combines the results in this section to get the ultimate bound on the operator
deviations TK � T t

n
.

Lemma C.11. Let R � 1 and ✏ 2 (0, R). Let S = (x1, . . . , xn) and S0 = (x0

1, . . . , x
0

n
) be two

separate i.i.d. samples from ⇢ and denote
Hmax := max

z2S[S0

sup
✓2B(✓0,R)

kH(z, ✓)k
op

B := sup
x2X

sup
✓2B(✓0,R)

kr✓f(x, ✓)k2 .

Then with probability at least 1 � � over the sampling of S, S0 we have that for any t such that
k✓t � ✓0k2  R that

��(TK � T t

n
)rt
��2
L2(X,⇢)

 4 kf⇤
k
2
L1(X,⇢) kK �K0k

2
L2(X2,⇢⌦⇢) + ✏

provided that B = Õ(1), Hmax = Õ(✏/R3) and n = ⌦̃(R4/✏2) where the expressions under the Õ
and ⌦̃ notation do not depend on S and S0.
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Proof. We note that for ✓t such that k✓t � ✓0k2  R that
��(TK � T t

n
)rt
��2
L2(X,⇢)

 [k(TK � Tn)rtkL2(X,⇢) +
��(Tn � T t

n
)rt
��
L2(X,⇢)

]2

 2 k(TK � Tn)rtk
2
L2(X,⇢) + 2

��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)k
2
L2(X,⇢) + 2

��(Tn � T t

n
)rt
��2
L2(X,⇢)

.

Well by Corollary C.10 we have with probability at least 1� � over the sampling of x1, . . . , xn

sup
✓2B(✓0,R)

k(TK � Tn)r(•; ✓)k
2
L2(X,⇢)  ✏

provided that B = Õ(1), Hmax = Õ(✏/R3) and n = ⌦̃(R4/✏2). This result also does not depend in
any way on S0. On the other hand by Corollary C.5 separate from the randomness before we have
with probability at least 1� � over the sampling of S and S0 that for any ✓t such that k✓t � ✓0k2  R

��(Tn � T t

n
)rt
��2
L2(X,⇢)

 2 kf⇤
k
2
L1(X,⇢) kK �K0k

2
L2(X2,⇢⌦⇢) + ✏.

provided that B = Õ(1), Hmax = Õ(✏1/2/R) and n = ⌦̃(✏�2). The desired result then follows
from taking a union bound and replacing � with �/2 and ✏ with ✏/4.

D Main Result

D.1 Damped Deviations

In this subsection we will recall some definitions and results from Bowman & Montúfar (2022).
The main theorems in Bowman & Montúfar (2022) assume that the network architecture is shallow,
however the results we recall in this section do not depend on the architecture. Let K(x, x0) be a
continuous, symmetric, positive-definite kernel. Recall that K defines the integral operator

TKg(x) :=

Z

X

K(x, s)g(s)d⇢(s).

Then by Mercer’s theorem

K(x, x0) =
1X

i=1

�i�i(x)�i(x
0)

where {�i}i is an orthonormal basis of L2(X, ⇢) and {�i}i is a nonincreasing sequence of positive
values. Each �i is an eigenfunction of TK with eigenvalue �i, i.e. TK�i = �i�i. Let x 7! gs(x)
be a L2(X, ⇢) function for each s 2 [0, t]. Assume s 7! h�i, gsi⇢ is measureable for each i andR
t

0 kgsk
2
L2(X,⇢) ds < 1. Then we write

Z
t

0
gsds

to denote the coordinate-wise integral, meaning that
R
t

0 gsds is the L2(X, ⇢) function h such that

hh,�ii⇢ =

Z
t

0
hgs,�ii⇢ds.

With this definition in hand we now recall the following “Damped Deviations” lemma given by
Bowman & Montúfar (2022, Lemma 2.4).
Lemma D.1. Let K(x, x0) be a continuous, symmetric, positive-definite kernel. Let [TKh](•) =R
X
K(•, s)h(s)d⇢(s) be the integral operator associated with K and let [T s

n
h](•) =

1
n

P
n

i=1 Ks(•, xi)h(xi) denote the operator associated with the time-dependent NTK Ks. Then

rt = exp(�TKt)r0 +

Z
t

0
exp(�TK(t� s))(TK � T s

n
)rsds,

where the equality is in the L2(X, ⇢) sense.

20



Furthermore we have the following lemma Bowman & Montúfar (2022, Lemma C.8)
Lemma D.2. Let K(x, x0) be a continuous, symmetric, positive-definite kernel with associated oper-
ator TKh(•) =

R
X
K(•, s)h(s)d⇢(s). Let T s

n
h(•) = 1

n

P
n

i=1 Ks(•, xi)h(xi) denote the operator
associated with the time-dependent NTK. Then

kPk(rt � exp(�TKt)r0)kL2(X,⇢) 
1� exp(��kt)

�k
sup
st

k(TK � T s

n
)rskL2(X,⇢) .

and
krt � exp(�TKt)r0kL2(X,⇢)  t · sup

st

k(TK � T s

n
)rskL2(X,⇢) .

D.2 Proof of Theorem 3.5

We are now ready to prove the main result of this paper.
Theorem 3.5. Let T � 1, ✏ > 0. Let K(x, x0) be a fixed continuous, symmetric, positive definite
kernel. For k 2 N let Pk : L2(X, ⇢) ! L2(X, ⇢) denote the orthogonal projection onto the span
of the top k eigenfunctions of the operator TK defined in Equation (2). Let �k > 0 denote the k-th
eigenvalue of TK . Then m = ⌦̃(T 4/✏2) and n = ⌦̃(T 2/✏2) suffices to ensure with probability at
least 1 � O(mn) exp(�⌦(log2(m)) over the parameter initilization ✓0 and the training samples
x1, . . . , xn that for all t  T and k 2 N
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Proof. Let ✓0 be the parameter initialization and let S = (x1, . . . , xn) and S0 = (x0

1, . . . , x
0

n
) be

two i.i.d. samples from ⇢. Furthermore let 1  R 
p
m. Let E1 ⇢ Rp

⇥ X2n be the set of
values (✓0, S, S0) so that the conclusion of Lemma C.11 holds. Similarly let E2 be the set of values
(✓0, S, S0) satisfying

B := max
x2X

sup
✓2B(✓0,R)

kr✓f(x; ✓)k2 = O(1)

and
Hmax := max

z2S[S0

sup
✓2B(✓0,R)

kH(z, ✓)k
op

= Õ(✏/R3)

where the expression O(1) above is the bound on B given by Lemma B.4 and the expression Õ(✏/R3)
is precisely the condition on Hmax in the conclusion of Lemma C.11. By Lemma C.11 for any fixed
✓0 we have that the conclusion holds with probability at least 1� � over the sampling of S, S0. Thus
for any ✓0 we have that

ES,S0 [I {(✓0, S, S0) 2 E1}] � 1� �.

It follows then by the Fubini-Tonelli theorem that

P(E1) = E✓0ES,S0 [I {(✓0, S, S0) 2 E1}] � 1� �.

On the other hand by Theorem B.1 and Lemma B.4 combined with a union bound we have that
for any fixed S, S0 then with probability at least 1� 2Cmn exp(�c log2(m))� C exp(�cm) that
Hmax = Õ(R/

p
m) and B = O(1). Thus if m = ⌦̃(R8/✏2) we ensure that Hmax = Õ(✏/R3).

Then by the same Fubini-Tonelli argument as before we get that

P(E2) = ES,S0E✓0I {(✓0, S, S0) 2 E2} � 1� 2Cmn exp(�c log2(m))� C exp(�cm).

Thus by taking a union bound we have with probability at least 1� � �O(mn) exp(�⌦(log2(m))
that the events E1 and E2 both hold simultaneously. This holds for any � so we may as well set
� = O(mn) exp(�⌦(log2(m))) and absorb it into the other term. Whenever E1 and E2 hold
simultaneously we have by Lemma C.11 that for any ✓t such that k✓t � ✓0k2  R
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n
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Well by Lemma B.6 we have that k✓t � ✓0k 
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that k✓t � ✓0k  R. Well then by Lemma D.2 and the inequality (11) we have that
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The desired result then follows by setting T = 2R2

kf⇤k
2
L1(X,⇢)

.

E Discussion of Assumption 3.6

We will discuss why it is reasonable to assume that m = ⌦̃(✏�2) suffices to ensure that
kK0 �K1

k
2
L2(X⇥X,⇢⌦⇢)  ✏ holds with high probability over the initialization. We note that

for fixed ✓0, K0 and K1 are bounded and thus by Hoeffding’s inequality we have that with high
probability
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where (x1, x0

1), . . . , (xN , x0

N
) is an i.i.d. sample from ⇢⌦ ⇢. Furthermore we have by Lemma B.4

that kK0 �K1
k
2
L1(X⇥X,⇢⇥⇢) = Õ(1) with high probability over the initialization of ✓0. Thus if

we set N = ⌦̃(✏�2) we have that Assumption 3.6 holds provided that
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with high probability over the simultaneous sampling of ✓0 and (x1, x0

1), . . . , (xN , x0

N
).

It is been shown in many settings that the pointwise deviations satisfy

|K0(x, x
0)�K1(x, x0)| = Õ(1/

p
m)

with high probability over ✓0. The earliest was Du et al. (2019b) who demonstrate that for a shallow
ReLU network for fixed x, x0 we have with probability at least 1� � over the initialization

|K0(x, x
0)�K1(x, x0)|  O

✓
log(1/�)
p
m

◆
.

Analyzing the portion of the Neural Tangent Kernel corresponding to the last hidden layer, Du
et al. (2019a) get an analogous bound for deep fully-connected, ResNet, and convolutional networks
with smooth activations. This is substantiated by the results of Huang & Yau (2020) for deep fully-
connected networks with smooth activations. In their work they demonstrate that for a fixed training
set x1, . . . , xn

max
i,j

|K0(xi, xj)�K1(xi, xj)| = Õ(1/
p
m)

with high probability over the initialization. In their result there are constants that depend on how well
dispersed x1, . . . , xn are. Bowman & Montúfar (2022) demonstrated that for shallow fully-connected
networks with smooth activations

sup
(x,x0)2X⇥X

|K0(x, x
0)�K1(x, x0)| = Õ(1/

p
m)

with high probability over the initialization. For deep fully-connected ReLU networks Arora et al.
(2019b) demonstrate that for fixed x, x0 if m = ⌦(L6 log(L/�)/✏4) then with probability at least
1� �

|K0(x, x
0)�K1(x, x0)|  (L+ 1)✏.
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In terms of the width m this translates to |K0(x, x0)�K1(x, x0)| = Õ(1/m1/4) with high proba-
bility. This was improved in a recent work by Buchanan et al. (2021) that demonstrated that if M is a
Riemannian submanifold of the unit sphere then with high probability over the initialization

sup
x,x02M⇥M

|K0(x, x
0)�K1(x, x0)| = Õ(1/

p
m).

Furthermore as stated by Buchanan et al. (2021) their analysis should be amenable to other architec-
tures.

Now note that maxi2[N ] |K0(xi, x0
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Based on the previous discussion, we expect that with high probability
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Thus if m = ⌦̃(1/✏2) then we would have that maxi2[N ] |K0(xi, x0

i
)�K1(xi, x0

i
)| = Õ(✏) which is

stronger than what we need. In fact maxi2[N ] |K0(xi, x0

i
)�K1(xi, x0

i
)| = Õ(1/m1/4) is sufficient.

For these reasons, we view Assumption 3.6 as quite reasonable. Nevertheless, we are not aware of
an out-of-the box result that simultaneously addresses all the cases we consider and thus we must
add this as an external assumption. However, if desired one can bypass Assumption 3.6 by citing the
aforementioned results to get statements for the cases in which they apply to.

F Experimental Details

Architecture and Parameterization The code to produce Figure 1 is available at https:
//github.com/bbowman223/deepspec The NTK Gram matrix (G0)i,j := K✓0(xi, xj) =
hr✓f(xi; ✓0),r✓f(xj ; ✓0)i was computed for two separate networks. The first network corre-
sponds to LeNet-5 (LeCun et al., 1998) where the output is the logit corresponding to class 0.
The second network is a feedforward network with one hidden layer with the Softplus activation
!(x) = log(1 + exp(x)). For LeNet-5 we compute the NTK using PyTorch (Paszke et al., 2019)
using the default PyTorch initialization and parameterization. For the shallow network we implement
the network directly and use the Neural Tangent Kernel parameterization:

f(x; ✓) =
1

p
m

mX

i=1

ai!(hwi, xi+ bi) + b0,

where there is an explicit 1/
p
m factor. All parameters for the shallow network are initialized as i.i.d.

standard Gaussian random variables N(0, 1).

Details of Computation For each network we compute the NTK Gram matrix G0 for 10 separate
pairs of (✓0, S) where ✓0 is the parameter initialization and S = (x1, . . . , xn) is the data batch. Each
line in the plots of Figure 1 corresponds to a different pair (✓0, S). We simultaneously sample the
parameter initialization ✓0 and a random batch of 2000 training samples x1, . . . , x2000. We load the
batches using “DataLoader” in PyTorch with the “shuffle” parameter set to True. This means the
batches will be sampled sequentially from a random permutation of the training data and thus are
sampled without replacement. We then compute the NTK Gram matrix (G0)i,j := K✓0(xi, xj) =
hr✓f(xi; ✓0),r✓f(xj ; ✓0)i. Once we compute G0 we compute its spectrum and plot the first 1000
eigenvalues. Note that the number of eigenvalues that we plot is half the batch size. We observe that
if one plots all n eigenvalues (the number of eigenvalues equals the number of samples) one gets a
sharp drop in log scale magnitude starting near the bottom 5-10% of eigenvalues. We observed this
to occur even as one varies n. We suspect this is due to numerical errors and thus we only plot the
first half of the spectrum.

Data The dataset used for LeNet-5 is MNIST (LeCun et al., 1998) and the dataset for the shallow
model is CIFAR-10 (Krizhevsky, 2009). MNIST is made available through the Creative Commons
Attribution-Share Alike 3.0 license. CIFAR-10 does not specify a license. Neither of these datasets
have personally identifiable information nor offensive content.
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Computational Resources and Runtime The experiments were run on a 2016 Macbook Pro with
a 2.6 Ghz Quad-Core Intel Core i7 processor and 16GB of RAM. The experiment took less than an
hour in wall-clock time.

Software Licenses and Attribution Our experiments were implemented in Python with the aid of
the following software libraries/tools: PyTorch (Paszke et al., 2019), NumPy (Harris et al., 2020),
SciPy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Jupyter Notebook (Kluyver et al., 2016),
IPython (Pérez & Granger, 2007), and autograd-hacks https://github.com/cybertronai/
autograd-hacks. PyTorch, Numpy, and SciPy are available under the BSD license. Jupyter
and IPython are available under the new/modified BSD license. Matplotlib uses only BSD compatible
code and is available under the PSF license. The code for autograd-hacks belongs to the public domain
as specified by the public-domain-equivalent-license “Unlicense” https://unlicense.org/.
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