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Abstract

Generative models for graph data are an important research topic in machine
learning. Graph data comprise two levels that are typically analyzed separately:
node-level properties such as the existence of a link between a pair of nodes, and
global aggregate graph-level statistics, such as motif counts. This paper proposes
a new multi-level framework that jointly models node-level properties and graph-
level statistics, as mutually reinforcing sources of information. We introduce a
new micro-macro training objective for graph generation that combines node-level
and graph-level losses. We utilize the micro-macro objective to improve graph
generation with a GraphVAE, a well-established model based on graph-level latent
variables, that provides fast training and generation time for medium-sized graphs.
Our experiments show that adding micro-macro modeling to the GraphVAE model
improves graph quality scores up to 2 orders of magnitude on five benchmark
datasets, while maintaining the GraphVAE generation speed advantage.

1 Introduction: multi-level graph modeling

Many datasets contain relational information about entities and their links that can be represented
as a graph. Deep generative learning on graphs has become a popular research topic [20], with
applications including molecule design [42], and recommendation [12]. It is common in graph
analysis to distinguish two levels of information [10, 20]: (1) local node-level properties, such as
the existence of a link between two nodes or the attribute of a node [27, 37, 19], and (2) global
graph-level statistics (graph statistics for short) that depend on the entire graph, such as node degree
distribution or motif counts. Most deep Graph Generative Models (GGMs) are trained with an
objective based on local properties (e.g., maximizing the probabilities of observed edges). Figure 1
illustrates the difference between local and global structure. Different edges have different roles in
the graph global structure. Some edges play a critical role for the connectivity/community structure,
while others are less important. Previous GGM training is generally based on a likelihood objective
that decomposes into individual edge likelihoods [47, 31, 11], which does not discriminate edges
with different roles. Graph global level information on the other hand can capture how different
edges have different importance in the graph structure (see also Section 4). Whereas the sparsity
of typical graphs causes difficulties for training objectives based on local information only [38, 27],
graph statistics are typically dense.

This paper proposes a new perspective on the node/graph level dichotomy: a principled probabilis-
tic framework that incorporates both local and global graph properties. From the framework we
derive a novel micro-macro (MM) objective function for training a GGM to match both local and
global properties. The term micro-macro originates from the philosophy of science and refers to
scientific frameworks that treat local (“micro”) resp. global (“macro”) properties of a system as equal
targets [17].
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(a) Original Graph (b) Generated Graph 1 (c) Generated Graph 2

Figure 1: To illustrate the difference between local and global properties. The two right
graphs (1b), (1c) score the same in terms of number of edges reconstructed from the left graph (1a), a
local node-level property. However the right graph (1c), is structurally more similar to (1a), containing
the same number of connected components, a global graph-level statistic.

Advantages Micro-macro modeling increases graph realism and user control. (1) Compared to
objective functions that are based on predicting local properties, matching graph statistics serves
as a regularizer that increases the realism of the generated graph structures. This is sufficient to
generate realistic graphs with a fast all-at-once edge-parallel model. (2) O’Bray et al. [35] note that
different graph statistics are important for different applications. For example for a large payment
graph recording economic transactions, a macro economist may be mainly interested in the average
price level of a goods basket. For a central bank managing a payment system, the total number of
transactions may be more important. O’Bray et al. [35] therefore advise selecting a GGM based
on the graph statistics of interest in the target application. However, this entails searching through
the space of GGMs and their hyperparameters to find a good match with target graph statistics.
In our MM framework, the user only needs to specify the target graph statistics and learning will
automatically select graph models that match them.

Approach We introduce a joint probabilistic model over both local properties and global graph
statistics. An MM objective that can be used with graph encoder-decoder models is derived as
an ELBO from the joint probability model. Our experiments focus on the GraphVAE (Graph
Variational Auto-Encoder) model where the encoder outputs a graph-level latent posterior z (graph
embedding) and the decoder maps the graph embedding z to a soft adjacency matrix representing
link probabilities [43]. A graph-level embedding supports modeling graph-level statistics. We
show how the recent calibrated Gaussian variational auto-encoder [41] can be adapted to model
graph statistics with divergent scales. The implementation and datasets are provided at https:
//github.com/kiarashza/GraphVAE-MM.

Evaluation Evaluating GGMs has become a research topic of its own [44, 35]; see the related
work, section below. Proposed metrics quantify how similar a set of generated graphs is to a set of
observed graphs. Our assessment focuses on evaluation metrics based on Graph Neural Networks
(GNN-based metrics) [44]. To our knowledge, this is the most recent published evaluation method,
with state-of-the-art (SOTA) performance shown in extensive experiments. For GraphVAEs, adding
micro-macro modeling improves both the realism and the diversity of the generated graphs, up to an
order of magnitude on GNN-based metrics. This is sufficient to reach very competitive graph quality
compared to SOTA auto-regressive benchmark models [32, 47, 11]. At the same time, one-shot graph
generation with GraphVAEs is faster than sampling from auto-regressive models. Our experiments
on medium-sized graphs show that even with the overhead of micro-macro modeling, GraphVAEs
maintain their generation speed advantage over auto-regressive approaches. While our evaluation
focuses on GraphVAEs, we discuss how micro-macro modeling can be applied to other GGMs to
leverage graph-level statistics.

Contributions. Our main contributions can be summarized as follows.

• A new joint probabilistic model over both local graph properties and global graph-level
statistics.

• Deriving a joint ELBO as a new micro-macro objective function for training graph encoder-
decoder models.

• An adaptation of the GraphVAE architecture [43] to learn graph embeddings using the joint
micro-macro objective.
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2 Related work

Graph Statistics as Modeling Targets. To our knowledge, this is the first work to develop a GGM
with the objective of matching graph statistics. Work on graph moment matching in network statistics
[36, 6] has studied theoretical properties of graph moment estimators with increasing graph size.
Maximizing the likelihood of exponential random graph models [21] such as Markov Logic Networks
is equivalent to maximizing entropy subject to matching a set of graph statistics [28].

Graph Statistics for Evaluating Generative Models. The ability of generative models to match an
empirical graph statistic distribution has been assessed in several research papers, which supports our
approach of including them in the training objective. Farnadi et al. [16] compare relational models in
terms of matching (expected) motif counts. You et al. [47] and Liao et al. [32] use 4 graph statistics
to measure the realism of generated graphs.

The question of how to evaluate a GGM has been studied in recent papers [35, 44]. An eval-
uation metric quantifies how similar a set of generated graphs Ĝ1, . . . , Ĝm1 is to a set of test
graphs G1, . . . , Gm2 . From the graphs we can compute corresponding descriptors (e.g., statistics)
x̂1, . . . , x̂m1 and x1, . . . , xm2 . The similarity of two descriptor sets can be quantified using Maximum
Mean Distance (MMD). O’Bray et al. [35] raise several difficulties with this approach. (1) Given a
list of graph statistics, we obtain a list of MMD scores, rather than a single score that can be used to
rank GGMs. (2) The statistics-based MMD scores are sensitive to hyper-parameters; different settings
can lead to different model rankings even for a single graph statistic. (3) In perturbation studies
where observed graphs are corrupted in a controlled manner, MMD scores do not correlate well with
degree of perturbation. Thompson et al. [44] develop a recent proposal to address these issues. They
utilize a reference embedding network GNN E . The embedder E is obtained from pretraining or
from random weights and is therefore independent of any of the models under evaluation. Given m1

generated graphs and m2 test graphs, E provides embeddings ê1, . . . , êm1 and e1, . . . , em2 which
can be compared using a vector metric such as MMD. Extensive evaluation shows that the GGM
scores provided by the reference embedding approach correlate well with perturbation degree and
capture the realism and diversity of generated graphs. To our knowledge, the GNN-based approach is
the state of the art for evaluating GGMs, so we use it as our main evaluation metric.

Graph Generation Architecture. Our novel contribution is to develop a new kind of objective function,
not a new kind of GGM. We therefore follow an AB design where we utilize an existing architecture
as is and change only the training objective. Developing GGMs is an on-going topic of research;
overviews can be found in [50, 20]. Two major GGM groups are all-at-once and auto-regressive
methods [20]. All-at-once generation decodes a latent variable z to generate a (soft) adjacency
matrix Ã. Auto-regressive methods [32, 47, 25] generate a graph incrementally. All-at-once methods
are faster at graph generation, but tend to generate less realistic graphs. They can use node-level
representations or a graph-level representation (embedding). We use a graph-level representation for
two reasons: (1) A natural fit with modeling graph-level statistics. (2) It is known from previous
work that node-level representations, while useful for many applications, do not capture enough
graph structure to generate realistic graphs. We utilize the well-known GraphVAE architecture for
computing graph embeddings [43],[20, Ch.9 Sec.1.2].

For a generative model of graph statistics, we adapt calibrated Gaussian variational auto-encoder
[41], which has been developed as a generative model for i.i.d. data, but not previously been applied
to graph modeling.

3 Data model and micro-macro objective

An attributed graph is a pair G = (V,E) comprising a finite set of N nodes and edges where each
node is assigned an d-dimensional attributeXi. An attributed graph can be represented by an N ×N
adjacency matrixA with {0, 1} entries, together with an N × d node feature matrixX . Following
Ma et al. [33], we view the observed adjacency matrix as a sample from an underlying probabilistic
adjacency matrix Ã with Ãi,j ∈ [0, 1]. The sampling distribution for independent edges is given by

p(A|Ã) =

N∏
i=1

N∏
j=1

Ã
Ai,j

i,j (1− Ãi,j)
1−Ai,j . (1)
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A descriptor function φ maps an adjacency matrixA to a l-dimensional graph statistic such that
φ(A) ∈ Rl [35]. We use also matrices as graph statistics. We consider only descriptor functions that
are permutation-equivariant [20, Ch.5]. A graph statistic represents a higher-order graph property.
Examples include a node degree histogram or motif counts; for discussion and further examples
see [20, Sec.2.1.2] and Section 4 below.

3.1 Micro-macro objective

We assume a finite list of descriptor functions φ1, . . . , φm that define target statistics.

For a fixed attribute matrixX , a micro-macro (MM) loss is of the form

Lθ(A) = L0
θ(A) + γL1

θ(F 1, . . . ,Fm)

where A is the training graph and F u, u = 1, . . . ,m is a random variable defined by applying the
u-th descriptor function to the training graph. The hyperparameter γ controls the balance between
capturing micro and macro aspects of the training graph. The micro loss L0 decomposes into losses
for each node or pair of nodes. Well-known examples include the cross-entropy loss and max-margin
loss. In this paper we work with negative log-likelihood losses and a variational approximation based
on an encoder-decoder architecture:

L0
ψ(A) = − ln p0ψ(A) = − ln

∫
p(A|Ãz)p(z)dz (2)

L1
ψ,σ(F 1, . . . ,Fm) = −

m∑
u=1

1

|F u|
ln p1ψ,σ(F u) (3)

p1ψ,σ(F u) =

∫
N (F u|φu(Ãz), σ2

uI)p(z)dz (4)

using the following notation.

• z1×t specifies a latent t-dimensional graph embedding with prior distribution p(z).

• Ãz is a probabilistic adjacency matrix computed as a trainable deterministic decoder
function of graph embedding z. The decoder parameters are denoted as ψ. The edge
reconstruction probability p(A|Ãz) is computed as in Equation (1).

• The conditional distribution of each graph statistic is modeled as a GaussianN with diagonal
variance parameter σ2

u:

p1ψ,σ(F u|z) = N (F u|φu(Ãz), σ2
uI).

The Gaussian mean is computed by applying the u-th descriptor function to the recon-
structed (soft) adjacency matrix. Even with a Gaussian conditional distribution, the marginal
distribution over graph statistics, p1ψ,σ(F u), can in principle fit any distribution [26].

• |F u| is the dimensionality of target statistic F u.

Figure 2a shows a generative model diagram for Equations (2)–(4). Normalizing each graph statistic
by its dimension is important because their scales can diverge widely. For example, transition matrices
have N2 entries, while the number of triangles is a single scalar. The following proposition provides
an ELBO for an MM loss.

Proposition 1 Let Lθ(A) be a micro-macro loss defined by Equations (2)– (4). Then

Lθ(A) ≤ Ez∼qϕ(z|A,X)

[
− ln p(A|Ãz)− γ

m∑
u=1

( 1

|F u|
lnN (F u|φu(Ãz), σ2

uI)
]

(5)

+(1 + γm)KL(qϕ(z|A,X)||p(z))

where qϕ(z|A,X) = q(z|A,X,F 1, . . . ,Fm) is an approximate posterior distribution with pa-
rameters ϕ.
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The proof is in the Appendix section 8.1. The basic idea is to combine ELBOs for each individual
loss term. Adding a hyperparameter β to control the relative importance of the KL-divergence (as
in the β-VAE [22]), we obtain the following training objective for a set of observed training graphs
A1, . . . ,An:

argmin
ϕ,ψ,σ

n∑
j=1

Ez∼qϕ(z|Aj ,X)

[
− ln p(Aj |Ãz)− γ

m∑
u=1

1

|F u|
lnN (F ju|φu(Ãz), σ2

uI)
]

(6)

+βKL(qϕ(z|Aj ,X)||p(z))

In this objective, the graph statistic reconstruction loss, −γ
∑m
u=1

1
|Fu| lnN (F ju|φu(Ãz), σ2

uI),

acts as a regularizer with respect to the edge reconstruction loss − ln p(Aj |Ãz).

3.2 Implementation

We implement the micro-macro ELBO (6) utilizing graph neural networks as follows.

• The prior p(z) is a standard normal distribution.
• We limit the encoder input to the observed training graph, so q(z|A,X,F 1, . . . ,Fm) =
qϕ(z|A,X). Therefore we can use any standard graph encoder with parameters ϕ. The en-
coder deterministically maps an input graph (A,X) to a posterior distribution qϕ(z|A,X).

• The decoder deterministically maps a latent representation z to a probabilistic graph Ãz
with parameters ψ. Any standard graph decoder can be used.
• For each graph-level statistic, the diagonal co-variance parameter is computed using the op-

timal σ-VAE method from the calibrated Gaussian framework [41]. This uses the maximum
likelihood estimate given the estimated means with respect to a minibatch of size B:

σ2
u =

1

B

B∑
j=1

MSE (φu(Ãzj ),F ju)), MSE (x,µ) =
1

|µ|

|µ|∑
l=1

(xl − µl)2.

Figure 2b plots the architecture. The advantages of the calibrated Gaussian model for generating graph
statistics are as follows. (1) In experiments on non-relational data, the calibrated Gaussian model
achieves state-of-the-art performance. (2) Learning a variance parameter eliminates hyperparameters
compared to user-assigned weights for each graph statistic. (3) The variance values can be interpreted
as quantifying the empirical uncertainty of a graph feature. For example, if all training graphs exhibit
a similar number of triangles, the corresponding variance parameter will be small. Table 6 in the
Appendix illustrates this phenomenon in benchmark datasets.

(a) (b)

Figure 2: (a) Micro-macro generative model. Observed variables in gray. (b) GraphVAE–MM archi-
tecture.

4 Graph statistics

The micro-macro ELBO (6) requires user-specified input graph descriptors for computing target
graph statistics. In our experiments, we utilize several types of default statistics for regularizing
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graph embeddings that have the following advantages. (1) Known from prior research to be generally
important for graph modeling across different domains. (2) Easy to interpret. (3) Differentiable with
respect to the entries in a reconstructed soft adjacency matrix. In an application, the default statistics
can be combined with other statistics of interest.

Graph descriptors used in network analysis and graph kernels comprise two main groups [20]: (1)
Summaries of local node-level properties. We utilize a descriptor derived from the degree histogram,
and the number of triangles in a graph.(2) Higher-order proximity relations between nodes. We utilize
s-step transition probability matrices, for s = 1, . . . 5 [9, 49]. These descriptors are differentiable
with respect to the entries in a reconstructed soft adjacency matrix Ã, which we view as representing
a weighted undirected graph.

Degree Histogram. The degree of node vi is given by d(vi) =
∑
j Ãij . We adapt the permutation-

invariant differentiable histogram layer (DHL) [45].

The DHL is based on a soft assignment of points to bins given bin centers and widths. Binning the
soft degrees forms a soft degree histogram of graph Ã comparable to the hard degree histogram. In
detail, the bin centers are the possible (hard) node degrees b = 0, . . . , N . All widths are uniformly
set to 0.1 (based on experimentation). Then we have

dÃ(b) ≡
N∑
i=1

a(vi, b), a(vi, b) = max{0, 1− 0.1 · |d(vi)− b|}.

Thus the membership a(vi, b) of a node in a bin b ranges from 0 to 1 and decreases with the difference
between the node’s expected degree and the bin center. The DHL assigns to each bin the sum of
nodes membership in the bin. In a naive implementation, the computational cost of finding the dÃ(b)
vector is O(N2). In our experiments, we use N parallel processors for a near constant time to obtain
the soft degree histogram.

S-Step Transition Probability Kernel. P s(Ã) is the N ×N s-step transition probability matrix
derived from adjacency matrix Ã such that [P s(Ã)]i,j is the probability of a transition from node i
to node j in a random walk of s steps started from i. The transition matrix P s(Ã) can be computed
as P s(Ã) = (D(Ã)−1Ã)s where D(Ã) is a diagonal matrix with D(Ã)ii = d(vi).

The GraRep system learns node representations that reconstruct the s-step transition probabilities,
using random walks and matrix factorization [9]. The transition probability matrix is usually dense
and encodes the connectivity information of the graph. An important difference to the adjacency
matrix is that whereas adding or removing an edge changes only one adjacency, it can and often
does result in a substantive change in many transition matrix elements. The descriptor P s(Ã) thus
measures the importance of an edge in the graph structure (cf. Figure 1). In our experiments, we
compute the transition probability matrix exactly with a runtime cost of O(N3).

Triangle Count. The number of triangles in a simple graphA is computed by Tri(A) =
∑
i (A

3)ii

with a runtime cost of O(N3). The number of triangles is a fundamental graph statistic in network
science [5] with many applications in graph mining [1]. For example it has been used to detect
spamming activity and assess content quality in social networks [4], to uncover thematic structure
in the world-wide web [14] and for query planning in databases [3]. It is also used extensively in
exponential random graph models [21].

5 Empirical evaluation

We describe our baseline methods and benchmark datasets, then report comparison results.

5.1 Comparison methods

We examine the effect of micro-macro modeling on a GraphVAE architecture. Our AB methodology
is to keep the architecture the same and train the model using the joint MM ELBO (6) that combines
both local and global graph properties. We also compare the MM GraphVAE with popular GGMs. As
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the architectures are not new, we describe them briefly. Our experiments used the public repositories
and recommended hyperparameters by original creators; the Appendix contains further details.

GraphVAE. A popular model that transforms a graph-level latent variable to generate a soft adjacency
matrix [43][20, Ch.9.1.2]. The encoder utilizes a Multi-layer Graph Convolutional Network (GCN)
followed by a graph level readout and a Fully Connected Layer (FCL) that outputs (µ, σ). The
decoder utilizes a network with FCLs that outputs entries of a probabilistic adjacency matrix Ã. To
evaluate the reconstruction probability, we use a BFS ordering of nodes [31][20, Ch.9.1.2].
GraphVAE–MM. GraphVAE trained with the micro-macro objective 6. Our new method.
GraphRNN. Auto-regressive method that generates the adjacency matrix incrementally. Each step
generates one entry in the GraphRNN design, or one column in the GraphRNN-S design [47].
GRAN. Auto-regressive method that generates a block of nodes and associated edges at a step [32].
BiGG. Auto-regressive method that leverages graphs sparsity to avoid generating the full adjacency
matrix [11]. To our knowledge BiGG achieves SOTA graph quality.

5.2 Benchmark datasets

Our design closely follows previous experiments on generating realistic graph structures [47, 32]. We
utilize 3 synthetic, and 2 real-world datasets for the main results. The synthetic Grid and Lobster are
from previous studies [47, 32], Triangle Grid is introduced in this paper. Protein and ogbg-molbbbp
are real-world datasets from biology with information about proteins and molecules respectively. The
Appendix, section 8.2, contains further details, as well as results for 3 more real-world datasets.

Train/Test Split. Following previous experiments [47, 30, 11] we randomly split the graphs sets into
train (70%), validation (10%) and test (20%) sets. We use the same train and test graph sets for all
models. To evaluate a trained model, we generate T new graphs to compare with the T graphs in the
test set (cf. Section 2). Appendix Figure 5 illustrates the evaluation process.

Network modeling at the micro-level might be used for surveillance of individuals and communities.
Therefore ethical network data collection must take into account issues of consent, privacy, and
bias. None of the datasets used in this research study contain personally identifiable information, or
offensive/harmful content about either individuals or communities. The social impact of our work we
expect to be on balance more positive than negative, because our macro-level model enhances the
understanding of global network structure, not the targeting of individuals.

5.3 Evaluation

We empirically verify the effectiveness of micro-macro modeling through different evaluation metrics:
Qualitative and quantitative evaluation of graph quality, generation time, and training time.

Qualitative Evaluation. Following [47, 32] we compare the generated graphs by visual inspection.
Figure 3 provides a visual comparison of randomly selected test graphs and generated graphs.
GraphVAE-MM and BiGG achieve the best visual match. The Appendix, section 8.5, provides more
examples.

Quantitative Evaluation. We follow the descriptor-based approach established in previous works
(cf. Section 2). As recommended by O’Bray et al. [35], we include scores computed from a 50/50
split of the data set as an ideal score, i.e., a lower bound on the GGM scores.

(1) The GNN-based evaluation metrics [44] MMD RBF and F1 PR compare generated and test
graph embeddings computed by a reference GNN with randomly initialized weights. The reference
embeddings are independent of any target graph statistics used in GraphVAE-MM. F1 PR stands
for “Improved Precision and Recall". Precision is the percentage of generated graph embeddings
that fall within the manifold of test graph embeddings, while recall is the percentage of test graph
embeddings that fall within the manifold of generated graph embeddings. This metric mainly captures
the diversity of generated graphs [35]. MMD RBF compares generated graph embeddings and test
graph embeddings using an RBF kernel. This metric captures the realism of the generated graphs.

(2) A statistics-based evaluation compares generated and test graphs using evaluation statistics,
namely node degree, clustering coefficient, orbit counts, and the spectra of the graphs [32, 47]. We
add graph diameter, a statistic commonly studied in network science [29] related to graph connectivity.
The target statistics used to train a GraphVAE-MM model are distinct from the evaluation statistics
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Figure 3: Visualization of generated graphs. The left-most column (3a) shows randomly selected
graphs from the test set for each dataset, the other columns show graphs generated by each model
from the prior. The generated graphs shown are the two visually most similar samples in the generated
set. GraphVAE–MM achieves the best visual match, much better than GraphVAE.

used to measure graph quality (however, node degree and Degree histogram are closely related). For
each statistic, MMD is computed using total variation (TV) distance [32].

Impact on GraphVAE. Table 1 shows a very large improvement from micro-macro modeling for
both MMD RBF and F1 PR. The improvement in F1 PR ranges from 6%-40%, achieving a near
perfect score. For MMD RBF the reduction ranges from 0.06 to 0.26 which is significant given the
low ideal score. Table 2 shows the results for evaluation graph statistics. Micro-macro modeling
reduces MMD by 1-2 orders of magnitude on almost all datasets. In sum, MM modeling provides a
large improvement in the realism and diversity of graphs generated by a GraphVAE architecture.

Lesion studies in the Appendix investigate the effects of each target statistic in isolation (Table 5).
No single statistic has the power of all three combined. We also observe that different target statistics
have different importance for different datasets; see Table 6.

Table 1: GNN-based evaluation of micro-macro modeling for GraphVAEs. For each dataset we report
the MMD RBF and F1 PR (see text) between the test set graphs (left-most column in Figure 3) and
the generated graphs (see other columns in Figure 3). Values reported are the mean ± std. For MMD
RBF smaller values are better, for F1 PR larger values are better.

Method Triangle Grid Lobster Grid ogbg-molbbbp Protein
MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR

50/50 split 0.03± 0.00 98.99± 0.00 0.04± 0.00 98.58± 0.00 0.009± 0.00 98.70± 0.00 0.002± 0.00 98.07± 0.00 0.04± 0.00 98.67± 1.11

GraphVAE 0.23± 0.01 75.92± 8.96 0.36± 0.11 78.48± 24.13 0.17± 0.01 75.52± 2.53 0.20± 0.07 54.53± 6.15 0.10± 0.05 84.11± 9.56
GraphVAE-MM 0.17± 0.01 83.58± 5.50 0.10± 0.00 100.00± 0.00 0.13± 0.01 97.09± 6.33 0.02± 0.01 93.78± 1.33 0.03± 0.01 90.78± 3.76

GraphVAE-MM vs. Benchmark GGMs. For benchmarking we include GGMs that are known to
generate realistic graphs. Tables 3 shows the GNN-based quality scores. Other than the most recent
BiGG method, GraphVAE-MM achieves a much better score. MMD RBF scores, and 3 out of 5 F1
PR scores are also better in GraphVAE-MM compared to BiGG. Triangle Grid shows the biggest
improvement, which illustrates the usefulness of matching triangle counts for this dataset.

Appendix Table 7 shows the benchmark results of statistics-based evaluation; we summarize them
here. On synthetic graphs, the GraphVAE-MM scores are superior to or competitive with the BiGG
and GRAN scores. On the real-world graphs, the GraphVAE-MM scores are competitive with the
BiGG and GRAN scores, and superior to the other benchmarks. Given the already strong performance
of the auto-regressive models, we conclude that GraphVAE-MM generates high-quality graphs.

Generation Time. The code for all models is run on the same system, detailed in Appendix section
8.11. Figure 4 compares GraphVAEs to the fastest auto-regressive methods. The auto-regressive
methods require substantially more generation time than GraphVAEs. While MM modeling slows
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Table 2: Statistics-based evaluation of micro-macro modeling for GraphVAEs. For a named evaluation
graph statistic, each column reports the MMD between the test graphs and the generated graphs.

(a) Synthetic Graphs

Method Triangle Grid Lobster Grid
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

50/50 split 3e−5 0.002 8e−5 0.004 0.014 0.002 0 0.002 0.005 0.032 1e−5 0 2e−5 0.004 0.014

GraphVAE 0.082 0.442 0.421 0.020 0.152 0.081 0.739 0.372 0.056 0.129 0.062 0.055 0.515 0.018 0.143
GraphVAE-MM 0.001 0.093 0.001 0.013 0.133 2e-4 0 0.008 0.017 0.187 5e-4 0 0.001 0.014 0.065

(b) Real Graphs

Method Protein ogbg-molbbbp
Deg. Clus. Orbit. Spect. Diam. Deg. Clus. Orbit. Spect. Diam.

50/50 split 4e−5 0.004 5e−4 4e−4 0.003 2e−4 2e−5 9e−5 5e−4 0.002

GraphVAE 0.022 0.108 0.577 0.016 0.080 0.028 0.442 0.047 0.015 0.055

GraphVAE-MM 0.006 0.059 0.152 0.007 0.091 0.001 0.005 8e-4 0.005 0.018

Table 3: GNN-based comparison with benchmark GGMs. See table 1 caption. The best result is in
bold and the second best is underlined.

Method Triangle Grid Lobster Grid ogbg-molbbbp Protein
MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR

50/50 split 0.03± 0.00 98.58± 0.00 0.04± 0.00 98.58± 0.00 0.009± 0.00 98.70± 0.00 0.002± 0.00 98.07± 0.00 0.04± 0.00 98.67± 1.11

GraphVAE-MM 0.17± 0.01 83.58± 5.50 0.10± 0.00 100.00± 0.00 0.13± 0.01 97.09± 6.33 0.02± 0.01 93.78± 1.33 0.03± 0.01 90.78± 3.76

GraphRNN-S [47] 0.72± 0.17 33.68± 19.44 0.98± 0.13 58.72± 7.55 0.79± 0.08 71.18± 2.36 0.48± 0.02 81.41± 0.71 0.28± 0.26 72.36± 27.63
GraphRNN [47] 0.64± 0.11 25.80± 11.75 0.87± 0.04 61.97± 0.00 0.99± 0.03 13.22± 0.05 1.45± 0.19 98.94± 0.56 0.32± 0.14 93.94± 0.56
GRAN [32] 0.88± 0.09 23.71± 9.72 0.24± 0.04 50.53± 12.12 0.40± 0.00 78.73± 0.02 0.39± 0.07 94.06± 2.60 0.07± 0.00 98.05± 0.76
BiGG [11] 0.41± 0.13 62.08± 0.14 0.12± 0.00 99.74± 0.76 0.35± 0.00 92.43± 0.00 0.04± 0.00 96.16± 0.31 0.15± 0.00 98.11± 0.62

down training, for the GraphVAE, the training time is still less than for the auto-regressive methods.
The Appendix table 8 provides time measurements for all methods. The Appendix Table 12 presents
worst-case complexity bounds of the comparison methods.

5.4 Further experiments on real-world graphs

We conducted further experiments on the MUTAG, PTC [46], and QM9 [43] datasets to evaluate
micro-macro modeling on more real world graphs. The detailed results are in the Appendix section
8.10; we summarize them here. For all datasets, GraphVAE-MM offers much faster generation than
the auto-regressive baselines. On MUTAG and PTC, the improvements from micro-macro modeling
are even better than those we reported on the Protein and ogbg-molbbbp datasets. GraphVAE-
MM achieves substantive improvement in generation quality over all baselines, except for BiGG
on PTC, which is competitive. It was infeasible to train the auto-regressive methods on the QM9
datasets (except for BiGG), so we report only the comparison of GraphVAE vs. GraphVAE-MM.
Micro-macro modeling brings small improvement in graph quality on QM9, which is good given the
strong score of GraphVAE on QM9.

6 Limitations and discussion

We discuss the limitations of our GraphVAE-MM model and options for combining micro-macro
modeling with other GGMs.

Strengths and Weaknesses. GraphVAE-MM inherits the strengths of GraphVAE [20, Ch.9.1.2]:
expressive power through graph embeddings, and fast generation due to all-at-once parallel edge
generation. GraphVAE–MM also inherits the known limitations of GraphVAEs: 1) We need to know
a maximum number of nodes before generation. (Smaller graphs can be generated using a mask.) 2)
The decoder is an FCL that ouputs N ×N numbers; we need to (implicitly) assume a node ordering
to evaluate edge reconstruction probabilities based on the FCL output. The dependence on a node
ordering is common to both GraphVAEs and auto-regressive GGMs, and efficient heuristics have
been designed whose effectiveness has been confirmed in experiments, including those reported in
this paper. We note that MM modeling makes GGM training less dependent on a node ordering
because it uses permutation-invariant graph statistics.
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Figure 4: Comparison of benchmark GGMs with GraphVAEs on generation time (left) and training
time (right). For visualizing the small generation time of GraphVAE and GraphVAE–MM , we round
them up to 0.01, the first and second bar of each dataset respectively.

Training Time Overhead. Evaluating the GraphVAE-MM ELBO during training incurs computational
overhead compared to the GraphVAE ELBO due to computing graph statistics. We note that evaluat-
ing the edge reconstruction probability is already expensive and can dominate training time. Table 12
in the Appendix presents worst-case complexity bounds for the training time of our comparison
methods, which indicate that scaling GraphVAEs to very large graphs is a challenge. Despite the
theoretical worst-case cost of evaluating graph statistics, Figure 4(right) shows that the overhead was
small in our experiments with medium-size graphs, due to parallelization. Also, approximating graph
statistics is a promising avenue for significantly reducing the training time even for large graphs
significantly [24, 15, 31, 40].

Micro-Macro Modeling for Other GGM Architectures. In principle the MM objective can be applied
with auto-regressive architectures as well: after a complete graph has been generated sequentially, the
global loss can be backpropagated through the individual edge generation decisions.

In a graph GAN [7, 8] the generator maps a graph latent z to an adjacency matrix, or a random walk
and the discriminator classifies them as real or synthetic. GAN models are not considered as SOTA
GGMs [11]. Both random walk and adjacency matrices represent local micro-level information only
[9]. A straightforward way to combine MM modeling with GANs is to augment the input to the
discriminator with graph statistics computed for both real and generated graphs.

7 Conclusion and future work

Our main idea is to model graph data jointly at two levels: a micro level based on local information
(e.g. the existence of a link between two nodes) and a macro level based on aggregate graph
statistics. We described a principled joint probabilistic model for both micro and macro levels, and
derived an ELBO training objective for graph encoder-decoder models. Compared to previous micro
level training objectives, the macro statistics regularize graph embeddings to match global graph
statistics. To evaluate our model, we described a set of strong default graph statistics (node degree,
number of triangles, transition probabilities). We applied the new training objective to the GraphVAE
architecture, a widely used graph generative model based on latent graph representation. Micro-macro
(MM) modeling greatly improved the quality of graphs generated by GraphVAE, to match or exceed
that of benchmark models. MM modeling maintains the speed advantages of edge-parallel all-at-once
graph generation. With an efficient computation of graph statistics, it provided fast training time as
well compared to auto-regressive methods.

Micro-macro modeling opens a number of fruitful avenues for future work. i) Investigating which
graph statistics are important for generating which types of graphs. This connects with the rich area
of graph kernels [34] that are often based on graph statistics. ii) Investigating which graph statistics
are important for particular domains. iii) Developing a micro-macro model for other graph generative
architectures, such as auto-regressive and GANs. iv) Evaluating the impact of micro-macro modeling
on other graph-level tasks, such as graph classification.

In sum, modeling both global graph statistics and local information enhances the power of graph
generation. Compared to using local information only, graph statistics can be used to regularize graph
representations to efficiently generate realistic graphs.
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