
Efficient Graph Similarity Computation with
Alignment Regularization

Wei Zhuo
Shenzhen Campus of Sun Yat-sen University

zhuow5@mail2.sysu.edu.cn

Guang Tan
Shenzhen Campus of Sun Yat-sen University

tanguang@mail.sysu.edu.cn

Abstract

We consider the graph similarity computation (GSC) task based on graph edit
distance (GED) estimation. State-of-the-art methods treat GSC as a learning-
based prediction task using Graph Neural Networks (GNNs). To capture fine-
grained interactions between pair-wise graphs, these methods mostly contain a
node-level matching module in the end-to-end learning pipeline, which causes
high computational costs in both the training and inference stages. We show that
the expensive node-to-node matching module is not necessary for GSC, and high-
quality learning can be attained with a simple yet powerful regularization technique,
which we call the Alignment Regularization (AReg). In the training stage, the
AReg term imposes a node-graph correspondence constraint on the GNN encoder.
In the inference stage, the graph-level representations learned by the GNN encoder
are directly used to compute the similarity score without using AReg again to speed
up inference. We further propose a multi-scale GED discriminator to enhance
the expressive ability of the learned representations. Extensive experiments on
real-world datasets demonstrate the effectiveness, efficiency and transferability of
our approach.

1 Introduction

Graph similarity computation (GSC) is a fundamental task in graph databases and plays a critical role
in many real-world applications, including drug design [14, 28], program analysis [16], and social
group identification [21, 27]. For example, one can search a drug database for a query chemical
compound, in order to identify drugs with high similarity in structures or attributes and thus similar
curative effects as desired [23]. To measure the similarity between pair-wise graphs, Graph Edit
Distance (GED) [5] has been a major metric due to its generality, and many other graph similarity
measures have been proven to be its special cases [17]. Unfortunately, computing exact GED is an
NP-hard problem in general [12].

With the provably expressive power in distinguishing graph structures [32, 19, 7, 34], Graph Neural
Networks (GNNs) have been adopted for GED approximation and shown to achieve superior per-
formance on accuracy. Most state-of-the-art GNN-based GSC models [1, 3, 8, 18, 16] contain two
sequential submodules in the end-to-end learnable pipeline (left of Fig. 1): (1) a GNN encoder, which
is shared across two graphs to embed nodes into representation vectors to capture the intra-graph
structure and feature information; (2) a matching model, which computes cross-graph node-level
similarity, i.e., how a node in one graph relates to all the nodes in the other graph. The model outputs
a summarized vector that fuses the node-level similarities between two graphs. Then, the similarity
score is predicted based on the summarized vector via a regression head. The computational cost of
such a sequential framework mainly comes from the matching model, which requires computational
and memory cost quadratic in the number of nodes and sometimes involves additional parameters such
as attention weights [18, 16], leading to heavy time consumption in both the training and inference

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

stages. Especially in the inference stage, we need to query every testing graph from the database.
The recent approach EGSC [22] speeds up the similarity learning by dropping the matching model
from SimGNN [1]. However, since cross-graph node-level interactions are ignored, EGSC cannot
capture finer-grained similarity information, and thus results in suboptimal prediction performance.
To overcome the intrinsic tension between predictive accuracy and speed, we propose a separated
neural structure (right of Fig. 1) that detaches the matching model from the sequential pipeline, where
the matching model only acts as a regularization term in the training stage to help the GNN encoder
capture fine-grained similarity information, while in the inference (testing) stage, since the latent
cross-graph interactions have been learned by the GNN encoder, the final similarity score can be
directly computed based on the output representations of the GNN encoder without invoking the
matching model again.

GNN Encoder

Matching Model

GNN Encoder

Matching
Model

separate

Prediction
Prediction

Figure 1: Illustration of separating the match-
ing model from the end-to-end GSC frame-
work to achieve a fast model (right side). In
the fast model, the dotted arrow means the
matching model does not participate in the
similarity computation in the inference stage.

We show that explicitly learning the cross-graph node-
to-node similarity is unnecessary, as the correlation
information contained in the features and graph topol-
ogy, when properly exploited, is sufficient to reflect
such cross-graph interactions (see Section 3). Specif-
ically, the problem of GED computation is equiva-
lent to finding an optimal permutation such that the
adjacency matrices of the two graphs can be best
aligned. Hence, by analyzing the necessary condi-
tions under the optimal permutation, we find that the
best matching between two graphs can be inferred by
minimizing the difference between the intra-graph
node-graph similarity and cross-graph node-graph
similarity. It motivates us to design a task-agnostic
matching model based on the input data itself, with a
novel regularization technique, called the Alignment
Regularization (AReg). AReg obviates the need of a matching model in the inference stage, thus mak-
ing the model more efficient. AReg is also model-agnostic and can be applied to other GNN-based
GSC models.

On the other hand, GNN-based GSC models usually use a single GED discriminator followed by a
regression head to fuse graph representations from pair-wise input graphs and output a final similarity
prediction score. We show that a single GED discriminator does not fully capture the dissimilarity
between two graphs, while diverse discriminators may provide complementary information to
reflect GED more accurately. Thus, we propose a multi-scale GED discriminator to improve the
discriminability of the learned representations. We call the overall framework ERIC: Efficient gRaph
sImilarity Computation, and conduct extensive experiments to verify the efficacy of our design.
Results on several real-world datasets demonstrate that ERIC achieves state-of-the-art performance
by significantly outperforming the baselines.

2 Preliminary

Problem Formulation of GSC. Given a graph database D and a set of query graphs Q, the problem
of graph similarity computation is to produce a similarity score y between ∀Gi ∈ Q and ∀Gj ∈ D,
i.e., y = s(Gi, Gj) where s : D × Q → R(0,1] is a similarity estimator. A graph G ∈ D ∪ Q
is defined as G = (V,E), where V = {vk}Nk=1 is a node set and E ∈ V × V is an edge set. In
our setting, all the accessible graphs are unweighted and undirected. V and E jointly formulate an
adjacency matrix A ∈ RN×N . If nodes are accompanied by features (e.g., labels or attribute vectors),
they are represented as X ∈ RN×d with dimension d.

Graph Edit Distance (GED). GED as a graph similarity measure has been popularly adopted on
graph search queries, due to its capacity to capture the structural and feature differences between
graphs. As shown in Fig. 2, GED is defined as the number of edit operations in the optimal path
that transforms Gi into Gj , where the possible edit operations under consideration include edge

2

deletion/insertion, node deletion1/insertion, and node relabeling. To well fit the end-to-end regression
task, instead of directly estimating the GED between two graphs, we convert the GED to the ground
truth similarity score that the learning model aims to approximate. Following [1], the normalized
GED is defined as nGED(Gi, Gj) =

GED(Gi,Gj)
(|Vi|+|Vj |)/2 , and the ground truth similarity score between

Gi and Gj is defined as the normalized exponential of GED, resulting in a value ranging (0, 1], i.e.,
Sij = exp(−nGED(Gi, Gj)).

2

4

6

3

edge
deletion

edge
insertion node

relabeling 5 1

23

6

1

5 4

Figure 2: The optimal edit path with 3 edit operations to transform Gi to Gj . As a result,
GED(Gi, Gj) = 3.

3 Motivation: Analyzing GED in Embedding Space

Given two graphs Gi = (Ai,Xi) and Gj = (Aj ,Xj) with the same number of nodes N (If they
have different numbers of nodes, pad the smaller A and X with zeros to make the two graphs equal
in size), π(·) is a node index permutation that preserves the adjacency matrix. π(A) denotes the
adjacency matrix after node index permuting. We divide the computation of GED between Gi and
Gj into two steps: (i) finding a permutation for Gj , such that

c = min
π

∑
k,l

∣∣ (Ai − π(Aj)) [k, l]
∣∣, (1)

where c is the sum of the absolute values of all elements in matrix Ai−π(Aj). We denote the optimal
permutation satisfying Eq. (1) as π⋆. (ii) counting the number of cross-graph node pairs with the
same indices yet different features, denoted as m. Then GED(Gi, Gj) =

c
2 +m. Obviously, if two

graphs are topologically isomorphic, there exists π = π⋆ such that Ai = π⋆(Aj), i.e., c = 0. Hence
the GED is only determined by distinct features. For another example, when the node permutation π
assigns indices to Gj as shown in Fig. 2, the structure of Gi and Gj can be best aligned, i.e., c = 4.
Then, only one pair of nodes with the same index across graphs have different features (e.g., node 4).
Thus, GED(Gi, Gj) = 3. The core of this two-step method is finding the optimal permutation to best
align two graphs, then m is determined under such alignment. Traversing all possible permutations
to find π⋆ is also NP-hard, so we make some heuristic rules from Eq. (1) to guide the model design.
Under the optimal permutation π⋆, the row similarity between Ai and π⋆(Aj) is maximized, so given
an injective function fθ(·) : RN → Rd parameterized by θ to guarantee that nodes with different
connectivity can be distinguished, a necessary condition is that the distance between fθ(Ai[k]) and
fθ(π

⋆(Aj)[k]) is minimized for all k ∈ {1, · · · , N}. From a global view, the matrix similarity
between Ai and π⋆(Aj) is also maximized. Given an injective function gϕ(·) : RN×N → Rd

parameterized by ϕ, another necessary condition under the optimal permutation is that the distance
between gϕ(Ai) and gϕ(π

⋆(Aj)) is minimized. Thus, the optimal permutation π⋆ in Eq. (1) also
satisfies the following function,

π⋆ = argmin
π

DIST (fθ(Ai[k]), fθ(π(Aj)[k]))+DIST (gϕ(Ai), gϕ(π(Aj))) ∀k ∈ {1, · · · , N},
(2)

where DIST(·, ·) is a distance metric. The two terms in Eq. (2) can reflect GED at node-level and
global-level respectively. Further, we regard {fθ(Ai[k])}Nk=1 ∪ {fθ(π⋆(Aj)[k])}Nk=1 as 2N anchors
and assume N ≫ d. When the second term of Eq. (2) reaches a minimum, it indicates that gϕ(Ai)
and gϕ(π

⋆(Aj)) have similar distances to all anchors, i.e., the following γi and γj take the minimum
value when π = π⋆,

γi =

N∑
k

∥DIST (fθ(Ai[k]), gϕ(Ai))−DIST (fθ(Ai[k]), gϕ(π(Aj)))∥2 (3)

1For node deletion, all edges connected to the deleted node are also deleted. Although editing of multiple
edges is involved, it is a single-time effort. Thus, node deletion is treated as a single graph edit operation.

3

GNN

GNN

Shared

GNN

GNN

Shared GED
Discriminator

Pred.
Value

1-st layer L-th layer

Figure 3: Overview of ERIC. The GNN encoder is shared across two graphs. The green lines denote
AReg. The summarized graph representations Ẑi and Ẑj are combinations of graph representations
learned in each layer, which are fed into the GED discriminator followed by a regression function to
obtain the prediction value. In the inference stage, the AReg submodule is removed.

γj =

N∑
k

∥DIST (fθ(π(Aj)[k]), gϕ(Ai))−DIST (fθ(π(Aj)[k]), gϕ(π(Aj)))∥2 . (4)

On the other hand, the first term of Eq. (2) is a finer-grained alignment between two graphs, and π⋆

causes the first term of Eq. (2) to reach a minimum. Since the only difference between γi and γj is that
γj replaces fθ(Ai[k]) in γi with fθ(π(Aj)[k]), the distance between fθ(Ai[k]) and fθ(π(Aj)[k])
can be reflected by the difference between γi and γj , i.e., ∥γi − γj∥2. Hence, under the optimal
permutation π = π⋆, Gi and Gj are best aligned, and so Eq. (2) is established, which is equivalent
to γi, γj , and ∥γi − γj∥2 all taking the minimum values. These terms reflect similarities between
pair-wise graphs at both node- and graph- levels, which can be inferred from the graph structure itself
without consulting the ground-truth GEDs. It motivates us to separate the matching model from the
end-to-end pipeline. In other words, instead of directly searching the optimal permutation π⋆, we
derive the necessary conditions under π⋆, which impose additional constraints on the coordinates
of nodes in the embedding space. These conditions are not necessarily sufficient, nevertheless they
can provide useful knowledge for the model to learn representations that are better tailored to the
GSC task. In Appendix A, we further analyze the rationality of this approximation by analyzing the
sufficiency of these conditions. Assuming gϕ is a permutation-invariant function, then all permutation
operators in Eq. (3) and Eq. (4) can be removed. Moreover, instead of computing cross-graph
node-to-node similarity to compute a ‘soft’ alignment as done in most related work, γi and γj only
compute node-to-graph similarity, which is more efficient.

4 Proposed Model: ERIC

The proposed ERIC framework mainly consists of two submodules: the Alignment Regularization
(AReg) module and the Multi-Scale GED Discriminator, as depicted in Fig. 3. AReg aims to train
the shared GNN encoder to enable the GNN to capture underlying alignment information between
pair-wise graphs. The multi-scale GED discriminator trains the same GNN encoder so that the learned
representations of two graphs can accurately reflect the GED. Such a paradigm follows the intuition
of the GED definition that when two graphs are best aligned, the difference between them is the GED.

4.1 Alignment Regularization

Learning the optimal alignment between graphs is crucial for GED estimation, however, most existing
GSC models rely on intricate cross-graph node-to-node similarity computation to learn a ‘soft’
alignment. Furthermore, learning node-to-node similarity inevitably yields a dense similarity matrix,
which could introduce more noise. To address this issue, we introduce Alignment Regularization
(AReg) as a part of our framework. AReg is a model- and task-agnostic regularization term, which
can easily be combined with existing embedding-based GSC models in a plug-and-play manner.
The design of AReg is motivated by the analysis of GED in Section 3. Recall that GED is the
difference between two graphs when they are best aligned under the optimal permutation π⋆, whose
necessary conditions are that γi, γj as well as ∥γi − γj∥2 take the minimum values. Thus, we expect
that the learning-based model can couple with the nature of GED as much as possible, i.e., the

4

(a) NTN (b) ℓ2 distance (c) NTN + ℓ2 distance

Figure 4: t-SNE [29] visualization of the IMDB dataset. Each point is a graph encoded by the GNN
encoder of ERIC. The green cross means a randomly sampled query graph; red points mean the top
50% of graph datasets that are most similar to the query graph based on ground-truth GEDs; blue
points mean the remaining 50% graphs in the dataset. (a): Using NTN as the discriminator, many
similar graphs do not cluster together around the query graph even if each cluster is tight. (b): Using
ℓ2 distance as the discriminator, different clusters are separated clearly but the query graph is close to
the cluster boundary; in addition each cluster is dispersive. (c): By adaptively combining NTN and ℓ2
distance, our model makes similar graphs closely located around the query, while dissimilar graphs
are far away from the query.

GNN encoder can preserve the best alignment, in which case the difference between the learned
graph representations can reflect the GED. To that end, we design the model based on the necessary
conditions under π⋆. Specifically, based on Eq. (3) and Eq. (4), we instantiate fθ(·) as the L-layer
Graph Isomorphism Network (GIN) [32], then at the ℓ-th layer f (ℓ)

θ (Ai[k]) can be represented as:

H
(ℓ)
i [k] = f

(ℓ)
θ (Ai[k]) = MLP

(ℓ)
θ

(
(1 + ξ(ℓ))H

(ℓ−1)
i [k] +Ai[k]H

(ℓ−1)
i

)
, (5)

where ξ(ℓ) is a learnable parameter, H(ℓ)
i ∈ RN×d(ℓ)

is the feature matrix of Gi at the ℓ-th layer
where d(ℓ) denotes the feature dimension, H(0)

i = Xi. On the other hand, AReg implements the
readout function gϕ with a one-layer permutation-invariant DeepSets [33] to guarantee injectiveness,
taking the form:

Z
(ℓ)
i = g

(ℓ)
ϕ (Ai) = MLP

(ℓ)
ϕ

(
N∑
k

f
(ℓ)
θ (Ai[k])

)
, (6)

where MLP
(ℓ)
ϕ and MLP

(ℓ)
θ have the same output dimension d

(ℓ)
MLP. Since gϕ(Aj) = gϕ(π

⋆(Aj)),
and γi and γj are sums over all N nodes, hence they are permutation-invariant and we can remove
all operation π(·) in Eq. (3) and Eq. (4). DIST(·, ·) can be defined as any distance metrics such as
cosine similarity. Let γ(ℓ)

i and γ
(ℓ)
j be the value of Eq. (3) and Eq. (4) at the ℓ-th layer, by considering

multi-scale cross-graph interactions, AReg is represented as LAReg where:

LAReg =
1

L

L∑
ℓ

(
γ
(ℓ)
i + γ

(ℓ)
j +

∥∥∥γ(ℓ)
i − γ

(ℓ)
j

∥∥∥
2

)
. (7)

Since γi and γj induced from Eq. (2) integrate graph-level alignment and finer-grained node-level
alignment, LAReg therefore preserves underlying cross-graph interactions without computing compli-
cated node-to-node similarity, also making the training stage more efficient.

4.2 Multi-Scale GED Discriminator

Now we have L graph-level representations for Gi and Gj respectively, denoted as {Z(1)
i , · · · ,Z(L)

i }
and {Z(1)

j , · · · ,Z(L)
j }. We concatenate the layer-wise graph representations for G as: Ẑ =⊕{

Z(ℓ)
}L
ℓ=1

, where
⊕

denotes the concatenation operator along the last dimension to combine the

graph representation in each layer, i.e., Ẑi, Ẑj ∈ Rdms , and dms =
∑

ℓ d
(ℓ)
MLP. Then they are fed into

a GED discriminator that generates score vectors as GED similarity embedding for the graph pair.
Neural Tensor Network (NTN) [26] has demonstrated strong power to model the relation between the

5

graph-level embeddings of two graphs [1, 22, 30] thanks to its capacity of exploring the element-wise
dependence among the features. However, directly using NTN as the discriminator may be expensive
when the dimension of Ẑi and Ẑj is high. Thus, we decompose the weight matrix Wt ∈ Rdms×dms

into two matrices Wt
1 ∈ Rdms×d′

and Wt
2 ∈ Rd′×dms where d′ ≪ dms to reduce the number of

parameters. Then NTN with decomposed weight matrices is used to measure the similarity between
Ẑi and Ẑj :

sNTN(Gi, Gj) = δNTN

([
(ẐiW

t
1)(W

t
2Ẑ

⊤
j) : t ∈ {1, · · · , T}

]⊤
+W3

⊕{
Ẑi, Ẑj

}
+ b

)
,

(8)
where W1 ∈ Rdms×d′×T , W2 ∈ Rd′×dms×T , W3 ∈ RT×2dms , and b ∈ RT are learnable; T is a
hyper-parameter controlling the output dimension, which is assigned as 16 for all datasets in our
settings. [·] in Eq. (8) means computing (ẐiW

t
1)(W

t
2Ẑ

⊤
j) for all t ∈ {1, · · · , T} and stacking them

as a T -dimensional tensor. δNTN : RT → R(0,1] is a fully-connected neural network with Sigmoid
activation as a regression function to project the similarity score vector to the final predicted similarity
value. NTN is an expressive and general similarity discriminator because it can approximate many
similarity measures. The first term of Eq. (8) can be regarded as a multi-head weighted cosine
similarity function. It can also approximate kernel similarity between Ẑi and Ẑj according to the
universal approximation theorem [13]. The second term captures the residual knowledge. However, it
is difficult for NTN to approximate high-order Minkowski distance between Ẑi and Ẑj , while diverse
similarity discriminators may provide complementary information to reflect GED more accurately
as shown in Fig. 4. Hence, we consider an additional similarity discriminator based on exponential
p-order Minkowski distance:

sp(Gi, Gj) = δp

(
exp

(
−
∥∥∥Ẑi − Ẑj

∥∥∥
p

))
, (9)

where δp : Rdms → R(0,1] is also a fully-connected neural network with Sigmoid activation. For
simplicity, we uniformly set p = 2 (i.e., ℓ2 distance) for all datasets, and analyze the sensitivity of
the hyper-parameter p in Section 5.4. After two similarity scores sNTN(Gi, Gj) and sp(Gi, Gj) are
obtained, the final estimated similarity score is given by:

s(Gi, Gj) = αsNTN(Gi, Gj) + βsp(Gi, Gj), (10)

where α and β are trainable scalars denoting the weights of two similarity discriminators respectively.
Given a graph database D, the GED discriminator is trained on a set of n training pairs (Gi, Gj) ∈
D ×D. The predicted similarity is compared against the ground-truth similarity Sij based on GEDs
with Mean Squared Error (MSE) loss function as:

LGED =
1

n

∑
(Gi,Gj)∈D×D

MSE (s(Gi, Gj),Sij) . (11)

Model training: Combining AReg and GED discriminator, the training stage aims to minimize the
following overall objective function L = LGED +λLAReg, where λ is an adjustable hyper-parameter
controlling the strength of the regularization term.

Model inference: Given a set of query graphs Q and a graph database D, in the testing stage, all
pairs of graphs (Gi, Gj) ∈ Q×D are fed into ERIC, and directly computing a similarity score for
each pair based on Eq. (10) without any node-level interactions.

Complexity: The time complexity of GIN in AReg is O(m) [31] where m is the number of edges.
The cross-graph node-graph interactions have complexity O(max(Ni, Nj)). The time complexity
of the GED discriminator is O(dmsd

′T). Thus the complexity of ERIC is O(m+max(Ni, Nj) +
dmsd

′T) in the training stage, while in the inference stage the complexity is O(m+ dmsd
′T).

5 Experiments

In this section, we empirically evaluate ERIC on the graph similarity computation task.

6

Table 1: Evaluation on benchmarks. Bold : best.
AIDS700 LINUX IMDB NCI109

mse
(×10−3) ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ mse

(×10−3) ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ mse
(×10−3) ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ mse

(×10−3) ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑

Beam 12.090 0.609 0.463 0.481 0.493 9.268 0.827 0.714 0.973 0.924 - - - - - - - - - -
VJ 29.157 0.517 0.383 0.310 0.345 63.86 0.581 0.450 0.287 0.251 - - - - - - - - - -
Hungarian 25.296 0.510 0.378 0.360 0.392 29.81 0.638 0.517 0.913 0.836 - - - - - - - - - -

SimGNN 1.573 0.835 0.678 0.417 0.489 2.479 0.912 0.791 0.635 0.650 1.437 0.871 0.752 0.710 0.769 7.767 0.576 0.435 0.023 0.040
GraphSim 2.014 0.839 0.662 0.401 0.499 0.762 0.953 0.882 0.956 0.951 1.924 0.825 0.821 0.813 0.825 8.752 0.557 0.497 0.086 0.032
GMN 4.610 0.672 0.497 0.200 0.263 2.571 0.906 0.763 0.888 0.856 4.320 0.665 0.601 0.588 0.593 11.710 0.336 0.358 0.017 0.019
EGSC 1.676 0.888 0.723 0.604 0.708 0.214 0.984 0.897 0.987 0.989 0.573 0.939 0.829 0.872 0.883 9.356 0.545 0.414 0.055 0.078
MGMN 2.297 0.904 0.736 0.456 0.534 2.040 0.965 0.858 0.956 0.920 0.496 0.881 0.803 0.874 0.861 9.631 0.492 0.426 0.015 0.051
ERIC 1.383 0.906 0.740 0.679 0.746 0.113 0.988 0.908 0.994 0.996 0.385 0.890 0.791 0.882 0.891 7.127 0.591 0.525 0.118 0.080

5.1 Datasets

We conduct experiments on four widely used GSC datasets including AIDS700, LINUX, IMDB [1],
and NCI109 [2]. Following the same splits as [1–3], i.e., 60%, 20%, and 20% of all graphs as training
set, validation set, and query set, respectively. The training set together with the validation set are
called the database. More details of the datasets are presented in Appendix B.1.

5.2 Experimental Settings

Baselines. We implement two groups of baselines for comparison: (1) Combinatorial search-based
Methods: Beam [20], Hungarian [15], and VJ [9]; (2) GNN-based Methods: SimGNN [1], GMN [16],
GraphSim [3], MGMN [18], and EGSC [22]. We re-implemented all baselines with the same hyper-
parameters as the original literature provides, or carefully tuned the parameters to get the optimal
results when they are not provided. We give more implementation details of ERIC and baselines in
Appendix B.2.

Evaluation Metric. To comprehensively evaluate our model on the similarity computation task,
following [1, 22] five metrics are adopted to evaluate results for fair comparisons: Mean Squared
Error (MSE) which measures the average squared differences between the predicted and the ground-
truth similarity. Spearman’s Rank Correlation Coefficient (ρ) and Kendall’s Rank Correlation
Coefficient (τ) which evaluates the ranking correlations between the predicted and the true ranking
results. Precision@k where k = 10, 20, which computes the interactions of the predicted and
ground-truth top-k results divided by k. The smaller the MSE, the better performance of models; for
ρ, τ , and p@k, the larger the better.

5.3 Main Results

The results of ERIC and the baselines on our benchmarks are reported in Table 1. For datasets
with relatively small graphs whose ground-truth GEDs are exactly computed by the A⋆ algorithm,
ERIC consistently achieves state-of-the-art performance across all evaluation metrics as shown in
Table 1. For datasets with large graphs whose ground-truth GEDs are computed approximately,
ERIC still achieves the best results on NCI109, and comparable results on IMDB. The suboptimal
performance of the methods based on node-to-node similarity (SimGNN, GraphSim, GMN, and
MGMN) demonstrate that overly dense and fine-grained similarity computation may not always bring
a beneficial boost. EGSC also uses GIN as the backbone and totally ignores cross-graph node-level
interactions, and it achieves the best results on metrics ρ and τ on the IMDB dataset. The reason
is that EGSC adopts intra-graph attention pooling and NTN in all layers to enhance the expression
ability of representation vectors. However, the attention mechanism and full NTN need additional
parameters which increase the burden of learning. Although EGSC proposed a student model based
on knowledge distillation to speed up the inference process, it would sacrifice the prediction accuracy
in most cases. The performance of ERIC over baselines illustrates the importance of fine-grained
interactions and the proper design of such interactions.

5.4 Ablation Study

Effectiveness of AReg and Multiple GED Discriminators. ERIC contains two key components:
AReg and Multi-Scale GED Discriminator. To glean a deeper insight into how different components
help ERIC to achieve highly competitive results, we conduct ablation experiments by removing
individual components separately. Specifically, we alter the loss by removing the AReg term to

7

Table 2: Ablation study on the key components
of ERIC on AIDS700 and LINUX.

AIDS700 LINUX
mse ρ p@10 mse ρ p@10

ERIC 1.383 0.906 0.679 0.113 0.988 0.994
ERIC (w/o AReg) 1.573 0.886 0.652 0.363 0.965 0.979
ERIC (w/o NTN) 1.687 0.854 0.633 0.302 0.951 0.969
ERIC (w/o ℓ2) 1.466 0.881 0.674 0.253 0.974 0.980

Table 3: Transferability study of AReg on
AIDS700 and LINUX.

AIDS700 LINUX
mse ρ p@10 mse ρ p@10

SimGNN 1.573 0.835 0.417 2.479 0.912 0.635
SimGNN+AReg 1.439 0.858 0.506 1.974 0.945 0.658
EGSC 1.676 0.888 0.604 0.214 0.984 0.987
EGSC+AReg 1.478 0.904 0.643 0.142 0.989 0.992

Table 4: Inference time (sec).
Dataset SimGNN GraphSim GMN MGMN EGSC ERIC

AIDS700 10.773 14.043 23.975 11.337 8.763 6.662
LINUX 19.347 31.238 82.489 22.574 21.573 18.969
IMDB 225.682 379.480 1253.551 357.933 133.437 48.750
NCI109 2913.178 3463.620 > 104 3726.834 2097.405 1763.356 w/o 2 4 6 8

p

1.375

1.400

1.425

1.450

1.475

1.500

M
SE

(1
e-
3)

(a) AIDS700

w/o 2 4 6 8
p

0.10

0.12

0.14

0.16

0.18

0.20

M
SE

(1
e-
3)

(b) LINUX

Figure 5: Impact of different order p on
AIDS700 and LINUX datasets.

study the effect of the cross-graph node-graph interaction, with the results reported in ERIC (w/o
AReg) of Table 2. We find that only using the MSE loss LGED will lead to a performance drop on
the extracted three evaluation metrics, which confirms the necessity of AReg. In our design, the
final similarity score is obtained by the weighted average of two similarity scores based on the NTN
discriminator sNTN and the ℓ2 discriminator sp respectively. To further investigate the impact of
multiple GED discriminators, we remove one of sNTN and sp to study the effect of each discriminator.
As shown in Table 2, both ERIC (w/o NTN) and ERIC (w/o ℓ2) cause a decrease in effectiveness,
which demonstrates both of them contribute to the final performance, while the model benefits more
from NTN.

Transferability of AReg Further, since AReg is a model-agnostic regularization term, we are
interested in the transferability of AReg, so we evaluate the performance of applying AReg to other
GSC models. We use SimGNN and EGSC as baselines. For SimGNN, we use AReg to replace the
node-to-node similarity computation. For EGSC, we directly add AReg to the loss function. Table 3
shows the effect of AReg on SimGNN and EGSC. As expected, the advantage of SimGNN+AReg
over SimGNN shows that integrating the dense similarity matrix into the final similarity score may
bring noise which affects performance. While the performance on EGSC proves that combining
fine-grained similarity in a proper way, i.e., node-graph rather than node-node, can improve the
model.

Sensitivity of Order p in δp In the multi-scale GED discriminator module, we adopt the exponential
p-order Minkowski distance as a similarity measure to further improve the separability of clusters
in the graph embedding space. For simplicity, we directly use the 2-order Minkowski distance, i.e.,
ℓ2 distance. Results in Table 2 show the effectiveness of considering the ℓ2 distance, and Fig. 4
demonstrates the complementarity of different similarity measures. To investigate the sensitivity of p
in our model, we set p from [2, 4, 6, 8], and run 10 times for each value of p.Then the results of mean
square error with standard deviation are reported in Fig. 5. We can observe that the performance
increases first and then the error becomes stable when p ≥ 2. It shows that using the ℓ2 distance as
the GED discriminator is suitable for our model and higher-order Minkowski distance would not
improve the performance.

5.5 Inference Time

In ERIC, the cross-graph alignment only acts as a regularization term in the training stage but is
no longer used in the inference stage. To evaluate the efficiency, we compare the performance of
ERIC with baselines in terms of inference time in Table 4. In Table 5 of Appendix B.1 we list the
number of graph pairs in the inference stage (#Testing pairs), and all experiments are implemented
with a single machine with 1 NVIDIA Quadro RTX 8000 GPU. As can be observed, node-to-node

8

3

3

1

2

1

2

1 3

3

0

2

2

2

2 3

3

0

2

3

2

2
1

2

2

3

3

3
1

1

1

2

3

2

3 2

3

0

2

3

2

2

3
2

3

2
0

2

0

2
0

2
13

4

4

4

19

3

3

1

2

1

2

1 1

1

1

2

3

2

3 2

1

3

2

0

2

3
1

2

2

3

3

3
2

1

0

2

0

2

3 1

1

0

2

0

2

3

3

3

0

0

0

2

0

2

12

13

4

4

4

19

rank 1
 0.24

rank 2
 0.34

rank 3
 0.43

rank 4
 0.48

rank 5
 0.51

... rank 280 ...
 1.27

rank 560
 2.69

rank 2
 0.43

rank 1
 0.43

rank 3
 0.46

rank 5
 0.57

rank 559
 2.40

rank 559
 2.51

rank 4
 0.57

... rank 280 ...
 1.29

rank 560
 2.89query

query (a) The exact similarity ranking based on A⋆

3

3

1

2

1

2

1 3

3

0

2

2

2

2 3

3

0

2

3

2

2
1

2

2

3

3

3
1

1

1

2

3

2

3 2

3

0

2

3

2

2

3
2

3

2
0

2

0

2
0

2
13

4

4

4

19

3

3

1

2

1

2

1 1

1

1

2

3

2

3 2

1

3

2

0

2

3
1

2

2

3

3

3
2

1

0

2

0

2

3 1

1

0

2

0

2

3

3

3

0

0

0

2

0

2

12

13

4

4

4

19

rank 1
 0.24

rank 2
 0.34

rank 3
 0.43

rank 4
 0.48

rank 5
 0.51

... rank 280 ...
 1.27

rank 560
 2.69

rank 2
 0.43

rank 1
 0.43

rank 3
 0.46

rank 5
 0.57

rank 559
 2.40

rank 559
 2.51

rank 4
 0.57

... rank 280 ...
 1.29

rank 560
 2.89query

query

(b) The predicted similarity ranking based on ERIC

Figure 6: Visualization of graph search examples on the AIDS700 dataset. Nodes with different
labels are assigned different colors. (a) and (b) are similarity rankings based on the normalized GEDs
computed by A⋆ (exact) and ERIC (estimation) respectively.

0 1 2 3 4 5

0
1

2
3

4
5

0.2

0.4

0.6

0.8

1.0

(a) 0.167 (1st)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

0.2

0.4

0.6

0.8

1.0

(b) 0.571 (10th)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

0.2

0.4

0.6

0.8

1.0

(c) 0.857 (50th)

0 1 2 3 4 5 6 7 8
0

1
2

3
4

5

0.2

0.4

0.6

0.8

1.0

(d) 1.067 (100th)

0 1

0
1

2
3

4
5

0.0

0.2

0.4

0.6

0.8

1.0

(e) 2.750 (last)

Figure 7: Heatmaps of cross-graph node-to-node cosine similarity based on the node representations
learned by the GNN encoder of ERIC. Y-axis means the node in a randomly sampled query graph.
(a)~(e) are ranked by the exact normalized GEDs between the query graph and graphs of particular
ranks in the database. For example, 0.571 (10th) means the nGED of the graph that ranks 10th in
similarity to the query graph is 0.571. The color depth in the heatmap represents the similarity of the
node pair; the deeper the color, the higher the similarity.

similarity computation is more time-consuming on all datasets. Our proposed node-graph similarity
computation does not incur substantial additional running time in practice. To summarize, ERIC is
faster than all baseline models, while still achieving significantly higher accuracy on all datasets.

5.6 Visualization of Graph Search

The goal of the graph search task is to find k graphs from the dataset that are most similar to the given
query graph, which is a routine task in drug discovery [24]. In Fig. 6 we show a case based on the
AIDS700 dataset, where each graph represents a functional group. Comparing the exact similarity
ranking computed by A⋆ and the estimated one computed by ERIC, we see that the ranking of ERIC
has a high consistency with the exact ranking, which proves that ERIC is able to extract graphs that
contain the similar substructure from around 700 graphs with varying size and structure and the
top-ranked graph has a high degree of isomorphism with the query. It also demonstrates that ERIC
can capture structural patterns shared across graphs. More results of visualization are provided in
Appendix C.

5.7 Analysis of Node-to-Node Similarity

In Fig. 7, we show the node-to-node similarity between a query graph and the graphs at different
ranking positions in terms of normalized GEDs. It can be found that for graph pairs with a small
GED, the node representations generated by ERIC show a clear correspondence between nodes as
shown in Fig. 7 (a). As the GED increases, the correspondence between nodes across the graph
gradually weakens, i.e., cross-graph node-to-node similarity reduces. Thus, the similarity matrices in
Fig. 7 can guide us to find a better alignment between pair-wise graphs.

9

6 Related Work

The goal of graph similarity computation (GSC) is to quantify the similarity between graphs under
a specific similarity measure. Various similarity measures have been well studied in prior works,
such as graph edit distance (GED) [5, 25, 20] and maximum common subgraph (MCS) [6, 10].
Among these, GED is the most popular one, and many other similarity measures can be proven to
be its special cases [17]. However, computing the exact GED between two graphs is known to be
NP-hard. In practice, the computation becomes challenging when the number of nodes is more than
16 [4] using exact GED solvers such as the A⋆ algorithm [25]. Thus, approximate algorithms have
been proposed for GED-based GSC. These approximate methods can be broadly divided into two
classes: (1) Combinatorial search-based methods, which aim to exploit combinatorial structures
or theoretical lower-bounds to approximate GED. Beam [20] is a GED estimator based on Beam
Search; Hungarian [15] is proposed based on the famous Hungarian algorithm for weighted graph
matching; Hausdorff approximation [11] provides a lower bound for the GED approximation; VJ [9]
uses the Volgenant and Jonker algorithm for GED approximation. However, these methods are highly
heuristic-driven and run with either sub-exponential time or cubic time complexity, limiting the
scalability as the graphs grow in size. Also, these methods totally ignore the node feature information,
so that the underlying semantic similarity can not be captured. (2) Learning-based methods, which
are data-driven and aim to learn graph similarity from the data itself, hopefully with higher accuracy
and far lower time costs compared with search-based methods. GMN [16] introduces a cross-graph
attention layer that allows the nodes in the two graphs to interact with each other and predicts graph
similarity using the representation vectors that fuse cross-graph information. SimGNN [1] relies
on a shared GNN encoder, a neural tensor network, and a pairwise node comparison module to
compute the similarity between two graphs. GraphSim [3] extends SimGNN by using convolutional
neural networks to capture the multi-scale node-level interactions. EGSC [22] simplifies SimGNN
by ignoring node-level interactions and uses knowledge distillation to accelerate the inference stage.
MGMN [18] employs a node-graph matching network to capture cross-level features between nodes
of a graph and the other whole graph, where the cross-graph aggregation weights are computed by
node-to-node attention coefficients. Our proposed ERIC is also a learning-based method. Unlike
the above approaches that either discard node-level interactions entirely, or performs interactions
between all node pairs, our method proposes a novel node-graph interaction paradigm that avoids
dense similarity computation while preserving fine-grained interactions.

7 Conclusion

We propose ERIC, a simple yet powerful GNN-based framework for the graph similarity computation
task. Specifically, we first give a deep insight into the graph edit distance, and propose Alignment
Regularization (AReg) which is a separated structure independent of the end-to-end learning pipeline.
AReg frees the model from complicated node-to-node interaction for similarity computation. Further,
we propose a multi-scale GED discriminator to improve the discriminative ability of the learned
representations. We show the effectiveness of our model through a comprehensive set of experiments
and analyses.

Acknowledgments and Disclosure of Funding

This work is supported in part by Shenzhen Baisc Research Fund under grant
JCYJ20200109142217397.

References
[1] Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., and Wang, W. Simgnn: A neural network

approach to fast graph similarity computation. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, pp. 384–392, 2019.

[2] Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., Sun, Y., and Wang, W. Unsuper-
vised inductive graph-level representation learning via graph-graph proximity. arXiv preprint
arXiv:1904.01098, 2019.

10

[3] Bai, Y., Ding, H., Gu, K., Sun, Y., and Wang, W. Learning-based efficient graph similarity
computation via multi-scale convolutional set matching. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 3219–3226, 2020.

[4] Blumenthal, D. B. and Gamper, J. On the exact computation of the graph edit distance. Pattern
Recognition Letters, 134:46–57, 2020.

[5] Bunke, H. On a relation between graph edit distance and maximum common subgraph. Pattern
recognition letters, 18(8):689–694, 1997.

[6] Bunke, H. and Shearer, K. A graph distance metric based on the maximal common subgraph.
Pattern recognition letters, 19(3-4):255–259, 1998.

[7] Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equivalence between graph isomorphism
testing and function approximation with gnns. Advances in neural information processing
systems, 32, 2019.

[8] Doan, K. D., Manchanda, S., Mahapatra, S., and Reddy, C. K. Interpretable graph similarity
computation via differentiable optimal alignment of node embeddings. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 665–674, 2021.

[9] Fankhauser, S., Riesen, K., and Bunke, H. Speeding up graph edit distance computation through
fast bipartite matching. In International Workshop on Graph-Based Representations in Pattern
Recognition, pp. 102–111. Springer, 2011.

[10] Fernández, M.-L. and Valiente, G. A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recognition Letters, 22(6-7):753–758,
2001.

[11] Fischer, A., Plamondon, R., Savaria, Y., Riesen, K., and Bunke, H. A hausdorff heuristic
for efficient computation of graph edit distance. In Joint IAPR International Workshops
on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pp. 83–92. Springer, 2014.

[12] Hartmanis, J. Computers and intractability: a guide to the theory of np-completeness (michael r.
garey and david s. johnson). Siam Review, 24(1):90, 1982.

[13] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[14] Kriegel, H.-P., Pfeifle, M., and Schönauer, S. Similarity search in biological and engineering
databases. IEEE Data Eng. Bull., 27(4):37–44, 2004.

[15] Kuhn, H. W. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[16] Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph matching networks for learning
the similarity of graph structured objects. In International conference on machine learning, pp.
3835–3845. PMLR, 2019.

[17] Liang, Y. and Zhao, P. Similarity search in graph databases: A multi-layered indexing approach.
In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 783–794. IEEE,
2017.

[18] Ling, X., Wu, L., Wang, S., Ma, T., Xu, F., Liu, A. X., Wu, C., and Ji, S. Multilevel graph
matching networks for deep graph similarity learning. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

[19] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M.
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

11

[20] Neuhaus, M., Riesen, K., and Bunke, H. Fast suboptimal algorithms for the computation of
graph edit distance. In Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 163–172.
Springer, 2006.

[21] Ogaard, K., Roy, H., Kase, S., Nagi, R., Sambhoos, K., and Sudit, M. Discovering patterns
in social networks with graph matching algorithms. In International Conference on Social
Computing, Behavioral-Cultural Modeling, and Prediction, pp. 341–349. Springer, 2013.

[22] Qin, C., Zhao, H., Wang, L., Wang, H., Zhang, Y., and Fu, Y. Slow learning and fast infer-
ence: Efficient graph similarity computation via knowledge distillation. Advances in Neural
Information Processing Systems, 34, 2021.

[23] Qin, Z., Bai, Y., and Sun, Y. Ghashing: semantic graph hashing for approximate similarity
search in graph databases. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 2062–2072, 2020.

[24] Ranu, S., Calhoun, B. T., Singh, A. K., and Swamidass, S. J. Probabilistic substructure mining
from small-molecule screens. Molecular Informatics, 30(9):809–815, 2011.

[25] Riesen, K., Emmenegger, S., and Bunke, H. A novel software toolkit for graph edit distance com-
putation. In International Workshop on Graph-Based Representations in Pattern Recognition,
pp. 142–151. Springer, 2013.

[26] Socher, R., Chen, D., Manning, C. D., and Ng, A. Reasoning with neural tensor networks for
knowledge base completion. Advances in neural information processing systems, 26, 2013.

[27] Steinhaeuser, K. and Chawla, N. V. Community detection in a large real-world social network.
In Social computing, behavioral modeling, and prediction, pp. 168–175. Springer, 2008.

[28] Tian, Y., Mceachin, R. C., Santos, C., States, D. J., and Patel, J. M. Saga: a subgraph matching
tool for biological graphs. Bioinformatics, 23(2):232–239, 2007.

[29] Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[30] Wang, R., Zhang, T., Yu, T., Yan, J., and Yang, X. Combinatorial learning of graph edit distance
via dynamic embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5241–5250, 2021.

[31] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. A comprehensive survey on
graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):
4–24, 2020.

[32] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryGs6iA5Km.

[33] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
Deep sets. Advances in neural information processing systems, 30, 2017.

[34] Zhuo, W. and Tan, G. Proximity enhanced graph neural networks with channel contrast.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, pp. 2448–2455, 7 2022.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [N/A]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]

12

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] See Supple-
mental Material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B.2

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Preliminary
	Motivation: Analyzing GED in Embedding Space
	Proposed Model: ERIC
	Alignment Regularization
	Multi-Scale GED Discriminator

	Experiments
	Datasets
	Experimental Settings
	Main Results
	Ablation Study
	Inference Time
	Visualization of Graph Search
	Analysis of Node-to-Node Similarity

	Related Work
	Conclusion

