
Contents

1 Introduction 1

2 Background 2

3 Higher-Order Denoising Diffusion Solver 3

3.1 Learning Higher-Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Related Work 6

5 Experiments 7

5.1 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Guidance and Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Conclusions 10

References 10

A DDIM ODE 20

B Synthesis from Denoising Diffusion Models via Truncated Taylor Methods 21

B.1 Theoretical Bounds for the Truncated Taylor Method . . . . . . . . . . . . . . . . 21

B.2 Approximate Higher-Order Derivatives via the “Ideal Derivative Trick” . . . . . . 21

B.3 3rd TTM Applied to the DDIM ODE . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.4 GENIE is Consistent and Principled . . . . . . . . . . . . . . . . . . . . . . . . . 24

C Model and Implementation Details 27

C.1 Score Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.2 Prediction Heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.2.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.2.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.2.3 Mixed Network Parameterization . . . . . . . . . . . . . . . . . . . . . . 28

C.2.4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.2.5 Measuring Computational Overhead . . . . . . . . . . . . . . . . . . . . . 30

D Learning Higher-Order Gradients without Automatic Differentiation and Distillation 31

E Toy Experiments 32

F Image Experiments 34

F.1 Evaluation Metrics, Baselines, and Datasets . . . . . . . . . . . . . . . . . . . . . 34

F.2 Analytical First Step (AFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18



F.3 Classifier-Free Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F.4 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.5 Latent Space Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.6 Extended Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

F.7 Extended Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F.8 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

G Miscellaneous 46

G.1 Connection to Bao et al. [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

G.2 Combining GENIE with Progressive Distillation . . . . . . . . . . . . . . . . . . . 47

19



A DDIM ODE

The DDIM ODE has previously been shown [58, 69] to be a re-parameterization of the Probability
Flow ODE [57]. In this section, we show an alternative presentation to the ones given in Song et al.
[58] and Salimans and Ho [69]. We start from the Probability Flow ODE for variance-preserving
continuous-time DDMs [57], i.e.,

dxt = − 1
2βt [xt +∇xt log pt(xt)] dt, (17)

where βt = − d
dt logα

2
t and ∇xt

log pt(xt) is the score function. Replacing the unknown score func-
tion with a learned score model sθ(xt, t) ≈ ∇xt

log pt(xt), we obtain the approximate Probability
Flow ODE

dxt = − 1
2βt [xt + sθ(xt, t)] dt. (18)

Let us now define γt =
√

1−α2
t

α2
t

and x̄t = xt
√

1 + γ2
t , and take the (total) derivative of x̄t with

respect to γt:

dx̄t
dγt

=
∂x̄t
∂xt

dxt
dγt

+
∂x̄t
∂γt

(19)

=
√
1 + γ2

t

dxt
dγt

+
γt√
1 + γ2

t

xt. (20)

The derivative dxt

dγt
can be computed as follows

dxt
dγt

=
dxt
dt

dt

dγt
(by chain rule) (21)

= −1

2
βt [xt + sθ(xt, t)]

dt

dγt
(inserting Eq. (18)) (22)

=
1

2

d logα2
t

dt
[xt + sθ(xt, t)]

dt

dγt
(by definition ofβt) (23)

=
1

2

d logα2
t

dγt
[xt + sθ(xt, t)] (by chain rule) (24)

=
1

2

d logα2
t

dα2
t

dα2
t

dγt
[xt + sθ(xt, t)] (by chain rule) (25)

=
1

2

1

α2
t

dα2
t

dγt
[xt + sθ(xt, t)] . (26)

We can write α2
t as a function of γt, i.e., α2

t =
(
γ2
t + 1

)−1
, and therefore

dα2
t

dγt
= − 2γt

(γ2
t + 1)

2 . (27)

Inserting Eq. (27) into Eq. (26), we obtain

dxt
dγt

= − γt
γ2
t + 1

[xt + sθ(xt, t)] . (28)

Lastly, inserting Eq. (28) into Eq. (20), we have

dx̄t
dγt

= − γt√
γ2
t + 1

sθ(xt, t) (29)

Letting sθ(xt, t) := − ϵθ(xt,t)
σt

, where σt =
√

1− α2
t =

γt√
γ2
t +1

, denote a particular parameteriza-

tion of the score model, we obtain the approximate generative DDIM ODE as

dx̄t
dγt

=
γt√
γ2
t + 1

ϵθ(xt, t)

σt
(30)

= ϵθ(xt, t). (31)

20



B Synthesis from Denoising Diffusion Models via Truncated Taylor Methods

In this work, we propose Higher-Order Denoising Diffusion Solvers (GENIE). GENIE is based on
the truncated Taylor method (TTM) [78]. As outlined in Sec. 3, the p-th TTM is simply the p-th
order Taylor polynomial applied to an ODE. For example, for the general dydt = f(y, t), the p-th
TTM reads as

ytn+1
= ytn + hn

dy

dt
|(ytn ,tn)

+ · · ·+ 1

p!
hpn

dpy

dtp
|(ytn ,tn)

, (32)

where hn = tn+1 − tn. To generate samples from denoising diffusion models, we can, for example,
apply the second TTM to the (approximate) Probability Flow ODE or the (approximate) DDIM ODE,
resulting in the following respective schemes:

xtn+1
= xtn + (tn+1 − tn)f(xtn , tn) +

1

2
(tn+1 − tn)

2 df

dt
|(xtn ,tn)

, (33)

where f(xt, t) = − 1
2β(t)

[
xt − ϵθ(xt,t)

σt

]
, and

x̄tn+1 = x̄tn + (γtn+1 − γtn)ϵθ(xtn , tn) +
1

2
(γtn+1 − γtn)

2 dϵθ
dγt

|(xtn ,tn)
. (34)

In this work, we generate samples from DDMs using the scheme in Eq. (34). We distill the derivative
dγtϵθ := dϵθ

dγt
into a small neural network kψ. For training, dγtϵθ is computed via automatic

differentiation, however, during inference, we can efficiently query the trained network kψ .

B.1 Theoretical Bounds for the Truncated Taylor Method

Consider the p-TTM for a general ODE dy
dt = f(y, t):

ytn+1
= ytn + hn

dy

dt
|(ytn ,tn)

+ · · ·+ 1

p!
hpn

dpy

dtp
|(ytn ,tn)

. (35)

We represent, the exact solution y(tn+1) using the (p+ 2)-th Taylor expansion

y(tn+1) = y(tn) + hn
dy

dt
|(ytn ,tn)

+ · · ·+ 1

p!
hpn

dpy

dtp
|(ytn ,tn)

+
1

(p+ 1)!
hp+1
n

dp+1y

dtp+1
|(ytn ,tn)

+O(hp+2
n ).

(36)

The local truncation error (LTE) introduced by the p-th TTM is given by the difference between the
two equations above

∥ytn+1 − y(tn+1)∥ = ∥ 1

(p+ 1)!
hp+1
n

dp+1y

dtp+1
|(ytn ,tn)

+O(hp+2
n )∥. (37)

For small hn, the LTE is proportional to hp+1
n . Consequently, using higher orders p implies lower

errors, as hn usually is a small time step.

In conclusion, this demonstrates that it is preferable to use higher-order methods with lower errors
when aiming to accurately solve ODEs like the Probability Flow ODE or the DDIM ODE of diffusion
models.

B.2 Approximate Higher-Order Derivatives via the “Ideal Derivative Trick”

Tachibana et al. [61] sample from DDMs using (an approximation to) a higher-order Itô-Taylor
method [59]. In their scheme, they approximate higher-order score functions with the “ideal derivative
trick”, essentially assuming simple single-point (x0) data distributions, for which higher-order score
functions can be computed analytically (more formally, their approximation corresponds to ignoring
the expectation over the full data distribution when learning the score function. They assume that for
any xt, there is a single unique x0 from the input data to be predicted with the score model). In that
case, further assuming the score model ϵθ(xt, t) is learnt perfectly (i.e., it perfectly predicts the noise
that was used to generate xt from x0), one has

ϵθ(xt, t) ≈
xt − αtx0

σt
. (38)

21



This expression can now be used to analytically calculate approximate spatial and time derivatives
(also see App. F.1 and App. F.2 in Tachibana et al. [61]):

∂ϵθ(xt, t)

∂xt
≈ ∂

∂xt

(
xt − αtx0

σt

)
=

1

σt
I, (39)

and

∂ϵθ(xt, t)

∂t
≈ ∂

∂t

(
xt − αtx0

σt

)
= −xt − αtx0

σ2
t

dσt
dt

− x0

σt

dαt
dt

. (40)

Rearranging Eq. (38), we have

x0 ≈ xt − σtϵθ(xt, t)

αt
. (41)

Inserting this expression, Eq. (40) becomes

∂ϵθ(xt, t)

∂t
≈

d logα2
t

dt

2σt

(
ϵθ(xt, t)

σt
− xt

)
. (42)

We will now proceed to show that the “ideal derivative trick”, i.e. using the approximations in Eqs. (39)
and (42), results in dγtϵθ = 0.

As in Sec. 3, the total derivative dγtϵθ is composed as

dγtϵθ(xt, t) =
∂ϵθ(xt, t)

∂xt

dxt
dγt

+
∂ϵθ(xt, t)

∂t

dt

dγt
. (43)

Inserting the “ideal derivative trick”, the above becomes

dγtϵθ(xt, t) ≈
1

σt

(
1

2

1

α2
t

dα2
t

dγt

[
xt −

ϵθ(xt, t)

σt

])
+

(
d logα2

t

dt

2σt

(
ϵθ(xt, t)

σt
− xt

))
dt

dγt
, (44)

where we have inserted Eq. (26) for dxt

dγt
and used the usual parameterization sθ(xt, t) := − ϵθ(xt,t)

σt
.

Using d logα2
t

dt = 1
α2

t

dα2
t

dt and dα2
t

dt
dt
dγt

=
dα2

t

dγt
, we can see that the right-hand side of Eq. (44) is

0. Hence, applying the second TTM to the DDIM ODE and using the “ideal derivative trick” is
equivalent to the first TTM (Euler’s method) applied to the DDIM ODE. We believe that this is
potentially a reason why the DDIM solver [58], Euler’s method applied to the DDIM ODE, shows
such great empirical performance: it can be interpreted as an approximate (“ideal derivative trick”)
second order ODE solver. On the other hand, our derivation also implies that the “ideal derivative
trick” used in the second TTM for the DDIM ODE does not actually provide any benefit over the
standard DDIM solver, because all additional second-order terms vanish. Hence, to improve upon
regular DDIM, the “ideal derivative trick” is insufficient and we need to learn the higher-order score
terms more accurately without such coarse approximations, as we do in our work.

Furthermore, it is interesting to show that we do not obtain the same cancellation effect when
applying the “ideal derivative trick” to the Probability Flow ODE in Eq. (18): Let f(xt, t) =

− 1
2β(t)

[
xt − ϵθ(xt,t)

σt

]
(right-hand side of Probability Flow ODE), then

df

dt
|(xt,t) =

β′(t)

β(t)
f(xt, t)−

1

2
β(t)

d

dt

[
xt −

ϵθ(xt, t)

σt

]
(45)

=

[
β′(t)

β(t)
− 1

2
β(t)

]
f(xt, t) +

1

2
β(t)

(
dϵθ(xt,t)

dt

σt
− σ−2

t

dσt
dt

ϵθ(xt, t)

)
, (46)

where β′(t) := dβ(t)
dt . Using the “ideal derivative trick”, we have dϵθ

dt = dγtϵθ dtγt ≈ 0, and
therefore the above becomes

df

dt
|(xt,t) ≈

[
β′(t)

β(t)
− 1

2
β(t)

]
f(xt, t)−

β(t)

2σ2
t

dσt
dt

ϵ(xt, t). (47)

22



The derivative dσt

dt can be computed as follows

dσt
dt

=
1

2σt

dσ2
t

dt
(48)

=
1

2σt

d

dt

(
1− e−

∫ t
0
β(t′) dt′

)
(49)

=
β(t)e−

∫ t
0
β(t′) dt′

2σt
. (50)

Putting everything back together, we have

df

dt
|(xt,t) =

[
β′(t)

2σt
+

β2(t)

4σt
− β2(t)e−

∫ t
0
β(t′) dt′

4σ3
t

]
ϵθ(xt, t) +

[
−β′(t)

2
+

β2(t)

4

]
xt, (51)

which is clearly not 0 for all xt and t. Hence, in contrast to the DDIM ODE, applying Euler’s method
to the Probability Flow ODE does not lead to an approximate (in the sense of the “ideal derivative
trick”) second order ODE solver.

Note that very related observations have been made in the concurrent works Karras et al. [94] and
Zhang et al. [95]. These works notice that when the data distribution consist only of a single data
point or a spherical Gaussian distribution, then the solution trajectories of the generative DDIM ODE
are straight lines. In fact, this exactly corresponds to our observation that in such a setting we have
dγtϵθ = 0, as shown above in the analysis of the “ideal derivatives approximation”. Note in that
context that our above derivation considers the “single data point” distribution assumption, but also
applies to the setting where the data is a spherical normal distribution (only σt would be different,
which would not affect the derivation).

B.3 3rd TTM Applied to the DDIM ODE

As promised in Sec. 3, we show here how to apply the third TTM to the DDIM ODE, resulting in the
following scheme:

x̄tn+1 = x̄tn + hnϵθ(xtn , tn) +
1

2
h2
n

dϵθ
dγt

|(xtn ,tn)
+

1

6
h3
n

d2ϵθ
dγ2
t

|(xtn ,tn)
, (52)

where hn = (γtn+1 − γtn). In the remainder of this section, we derive a computable formula for
d2ϵθ
dγ2

t
, only containing partial derivatives.

Using the chain rule, we have

d2ϵθ
dγ2
t

|(xt,t) =
∂dγϵθ(xt, t)

∂xt

dxt
dγt

+
∂dγϵθ(xt, t)

∂t

dt

dγt
, (53)

where, using Eq. (43),

∂dγϵθ(xt, t)

∂xt
=

∂2ϵθ(xt, t)

∂x2

dxt
dγt

+
∂ϵθ(xt, t)

∂xt

(
1√

γ2
t + 1

∂ϵθ(xt, t)

∂xt
− γt

1 + γ2
t

I

)
+

∂2ϵθ(xt, t)

∂t∂xt

dt

dγt
,

(54)

and
∂dγϵθ(xt, t)

∂t
=

∂

∂t

(
∂ϵθ(xt, t)

∂xt

dxt
dγt

)
+

∂

∂t

(
∂ϵθ(xt, t)

∂t

dt

dγt

)
. (55)

The remaining terms in Eq. (55) can be computed as

∂

∂t

(
∂ϵθ(xt, t)

∂t

dt

dγt

)
=

∂2ϵθ(xt, t)

∂t2
dt

dγt
+

∂ϵθ(xt, t)

∂t

d
(
dt
dγt

)
dt

, (56)

and

∂

∂t

(
∂ϵθ(xt, t)

∂xt

dxt
dγt

)
=

∂2ϵθ(xt, t)

∂t ∂xt

dxt
dγt

+
∂ϵθ(xt, t)

∂xt

∂
(
dxt

dγt

)
∂t

(57)

23



Step size ∆t

0.000

0.002

0.004

0.006

0.008

‖ξ
t
(∆
t)
‖

GENIE (2nd TTM), t = 0.1

GENIE (2nd TTM), t = 0.2

GENIE (2nd TTM), t = 0.5

3rd TTM, t=0.1

3rd TTM, t=0.2

3rd TTM, t=0.5

Figure 10: Single step error using analytical score function. See also Fig. 3 (top).

where, inserting Eq. (28) for dxt

dγt
as well as using the usual parameterization sθ(xt, t) := − ϵθ(xt,t)

σt
,

∂
(
dxt

dγt

)
∂t

=
∂

∂t

(
− γt
γ2
t + 1

[
xt − ϵθ(xt,t)

σt

])
(58)

=

∂

(
1√
γ2
t +1

)
∂t

ϵθ(xt, t) +
1√

γ2
t + 1

∂ϵθ(xt, t)

∂t
−

∂
(

γt
1+γ2

t

)
∂t

xt

(
using σt =

γt√
γ2
t + 1

)
(59)

=

(
− γt

(γ2
t + 1)

3/2
ϵθ(xt, t) +

γ2
t − 1

(γ2
t + 1)

2xt

)
dγt
dt

+
1√

γ2
t + 1

∂ϵθ(xt, t)

∂t
. (60)

We now have a formula for d
2ϵθ
dγ2

t
containing only partial derivatives, and therefore we can compute

d2ϵθ
dγ2

t
using automatic differentiation. Note that we could follow the same procedure to compute even

higher derivatives of ϵθ.

We repeat the 2D toy distribution single step error experiment from Sec. 3 (see also Fig. 3 (top)
and App. E for details). As expected, in Fig. 10 we can clearly see that the third TTM improves upon
the second TTM.

In Fig. 11, we compare the second TTM to the third TTM applied to the DDIM ODE on CIFAR-
10. Both for the second and the third TTM, we compute all partial derivatives using automatic
differentiation (without distillation). It appears that for using 15 or less steps in the ODE solver, the
second TTM performs better than the third TTM. We believe that this could potentially be due to
our score model sθ(xt, t) not being accurate enough, in contrast to the above 2D toy distribution
experiment, where we have access to the analytical score function. Furthermore, note that when
we train sθ(xt, t) via score matching, we never regularize (higher-order) derivatives of the neural
network, and therefore there is no incentive for them to be well-behaved. It would be interesting
to see if, besides having more accurate score models, regularization techniques such as spectral
regularization [109] could potentially alleviate this issue. Also the higher-order score matching
techniques derived by Meng et al. [82] could help to learn higher-order derivates of the score
functions more accurately. We leave this exploration to future work.

B.4 GENIE is Consistent and Principled

GENIE is a consistent and principled approach to developing a higher-order ODE solver for sampling
from diffusion models: GENIE’s design consists of two parts: (1) We are building on the second
Truncated Taylor Method (TTM), which is a well-studied ODE solver (see Kloeden and Platen [78])

24



Figure 11: Qualitative comparison of the second and the third TTMs applied to the DDIM ODE on
CIFAR-10 (all necessary derivatives calculated with automatic differentiation). The number of steps
in the ODE solver is denoted as n.

25



with provable local and global truncation errors (see also App. B.1). Therefore, if during inference
we had access to the ground truth second-order ODE derivatives, which are required for the second
TTM, GENIE would simply correspond to the exact second TTM.

(2) In principle, we could calculate the exact second-order derivatives during inference using automatic
differentiation. However, this is too slow for competitive sampling speeds, as it requires additional
backward passes through the first-order score network. Therefore, in practice, we use the learned
prediction heads kψ(xt, t).

Consequently, if kψ(xt, t) modeled the ground truth second-order derivatives exactly, i.e. kψ(xt, t) =
dγtϵθ(xt, t) for all xt and t, we would obtain a rigorous second-order solver based on the TTM,
following (1) above.

In practice, distillation will not be perfect. However, given the above analysis, optimizing a neural
network kψ(xt, t) towards dγtϵθ(xt, t) is well motivated and theoretically grounded. In particular,
during training we are calculating exact ODE gradients using automatic differentiation on the first-
order score model as distillation targets. Therefore, in the limit of infinite neural network capacity
and perfect optimization, we could in theory minimize our distillation objective function (Eq. (15))
perfectly and obtain kψ(xt, t) = dγtϵθ(xt, t).

Also recall that regular denoising score matching itself, on which all diffusion models rely, follows the
exact same argument. In particular, denoising score matching also minimizes a “simple” (weighted)
L2-loss between a trainable score model sθ(xt, t) and the spatial derivative of the log-perturbation
kernel, i.e., ∇xt

log pt(xt | x0). From this perspective, denoising score matching itself also simply
tries to “distill” (spatial) derivatives into a model. If we perfectly optimized the denoising score
matching objective, we would obtain a diffusion model that models the data distribution exactly, but
in practice, similar to GENIE, we never achieve that due to imperfect optimization and finite-capacity
neural networks. Nevertheless, denoising score matching similarly is a well-defined and principled
method, precisely because of that theoretical limit in which the distribution can be reproduced exactly.

We would also like to point out that other, established higher-order methods for diffusion model
sampling with the generative ODE, such as linear multistep methods [63], make approximations,
too, which can be worse in fact. In particular, multistep methods always approximate higher-order
derivatives in the TTM using finite differences which is crude for large step sizes, as can be seen
in Fig. 3 (bottom). From this perspective, if our distillation is sufficiently accurate, GENIE can be
expected to be more accurate than such multistep methods.

26



C Model and Implementation Details

C.1 Score Models

We train variance-preserving DDMs [57] for which σ2
t = 1 − α2

t . We follow Song et al. [57]

and set β(t) = 0.1 + 19.9t; note that αt = e−
1
2

∫ t
0
β(t′) dt′ . All score models are parameterized as

either sθ(xt, t) := − ϵθ(xt,t)
σt

(ϵ-prediction) or sθ(xt, t) := −αtvθ(xt,t)+σtxt

σt
(v-prediction), where

ϵθ(xt, t) and vθ(xt, t) are U-Nets [79]. The ϵ-prediction model is trained using the following score
matching objective [1]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
, xt = αtx0 + σtϵ. (61)

The v-prediction model is trained using the following score matching objective [69]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ϵ∼N (0,I)

[
∥ ϵ−σtxt

αt
− vθ(xt, t)∥22

]
, xt = αtx0 + σtϵ, (62)

which is referred to as “SNR+1” weighting [69]. The neural network vθ is now effectively tasked
with predicting v := αtϵ− σtx0.

CIFAR-10: On this dataset, we do not train our own score model, but rather use a checkpoint2

provided by Song et al. [57]. The model is based on the DDPM++ architecture introduced in Song
et al. [57] and predicts ϵθ.

LSUN Bedrooms and LSUN Church-Outdoor: Both datasets use exactly the same model structure.
The model structure is based on the DDPM architecture introduced in Ho et al. [1] and predicts ϵθ.

ImageNet: This model is based on the architecture introduced in Dhariwal and Nichol [4]. We make
a small change to the architecture and replace its sinusoidal time embedding by a Gaussian Fourier
projection time embedding [57]. The model is class-conditional and we follow Dhariwal and Nichol
[4] and simply add the class embedding to the (Gaussian Fourier projection) time embedding. The
model predicts ϵθ.

Cats (Base): This model is based on the architecture introduced in Dhariwal and Nichol [4]. We
make a small change to the architecture and replace its sinusoidal time embedding by a Gaussian
Fourier projection time embedding [57]. The model predicts vθ.

Cats (Upsampler): This model is based on the architecture introduced in Dhariwal and Nichol
[4]. We make a small change to the architecture and replace its sinusoidal time embedding by a
Gaussian Fourier projection time embedding [57]. The upsampler is conditioned on noisy upscaled
lower-resolution images, which are concatenated to the regular channels that form the synthesized
outputs of the diffusion model. Therefore, we expand the number of input channels from three to
six. We use augmentation conditioning [105] to noise the lower-resolution image. In particular, we
upscale αt′xlow+σt′z, where xlow is the clean lower-resolution image. During training t′ is sampled
from U [tcutoff , 1]. During inference, t′ is a hyper-parameter which we set to 0.1 for all experiments.

We use two-independent Gaussian Fourier projection embeddings for t and t′ and concatenate them
before feeding them into the layers of the U-Net.

Model Hyperparameters and Training Details: All model hyperparameters and training details
can be found in Tab. 4.

C.2 Prediction Heads

We model the derivative dγtϵθ using a small prediction head kψ on top of the first-order score
model ϵθ. In particular, we provide the last feature layer from the ϵθ network together with its
time embedding as well as xt and the output of ϵ(xt, t) to the prediction head (see Fig. 4 for a
visualization). We found modeling dγtϵθ to be effective even for our Cats models that learn to
predict v = αtϵ − σtx0 rather than ϵ. Directly learning dγtvθ and adapting the mixed network
parameterization (see App. C.2.3) could potentially improve results further. We leave this exploration
to future work.

We provide additional details on our architecture next.
2The checkpoint can be found at https://drive.google.com/file/d/16_

-Ahc6ImZV5ClUc0vM5Iivf8OJ1VSif/view?usp=sharing.

27

https://drive.google.com/file/d/16_-Ahc6ImZV5ClUc0vM5Iivf8OJ1VSif/view?usp=sharing
https://drive.google.com/file/d/16_-Ahc6ImZV5ClUc0vM5Iivf8OJ1VSif/view?usp=sharing


Table 4: Model hyperparameters and training details. The CIFAR-10 model is taken from Song et al.
[57]; all other models are trained by ourselves.

Hyperparameter CIFAR-10 LSUN Bedrooms LSUN Church-Outdoor ImageNet Cats (Base) Cats (Upsampler)

Model
Data dimensionality (in pixels) 32 128 128 64 128 512
Residual blocks per resolution 8 2 2 3 2 2
Attention resolutions 16 16 16 8 (8, 16) (8, 16)
Base channels 128 128 128 192 96 192
Channel multipliers 1,2,3,4 1,1,2,2,4,4,4 1,1,2,2,4,4,4 1,2,3,4 1,2,2,3,3 1,1,2,2,3,3,4
EMA rate 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
# of head channels N/A N/A N/A 64 64 64
# of parameters 107M 148M 148M 283M 200M 80.2M
Base architecture DDPM++ [57] DDPM [1] DDPM [1] [4] [4] [4]
Prediction ϵ ϵ ϵ ϵ v v

Training
# of iterations 400k 300k 300k 400k 400k 150k
# of learning rate warmup iterations 100k 100k 100k 100k 100k 100k
Optimizer Adam Adam Adam Adam Adam Adam
Mixed precision training ✗ ✓ ✓ ✓ ✓ ✓
Learning rate 10−4 3 · 10−4 3 · 10−4 2 · 10−4 10−4 10−4

Gradient norm clipping 1.0 1.0 1.0 1.0 1.0 1.0
Dropout 0.1 0.0 0.0 0.1 0.1 0.1
Batch size 128 256 256 1024 128 64
tcutoff 10−5 10−3 10−3 10−3 10−3 10−3

C.2.1 Model Architecture

The architecture of our prediction heads is based on (modified) BigGAN residual blocks [57, 101].
To minimize computational overhead, we only use a single residual block.

In particular, we concatenate the last feature layer with xt as well as ϵθ(xt, t) and feed it into a
convolutional layer. For the upsampler, we also condition on the noisy up-scaled lower resolution
image. We experimented with normalizing the feature layer before concatenation. The output of
the convolutional layer as well as the time embedding are then fed to the residual block. Similar to
U-Nets used in score models, we normalize the output of the residual block and apply an activation
function. Lastly, the signal is fed to another convolutional layer that brings the number of channels to
a desired value (in our case nine, three for each k

(i)
ψ , i ∈ {1, 2, 3}, in Eq. (66)).

All model hyperparameters can be found in Tab. 5. We also include the additional computational
overhead induced by the prediction heads in Tab. 5; see App. C.2.5 for details on how we measured
the overhead.

C.2.2 Training Details

We train for 50k iterations using Adam [110]. We experimented with two base learning rates: 10−4

and 5 · 10−5. We furthermore tried two “optimization setups”: (linearly) warming up the learning rate
in the first 10k iterations (score models are often trained by warming up the learning rate in the first
100k iterations) or, following Salimans and Ho [69], linearly decaying the learning rate to 0 in the
entire 50k iterations of training; we respectively refer to these two setups as “warmup” and “decay”.
We measure the FID every 5k iterations and use the best checkpoint.

Note that we have to compute the Jacobian-vector products in Eq. (12) via automatic differentiation
during training. We repeatedly found that computing the derivative ∂ϵθ(xt,t)

∂t via automatic differ-
entiation leads to numerical instability (NaN) for small t when using mixed precision training. For
simplicity, we turned off mixed precision training altogether. However, training performance could
have been optimized by only turning off mixed precision training for the derivative ∂ϵθ(xt,t)

∂t .

All training details can be found in Tab. 5.

C.2.3 Mixed Network Parameterization

Our mixed network parameterization is derived from a simple single data point assumption, i.e.,
pt(xt) = N (xt;0, σ

2
t I). This assumption leads to ϵθ(xt, t) ≈ xt

σt
which we can plug into the three

28



Table 5: Model hyperparameters and training details for the prediction heads.
Hyperparameter CIFAR-10 LSUN Bedrooms LSUN Church-Outdoor ImageNet Cats (Base) Cats (Upsampler)

Model
Data dimensionality 32 128 128 64 128 512
EMA rate 0 0 0 0 0 0
Number of channels 128 128 128 196 196 92
# of parameters 526k 526k 526k 1.17M 1.17M 302k
Normalize xembed ✗ ✗ ✓ ✗ ✗ ✗

Training
# of iterations 20k 40k 35k 15k 20k 20k
Optimizer Adam Adam Adam Adam Adam Adam
Optimization setup Decay Warmup Warmup Warmup Warmup Warmup
Mixed precision training ✗ ✗ ✗ ✗ ✗ ✗
Learning rate 5 · 10−5 10−4 10−4 10−4 10−4 10−4

Gradient norm clipping 1.0 1.0 1.0 1.0 1.0 1.0
Dropout 0.0 0.0 0.0 0.0 0.0 0.0
Batch size 128 256 256 256 64 16
tcutoff 10−3 10−3 10−3 10−3 10−3 10−3

Inference
Add. comp. overhead 1.47% 14.0% 14.4% 2.83% 7.55% 13.3%

terms of Eq. (12):

1√
γ2
t + 1

∂ϵθ(xt, t)

∂xt
ϵθ(xt, t) ≈

1√
γ2
t + 1

xt
σ2
t

=
1

γt

xt
σt

, (63)

and

− γt
1 + γ2

t

∂ϵθ(xt, t)

∂xt
xt ≈ − γt

σt (1 + γ2
t )

xt = − γt
1 + γ2

t

xt
σt

, (64)

and finally

∂ϵθ(xt, t)

∂t

dt

dγt
≈ −xt

σ2
t

dσt
dt

dt

dγt
= −γ2

t + 1

γ2
t

xt
1

(γ2
t + 1)

3/2
= − 1

γt(1 + γ2
t )

xt
σt

, (65)

where we have used σt =
γt√
γ2
t +1

. This derivation therefore implies the following mixed network

parameterization

kψ = − 1

γt
k
(1)
ψ +

γt
1 + γ2

t

k
(2)
ψ +

1

γt(1 + γ2
t )

k
(3)
ψ ≈ dγtϵθ, (66)

where k(i)
ψ (xt, t), i ∈ {1, 2, 3}, are different output channels of the neural network (i.e. the additional

head on top of the ϵθ network). To provide additional intuition, we basically replaced the −xt

σt

terms in Eqs. (63) to (65) by neural networks. However, we know that for approximately Normal
data xt

σt
≈ ϵθ(xt, t), where ϵθ(xt, t) predicts “noise” values ϵ that were drawn from a standard

Normal distribution and are therefore varying on a well-behaved scale. Consequently, up to the
Normal data assumption, we can also expect our prediction heads k(i)

ψ (xt, t) in the parameterization
in Eq. (66) to predict well-behaved output values, which should make training stable. This mixed
network parameterization approach is inspired by the mixed score parameterization from Vahdat et al.
[49] and Dockhorn et al. [60].

C.2.4 Pseudocode

In this section, we provide pseudocode for training our prediction heads kψ and using them for
sampling with GENIE. In Alg. 1, the analytical dt

dγt
is an implicit hyperparameter of the DDM as it

depends on αt. For our choice of αt = e−
1
2

∫ t
0
0.1+19.9t′ dt′ (see App. C.1), we have

dt

dγt
=

2γt
19.9(γ2

t +1)√(
0.1
19.9

)2
+

2 log(γ2
t +1)

19.9

, (67)

where γt =
√

1−α2
t

α2
t

.

29



In Alg. 2, we are free to use any time discretization t0 = 1.0 > t1 > · · · > tN = tcutoff . When
referring to “linear striding” in this work, we mean the time discretization tn = 1.0 − (1.0 −
tcutoff)

n
N . When referring to “quadratic striding” in this work, we mean the time discretization

tn =
(
1.0− (1.0−√

tcutoff)
n
N

)2
.

Algorithm 1 Training prediction heads kψ

Input: Score model sθ := − ϵθ(xt,t)
σt

, number of training iterations N .
Output: Trained prediction head kψ .

for n = 1 to N do
Sample x0 ∼ p0(x0), t ∼ U [tcutoff , 1], ϵ ∼ N (0, I)
Set xt = αtx0 + σtϵ
Compute ϵθ(xt, t)

Compute the exact spatial Jacobian-vector product JVPs = ∂ϵθ(xt,t)
∂xt

(
1√

γ2
t +1

ϵθ(xt, t)− γt

1+γ2
t
xt

)
via automatic differentiation

Compute the exact temporal Jacobian-vector product JVPt =
∂ϵθ(xt,t)

∂t
dt
dγt

via automatic differentiation
( dt
dγt

can be computed analytically)
Compute kψ(xt, t) using the mixed parameterization in Eq. (66)
Update weights ψ to minimize γ2

t ∥kψ(xt, t)− dγtϵθ(xt, t)∥22, where dγtϵθ(xt, t) = JVPs − JVPt

end for

Algorithm 2 GENIE sampling

Input: Score model sθ := − ϵθ(xt,t)
σt

, prediction head kψ , number of sampler steps N , time discretization
{tn}Nn=0.
Output: Generated GENIE output sample y.
Sample xt0 ∼ N (0, I)

Set x̄t0 =
√

1 + γ2
t0
xt0 ▷ Note that x̄tn =

√
1 + γ2

tn
xtn for all tn

for n = 0 to N − 1 do
if AFS and n = 0 then

x̄tn+1 = x̄tn + (γtn+1 − γtn)xtn

else
x̄tn+1 = x̄tn + (γtn+1 − γtn)ϵθ(xtn , tn) +

1
2
(γtn+1 − γtn)

2kψ(xtn , tn)
end if
xtn+1 =

x̄tn+1√
1+γ2

tn+1

end for
if Denoising then

y =
xtN

−σtN
ϵθ(xtN

,tN )

αtN

else
y = xtN

end if

C.2.5 Measuring Computational Overhead

Our prediction heads induce a slight computational overhead since their forward pass has to occur
after the forward pass of the score model. We measure the overhead as follows: first, we measure the
inference time of the score model itself. We do five forward passes to “warm-up” the model and then
subsequently synchronize via torch.cuda.synchronize(). We then measure the total wall-clock
time of 50 forward passes. We then repeat this process using a combined forward pass: first the score
model and subsequently the prediction head. We choose the batch size to (almost) fill the entire GPU
memory. In particular we chose batch sizes of 512, 128, 128, 64, 64, and 8, for CIFAR-10, LSUN
Bedrooms, LSUN Church-Outdoor, ImageNet, Cats (base), and Cats (upsampler), respectively. The
computational overhead for each model is reported in Tab. 5. This measurement was carried out on a
single NVIDIA 3080 Ti GPU.

30



D Learning Higher-Order Gradients without Automatic Differentiation and
Distillation

In this work, we learn the derivative dγtϵθ, which includes a spatial and a temporal Jacobian-vector
product, by distillation based on automatic differentiation (AD). We now derive an alternative learning
objective for the spatial Jacobian-vector product (JVP) which does not require any AD. We start with
the following (conditional) expectation

E
[
α2
tx0x

⊤
t − αt

[
x0x

⊤
t + xtx

⊤
0

]
| xt, t

]
= −xtx

⊤
t + σ4

tS2(xt, t) + σ4
t s1(xt, t)s1(xt, t)

⊤ + σ2
t I,

(68)

where s1(xt, t) := ∇xt
log pt(xt) and S2(xt, t) := ∇⊤

xt
∇xt

log pt(xt). The above formula is
derived in Meng et al. [Theorem 1, 82]. Adding xtx

⊤
t to Eq. (68) and subsequently dividing by σ2

t ,
we have

E
[
α2
t

σ2
t

x0x
⊤
t − αt

σ2
t

[
x0x

⊤
t + xtx

⊤
0

]
+

1

σ2
t

xtx
⊤
t | xt, t

]
= σ2

tS2(xt, t) + σ2
t s1(xt, t)s1(xt, t)

⊤ + I,

(69)

where we could pull the 1
σ2
t
xtx

⊤
t term into the expectation because it is conditioned on t and xt.

Using xt = αtx0 + σtϵ, we can rewrite the above as

E
[
ϵϵ⊤ | xt, t

]
= σ2

tS2(xt, t) + σ2
t s1(xt, t)s1(xt, t)

⊤ + I. (70)

For an arbitrary v := v(xt, t), we then have

E
[
ϵϵ⊤v | xt, t

]
= σ2

tS2(xt, t)v + σ2
t s1(xt, t)s1(xt, t)

⊤v + v. (71)

Therefore, we can develop a score matching-like learning objective for the (general) spatial JVP
oθ(xt, t) ≈ S2(x,t)v as

Et∼U [tcutoff ,1],x0∼p(x0),ϵ∼N (0,I)

[
gno−ad(t)∥oθ(xt, t) + sθ(xt, t)sθ(xt, t)

⊤v +
1

σ2
t

v − ϵϵ⊤v∥22
]
,

(72)

for some weighting function gno−ad(t). Setting v(xt, t) = −σt

(
1√
γ2
t +1

ϵθ(xt, t)− γt
1+γ2

t
xt

)
,

would recover the spatial JVP needed for the computation of dγtϵ. In the initial phase of this project,
we briefly experimented with learning the spatial JVP using this approach; however, we found that
our distillation approach worked significantly better.

31



E Toy Experiments

For all toy experiments in Sec. 3, we consider the following ground truth distribution:

p0(x0) =
1

8

8∑
i=1

p
(i)
0 (x0), (73)

where

p
(i)
0 (x0) =

1

8

8∑
j=1

N (x0, s1µi + s1s2µj , σ
2I). (74)

We set σ = 10−2, s1 = 0.9, s2 = 0.2, and

µ1 =

(
1
0

)
, µ2 =

(
−1
0

)
, µ3 =

(
0
1

)
, µ4 =

(
0
−1

)
µ5 =

(
1√
2
1√
2

)
, µ6 =

(
1√
2

− 1√
2

)
, µ7 =

(
− 1√

2
1√
2

)
, µ8 =

(
− 1√

2

− 1√
2

)
.

The ground truth distribution is visualized in Fig. 2a. Note that we can compute the score functions
(and all its derivatives) analytically for Gaussian mixture distributions.

In Fig. 2, we compared DDIM to GENIE for sampling using the analytical score function of the
ground truth distribution with 25 solver steps. In Fig. 12, we repeated this experiment for 5, 10,
15, and 20 solver steps. We found that in particular for n = 10 both solvers generate samples in
interesting patterns.

32



(a) DDIM, n = 5 (b) GENIE, n = 5

(c) DDIM, n = 10 (d) GENIE, n = 10

(e) DDIM, n = 15 (f) GENIE, n = 15

(g) DDIM, n = 20 (h) GENIE, n = 20

Figure 12: Modeling a complex 2D toy distribution: Samples are generated with DDIM and GENIE
with n solver steps using the analytical score function of the ground truth distribution (visualized
in Fig. 2a). Zoom in for details.

33



F Image Experiments

F.1 Evaluation Metrics, Baselines, and Datasets

Metrics: We quantitatively measure sample quality via Fréchet Inception Distance [FID, 102]. It is
common practice to use 50k samples from the training set for reference statistics. We follow this
practice for all datasets except for ImageNet and Cats. For ImageNet, we follow Dhariwal and Nichol
[4] and use the entire training set for reference statistics. For the small Cats dataset, we use the
training as well as the validation set for reference statistics.

Baselines: We run baseline experiments using two publicly available repositories. The
score_sde_pytorch repository is licensed according to the Apache License 2.0; see also their
license file here. The CLD-SGM repository is licensed according to the NVIDIA Source Code License;
see also their license file here.

Datasets: We link here the websites of the datasets used in this experiment: CIFAR-10, LSUN
datasets, ImageNet, and AFHQv2.

F.2 Analytical First Step (AFS)

The forward process of DDMs generally converges to an analytical distribution. This analytical
distribution is then used to sample from DDMs, defining the initial condition for the generative
ODE/SDE. For example, for variance-preserving DDMs, we have p1(x1) ≈ N (x1;0, I).

In this work, we try to minimize the computational complexity of sampling from DDMs, and therefore
operate in a low NFE regime. In this regime, every additional function evaluation makes a significant
difference. We therefore experimented with replacing the learned score with the (analytical score) of
N (0, I) ≈ p1(x1) in the first step of the ODE solver. This “gained” function evaluation can then be
used as an additional step in the ODE solver later.

In particular, we have
ϵθ(x1, 1) ≈ x1, (75)

and dϵθ(x1,1)
dγ1

≈ 0 as shown below:

dϵθ(x1, 1)

dγ1
≈ dxt

dγt
|t=1 (76)

= − γt
γ2
t + 1

[xt + sθ(xt, t)]|t=1 (using Eq. (28)) (77)

≈ 0 (using normal assumption sθ(xt, t) ≈ −xt) (78)
Given this, the AFS step becomes identical to the Euler update that uses the Normal score function
for x1. This step is shown in the pseudocode in Alg. 2.

F.3 Classifier-Free Guidance

As discussed in Sec. 5.2, to guide diffusion sampling towards particular classes, we replace ϵθ(xt, t)
with

ϵ̂θ(xt, t, c, w) = (1 + w)ϵθ(xt, t, c)− wϵθ(xt, t), (79)
where w > 1.0 is the “guidance scale”, in the DDIM ODE. We experiment with classifier-free
guidance on ImageNet. In Eq. (79) we re-use the conditional ImageNet score model ϵθ(xt, t, c)
trained before (see App. C.1 for details), and train an additional unconditional ImageNet score model
ϵθ(xt, t) using the exact same setup (and simply setting the class embedding to zero). We also re-use
the conditional prediction head trained on top of the conditional ImageNet score model and train
an additional prediction head for the unconditional model. Note that for both the score models as
well as the prediction heads, we could share parameters between the models to reduce computational
complexity [70]. The modified GENIE scheme for classifier-free guidance is then given as

x̄tn+1 = x̄tn + (γtn+1 − γtn)ϵ̂θ(xtn , tn, c, w) +
1

2
(γtn+1 − γtn)

2k̂ψ(xtn , tn, c, w), (80)

where
k̂ψ(xtn , tn, c, w) = (1 + w)kψ(xtn , tn, c)− wkψ(xtn , tn). (81)

34

https://github.com/yang-song/score_sde_pytorch
https://github.com/yang-song/score_sde_pytorch/blob/main/LICENSE
https://github.com/nv-tlabs/CLD-SGM
https://github.com/nv-tlabs/CLD-SGM/blob/main/LICENSE
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.yf.io/p/lsun
https://www.yf.io/p/lsun
https://www.image-net.org/
https://github.com/clovaai/stargan-v2/blob/master/README.md


F.4 Encoding

To encode a data point x0 into latent space, we first “diffuse” the data point to t = 10−3, i.e.,
xt = αtx0 + σtϵ, ϵ ∼ N (0, I). We subsequently simulate the generative ODE (backwards) from
t = 10−3 to t = 1, obtaining the latent point x1.

To decode a latent point x1, we simulate the generative ODE (forwards) from t = 1.0 to t = 10−3.
We then denoise the data point, i.e., x0 = xt−σtϵθ(xt,t)

αt
. Note that denoising is generally optional to

sample from DDMs; however, for our encoding-decoding experiment we always used denoising in
the decoding part to match the inital “diffusion” in the encoding part.

F.5 Latent Space Interpolation

We can use encoding to perform latent space interpolation of two data points x
(0)
0 and x

(1)
0 . We

first encode both data points, following the encoding setup from App. F.4, and obtain x
(0)
1 and x

(1)
1 ,

respectively. We then perform spherical interpolation of the latent codes:

x
(b)
1 = x

(0)
1

√
1− b + x

(1)
2

√
b, b ∈ [0, 1]. (82)

Subsequently, we decode the latent code x
(b)
1 following the decoding setup from App. F.4. In Fig. 13,

we show latent space interpolations for LSUN Church-Outdoor and LSUN Bedrooms.

F.6 Extended Quantitative Results

In this section, we show additional quantitative results not presented in the main paper. In particular,
we show results for all four hyperparameter combinations (binary choice of AFS and binary choice
of denoising) for methods evaluated by ourselves. For these methods (i.e., GENIE, DDIM, S-PNDM,
F-PNDM, Euler–Maruyama), we follow the Synthesis Strategy outlined in Sec. 5, with the exception
that we use linear striding instead of quadratic striding for S-PNDM [63] and F-PNDM [63]. To apply
quadratic striding to these two methods, one would have to derive the Adams–Bashforth methods for
non-constant step sizes which is beyond the scope of our work.

Results can be found in Tabs. 8 to 13. As expected, AFS can considerably improve results for almost
all methods, in particular for NFEs ≤ 15. Denoising, on the other hand, is more important for larger
NFEs. For our Cats models, we initially found that denoising hurts performance, and therefore did
not further test it in all settings.

Recall Scores. We quantify the sample diversity of GENIE and other fast samplers using the recall
score [111]. In particular, we follow DDGAN [67] and use the improved recall score [112]; results on
CIFAR-10 can be found in Tab. 6. As expected, we can see that for all methods recall scores suffer as
the NFEs decrease. Compared to the baselines, GENIE achieves excellent recall scores, being on par
with F-PNDM for NFE≥ 15. However, F-PNDM cannot be run for NFE≤10 (due to its additional
Runge–Kutta warm-up iterations). Overall, these results confirm that GENIE offers strong sample
diversity when compared to other common samplers using the same score model checkpoint.

Striding Schedule Grid Search. As discussed in Sec. 5 the fixed quadratic striding schedule (for
choosing the times t for evaluating the model during synthesis under fixed NFE budgets) used in
GENIE may be sub-optimal, in particular for small NFEs. To explore this, we did a small grid search
over three different striding schedules. As described in App. C.2.4, the quadratic striding schedule
can be written as tn =

(
1.0− (1.0−√

tcutoff)
n
N

)2
, and easily be generalized to

tn =
(
1.0− (1.0− t

1/ρ
cutoff)

n

N

)ρ
, ρ > 1. (83)

In particular, besides the quadratic schedule ρ = 2, we also tested the two additional values ρ = 1.5
and ρ = 2.5. We tested these schedules on GENIE as well as DDIM [58]; note that the other two
comptetive baselines, S-PNDM [63] and F-PNDM [63], rely on linear striding, and therefore a grid
search is not applicable. We show results for GENIE and DDIM in Tab. 7; for each combination of
solver and NFE we applied the best synthesis strategy (whether or not we use denoising and/or the
analytical first step) of quadratic striding (ρ = 2.0) also to ρ = 1.5 and ρ = 2.5. As can be seen in
the table, ρ = 1.5 improves for both DDIM and GENIE for NFE=5 (over the quadratic schedule

35



Figure 13: Latent space interpolations for LSUN Church-Outdoor (Top) and LSUN Bedrooms
(Bottom). Note that b = 0 and b = 1 correspond to the decodings of the encoded reference images.
Since this encode-decode loop is itself not perfect, the references are not perfectly reproduced at
b = 0 and b = 1.

36



Table 6: Unconditional CIFAR-10 generative performance, measured in Recall (higher values are
better). All methods use the same score model checkpoint.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 0.28 0.48 0.54 0.56 0.56
✗ ✓ 0.21 0.45 0.52 0.56 0.57
✓ ✗ 0.27 0.47 0.53 0.56 0.56
✓ ✓ 0.19 0.46 0.53 0.55 0.56

DDIM [58]

✗ ✗ 0.10 0.27 0.38 0.43 0.46
✗ ✓ 0.07 0.24 0.35 0.42 0.46
✓ ✗ 0.08 0.27 0.38 0.43 0.46
✓ ✓ 0.04 0.24 0.36 0.42 0.45

S-PNDM [63]

✗ ✗ 0.06 0.30 0.43 0.49 0.52
✗ ✓ 0.02 0.25 0.39 0.46 0.50
✓ ✗ 0.11 0.33 0.45 0.50 0.53
✓ ✓ 0.06 0.29 0.41 0.47 0.51

F-PNDM [63]

✗ ✗ N/A N/A 0.55 0.57 0.58
✗ ✓ N/A N/A 0.52 0.56 0.57
✓ ✗ N/A N/A 0.55 0.58 0.59
✓ ✓ N/A N/A 0.54 0.56 0.57

Euler–Maruyama

✗ ✗ 0.00 0.00 0.00 0.02 0.08
✗ ✓ 0.00 0.00 0.00 0.03 0.06
✓ ✗ 0.00 0.00 0.00 0.03 0.09
✓ ✓ 0.00 0.00 0.00 0.03 0.09

Table 7: Unconditional CIFAR-10 generative performance (measured in FID) using our GENIE and
DDIM [58] with different striding schedules using exponents ρ ∈ {1.5, 2.0, 2.5}.

Method ρ NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

1.5 11.2 5.28 5.03 4.35 3.97
GENIE 2.0 13.9 5.97 4.49 3.94 3.67

2.5 17.8 7.19 4.57 3.94 3.64

1.5 27.6 13.5 8.97 7.20 6.15
DDIM 2.0 29.7 11.2 7.35 5.87 5.16

2.5 33.2 13.4 8.28 6.36 5.39

ρ = 2), whereas larger ρ are preferred for larger NFE. The improvement of GENIE from 13.9 to 11.2
FID for NFE=5 is significant.

Discretization Errors of GENIE compared to other Fast Samplers. We compute discretization
errors, in particular local and global truncation errors, of GENIE and compare to existing faster
solvers. We are using the CIFAR-10 model. We initially sample 100 latent vectors xT ∼ N (0, I)
and then, starting from those latent vectors, synthesize 100 approximate ground truth trajectories
(GTTs) using DDIM with 1k NFEs (for that many steps, the discretization error is negligible; hence,
we can treat this as a pseudo ground truth).

We then synthesize 100 sample trajectories for DDIM [58], S-PNDM [63], F-PNDM [63], and
GENIE (for NFEs={5, 10, 15, 20, 25}, similar to the main experiments) using the same latent vectors
as starting points that were used to generate the GTTs. DDIM, S-PNDM, and F-PNDM are training-
free methods that can be run on the exact same score model, which also our GENIE relies on. Thereby,
we are able to isolate discretization errors from errors in the learnt score function. We then compute
the average L2-distance (in Inception feature space [104]) between the output image of the fast
samplers and the “output” of the pseudo GTT. As can be seen in Fig. 14, GENIE outperforms the
three other methods on all NFEs.

Comparing the local truncation error (LTE) of different higher-order solvers can unfortunately not be
done in a fair manner. Similar to DDIM, GENIE only needs the current value and a single NFE to
predict the next step. In contrast, multistep methods rely on a history of predictions and Runge–Kutta
methods rely on multiple NFEs to predict the next step. Thus, we can only fairly compare the LTE of

37



252015105
4
5
6

8

10

15

NFEs

M
ea

n
L
2
-d

is
ta

nc
e

GENIE
DDIM [58]

S-PNDM [63]
F-PNDM [63]

Figure 14: Global Truncation Error: L2-distance of generated outputs by the fast samplers to the
(approximate) ground truth (computed using DDIM with 1k NFEs) in Inception feature space [104].
Results are averaged over 100 samples.

GENIE to the LTE of DDIM. In particular, we compute LTEs at three starting times t ∈ {0.1, 0.2, .5}
(similar to what we did in Fig. 3). For each t, we then compare one step predictions for different step
sizes ∆t against the ground truth trajectory (L2-distance in data space averaged over 100 predictions;
since we are not operating directly in image space at these intermediate t, using inception feature
would not make sense here). As expected, we can see in Fig. 15 that GENIE has smaller LTE than
DDIM for all starting times t.

F.7 Extended Qualitative Results

In this section, we show additional qualitative comparisons of DDIM and GENIE on LSUN Church-
Outdoor (Fig. 16), ImageNet (Fig. 17), and Cats (upsampler conditioned on test set images) (Fig. 18
and Fig. 19). In all figures, we can see that samples generated with GENIE generally exhibit finer
details as well as sharper contrast and are less blurry compared to standard DDIM.

In Fig. 20 and Fig. 21, we show additional high-resolution images generated with the GENIE Cats
upsampler using base model samples and test set samples, respectively.

F.8 Computational Resources

The total amount of compute used in this research project is roughly 163k GPU hours. We used an
in-house GPU cluster of V100 NVIDIA GPUs.

38



0.050.0450.040.0350.030.0250.020.0150.010.005
0

0.05

0.1

0.15

0.2

0.25

Step size ∆t

∥x
t
−

x̂
t
(∆

t
)∥

GENIE, t = 0.1
GENIE, t = 0.2
GENIE, t = 0.5
DDIM, t = 0.1
DDIM, t = 0.2
DDIM, t = 0.5

Figure 15: Local Truncation Error: Single step (local discretization) error, measured in L2-distance
to (approximate) ground truth (computed using DDIM with 1k NFEs) in data space and averaged
over 100 samples, for GENIE and DDIM for three starting time points t ∈ {0.1, 0.2, 0.5} (this is, the
t from which a small step with size ∆t is taken).

Table 8: Unconditional CIFAR-10 generative performance (measured in FID). Methods above the
middle line use the same score model checkpoint; methods below all use different ones. (†): numbers
are taken from literature. This table is an extension of Tab. 1.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 15.4 5.97 4.70 4.30 4.10
✗ ✓ 23.5 6.91 4.74 4.02 3.72
✓ ✗ 13.9 6.04 4.76 4.33 4.18
✓ ✓ 17.9 6.27 4.49 3.94 3.67

DDIM [58]

✗ ✗ 30.1 11.6 7.56 6.00 5.27
✗ ✓ 37.9 13.9 8.76 6.77 5.76
✓ ✗ 29.7 11.2 7.35 5.87 5.16
✓ ✓ 35.2 12.8 8.17 6.39 5.49

S-PNDM [63]

✗ ✗ 60.2 12.1 7.16 5.48 4.62
✗ ✓ 101 17.2 10.8 8.74 7.62
✓ ✗ 35.9 10.3 6.61 5.20 4.51
✓ ✓ 56.8 14.9 10.2 8.37 7.35

F-PNDM [63]

✗ ✗ N/A N/A 12.1 6.58 4.89
✗ ✓ N/A N/A 19.5 10.6 8.43
✓ ✗ N/A N/A 10.3 5.96 4.73
✓ ✓ N/A N/A 15.7 10.9 8.52

Euler–Maruyama

✗ ✗ 364 236 178 121 85.0
✗ ✓ 391 235 191 129 89.9
✓ ✗ 325 230 164 112 80.3
✓ ✓ 364 235 176 120 83.6

FastDDIM [64] (†) ✗ ✓ - 9.90 - 5.05 -
Learned Sampler [66] (†) ✗ ✓ 12.4 7.86 5.90 4.72 4.25
Analytic DDIM (LS) [65] (†) ✗ ✓ - 14.0 - - 5.71
CLD-SGM [60] ✗ ✗ 334 306 236 162 106
VESDE-PC [57] ✗ ✓ 461 461 461 461 462

39



Table 9: Conditional ImageNet generative performance (measured in FID).
Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 23.4 8.35 6.13 5.36 5.00
✗ ✓ 35.4 7.59 5.23 4.48 4.13
✓ ✗ 21.6 8.92 6.59 5.73 5.27
✓ ✓ 20.2 7.41 5.36 4.68 4.27

DDIM [58]

✗ ✗ 39.0 14.5 9.47 7.57 6.64
✗ ✓ 39.8 11.1 7.17 5.83 5.19
✓ ✗ 37.4 14.7 9.73 7.86 6.92
✓ ✓ 30.0 10.7 7.14 5.93 5.35

S-PNDM [63]

✗ ✗ 57.9 15.2 10.0 8.12 7.20
✗ ✓ 60.6 12.2 8.69 7.59 6.94
✓ ✗ 39.0 13.7 9.75 8.08 7.22
✓ ✓ 35.5 11.2 8.54 7.52 6.94

F-PNDM [63]

✗ ✗ N/A N/A 13.9 9.45 7.87
✗ ✓ N/A N/A 14.5 9.45 8.05
✓ ✗ N/A N/A 12.5 9.01 7.74
✓ ✓ N/A N/A 12.3 9.26 7.86

Table 10: Unconditional LSUN Bedrooms generative performance (measured in FID). Methods
above the middle line use the same score model checkpoint; Learned Sampler uses a different one.
(†): numbers are taken from literature.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 74.1 17.1 13.3 11.6 11.1
✗ ✓ 115 11.4 7.18 5.80 5.35
✓ ✗ 55.9 18.4 14.1 12.3 11.6
✓ ✓ 47.3 9.29 6.83 5.79 5.40

DDIM [58]

✗ ✗ 69.6 27.1 19.0 15.8 14.2
✗ ✓ 81.0 16.3 9.18 7.12 6.20
✓ ✗ 62.1 27.1 19.3 16.3 14.6
✓ ✓ 42.5 12.5 8.21 6.77 6.05

S-PNDM [63]

✗ ✗ 70.4 22.1 15.7 13.5 12.4
✗ ✓ 88.9 12.2 8.40 7.33 6.80
✓ ✗ 48.0 20.2 15.2 13.4 12.4
✓ ✓ 45.0 10.8 8.14 7.23 6.71

F-PNDM [63]

✗ ✗ N/A N/A 36.1 18.5 14.6
✗ ✓ N/A N/A 26.8 9.85 7.86
✓ ✗ N/A N/A 29.4 17.5 14.3
✓ ✓ N/A N/A 18.9 9.27 7.69

Learned Sampler [66] (†) ✗ ✓ 29.2 11.0 - 4.82 -

40



Table 11: Unconditional LSUN Church-Outdoor generative performance (measured in FID). Methods
above the middle line use the same score model checkpoint; Learned Sampler uses a different one.
(†): numbers are taken from literature.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 97.2 25.4 15.9 11.6 9.57
✗ ✓ 147 13.7 11.7 8.52 7.28
✓ ✗ 47.8 13.6 10.6 9.17 8.28
✓ ✓ 60.3 10.5 7.44 6.38 5.84

DDIM [58]

✗ ✗ 81.5 28.5 16.7 11.9 9.9
✗ ✓ 110 25.3 11.5 8.53 7.35
✓ ✗ 44.0 17.4 12.5 10.2 9.07
✓ ✓ 45.8 12.8 8.44 6.97 6.28

S-PNDM [63]

✗ ✗ 59.4 18.7 13.3 11.4 10.4
✗ ✓ 87.5 14.8 9.54 7.98 7.21
✓ ✗ 40.7 17.0 12.8 11.2 10.3
✓ ✓ 48.8 12.9 9.10 7.82 7.12

F-PNDM [63]

✗ ✗ N/A N/A 15.5 12.0 10.6
✗ ✓ N/A N/A 15.7 9.78 7.99
✓ ✗ N/A N/A 15.2 11.8 10.4
✓ ✓ N/A N/A 12.6 9.29 7.83

Learned Sampler [66] (†) ✗ ✓ 30.2 11.6 - 6.74 -

Table 12: Cats (base model) generative performance (measured in FID).
Method AFS NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours) ✗ 12.2 8.74 7.40 6.84
✓ 13.3 9.07 7.76 6.76

DDIM [58] ✗ 12.7 9.89 8.66 7.98
✓ 13.6 10.0 8.73 7.87

S-PNDM [63] ✗ 12.8 11.6 10.8 10.4
✓ 12.5 11.3 10.7 10.2

F-PNDM [63] ✗ N/A 12.8 10.4 10.6
✓ N/A 11.8 10.4 10.3

Table 13: Cats (upsampler) generative performance (measured in FID).
Method AFS NFEs=5 NFEs=10 NFEs=15

GENIE (ours) ✗ 7.03 4.93 4.83
✓ 5.53 4.90 4.91

DDIM [58] ✗ 11.3 7.16 5.99
✓ 9.47 6.64 5.85

S-PNDM [63] ✗ 16.7 12.1 8.83
✓ 14.6 11.0 9.01

F-PNDM [63] ✗ N/A N/A 12.9
✓ N/A N/A 11.7

41



Figure 16: Additional samples on LSUN Church-Outdoor with zoom-in on details. GENIE often
results in sharper and higher contrast samples compared to DDIM.

42



Figure 17: Additional samples on ImageNet with zoom-in on details. GENIE often results in sharper
and higher contrast samples compared to DDIM.

43



Figure 18: Additional samples on Cats with zoom-in on details. GENIE often results in sharper and
higher contrast samples compared to DDIM.

44



Figure 19: Additional samples on Cats with zoom-in on details. GENIE often results in sharper and
higher contrast samples compared to DDIM.

45



Figure 20: End-to-end samples on Cats. The GENIE base model uses 25 function evaluations and
the GENIE upsampler only uses five function evaluations. An upsampler evaluation is roughly four
times as expensive as a base model evaluation.

G Miscellaneous

G.1 Connection to Bao et al. [96]

The concurrent Bao et al. [96] learn covariance matrices for diffusion model sampling using prediction
heads somewhat similar to the ones in GENIE. Specifically, both Bao et al. [96] and GENIE use small
prediction heads that operate on top of the large first-order score predictor. However, we would like to
stress multiple differences: (i) Bao et al. [96] learn the DDM’s sampling covariance matrices, while
we learn higher-order ODE gradients. More generally, Bao et al. [96] rely on stochastic diffusion
model sampling, while we use the ODE formulation. (ii) Most importantly, in our case we can resort
to directly learning the low-dimensional JVPs without low-rank or diagonal matrix approximations or
other assumptions. Similar techniques are not directly applicable in Bao et al. [96]’s setting. In detail,
this is because in their case the relevant matrices (obtained after Cholesky or another applicable
decomposition of the covariance) do not act on regular vectors but random noise variables. In other
words, instead of using a deterministic JVP predictor (which takes xt and t as inputs), as in GENIE,
Bao et al. [96] would require to model an entire distribution for each xt and t without explicitly
forming high-dimensional Cholesky decomposition-based matrices, if they wanted to do something
somewhat analogous to GENIE’s novel JVP-based approach. As a consequence, Bao et al. [96] take
another route to keeping the dimensionality of the additional network outputs manageable in practice.
In particular, they resort to assuming a diagonal covariance matrix in their experiments. By directly
learning JVPs, we never have to rely on such potentially limiting assumptions. (iii) Experimentally,

46



Figure 21: Upsampling 128× 128 test set images using the GENIE upsampler with only five function
evaluations.

Bao et al. [96] also consider fast sampling with few neural network calls. However, GENIE generally
outperforms them (see, for example, their CIFAR10 results in their Table 2 for 10 and 25 NFE). This
might indeed be due to the assumptions made by Bao et al. [96], which we avoid. Furthermore, their
stochastic vs. our deterministic sampling may play a role, too.

G.2 Combining GENIE with Progressive Distillation

We speculate that GENIE could potentially be combined with Progressive Distillation [69]: In every
distillation stage of [69], one could quickly train a small GENIE prediction head to model higher-order
ODE gradients. This would then allow for larger and/or more accurate steps, whose results represent
the distillation target (teacher) in the progressive distillation protocol. This may also reduce the
number of required distillation stages. Overall, this could potentially speed up the cumbersome stage-
wise distillation and maybe also lead to an accuracy and performance improvement. In particular, we
could replace the DDIM predictions in Algorithm 2 of [69] with improved GENIE predictions.

Note that this approach would not be possible with multistep methods as proposed by Liu et al. [63].
Such techniques could not be used here, because they require the history of previous predictions,
which are not available in the progressive distillation training scheme.

We leave exploration of this direction to future work.

47


