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Abstract

Denoising diffusion models (DDMs) have emerged as a powerful class of
generative models. A forward diffusion process slowly perturbs the data, while a
deep model learns to gradually denoise. Synthesis amounts to solving a differential
equation (DE) defined by the learnt model. Solving the DE requires slow iterative
solvers for high-quality generation. In this work, we propose Higher-Order Denois-
ing Diffusion Solvers (GENIE): Based on truncated Taylor methods, we derive a
novel higher-order solver that significantly accelerates synthesis. Our solver relies
on higher-order gradients of the perturbed data distribution, that is, higher-order
score functions. In practice, only Jacobian-vector products (JVPs) are required and
we propose to extract them from the first-order score network via automatic differ-
entiation. We then distill the JVPs into a separate neural network that allows us to
efficiently compute the necessary higher-order terms for our novel sampler during
synthesis. We only need to train a small additional head on top of the first-order
score network. We validate GENIE on multiple image generation benchmarks and
demonstrate that GENIE outperforms all previous solvers. Unlike recent methods
that fundamentally alter the generation process in DDMs, our GENIE solves the
true generative DE and still enables applications such as encoding and guided
sampling. Project page and code: https://nv-tlabs.github.io/GENIE.

1 Introduction

Denoising diffusion models (DDMs) offer both state-of-the-art synthesis quality and sample diversity
in combination with a robust and scalable learning objective. DDMs have been used for image [1–5]
and video [6, 7] synthesis, super-resolution [8, 9], deblurring [10, 11], image editing and inpainting [5,
12–14], text-to-image synthesis [15–17], conditional and semantic image generation [18–22], image-
to-image translation [14, 23, 24] and for inverse problems in medical imaging [25–31]. They also
enable high-quality speech synthesis [32–37], 3D shape generation [38–42], molecular modeling [43–
46], maximum likelihood training [47–50], and more [51–56]. In DDMs, a diffusion process gradually
perturbs the data towards random noise, while a deep neural network learns to denoise. Formally, the
problem reduces to learning the score function, i.e., the gradient of the log-density of the perturbed
data. The (approximate) inverse of the forward diffusion can be described by an ordinary or a
stochastic differential equation (ODE or SDE, respectively), defined by the learned score function,
and can therefore be used for generation when starting from random noise [47, 57].

A crucial drawback of DDMs is that the generative ODE or SDE is typically difficult to solve,
due to the complex score function. Therefore, efficient and tailored samplers are required for
fast synthesis. In this work, building on the generative ODE [47, 57, 58], we rigorously derive a
novel second-order ODE solver using truncated Taylor methods [59]. These higher-order methods
require higher-order gradients of the ODE—in our case this includes higher-order gradients of the
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Figure 1: Our novel Higher-Order Denoising Diffusion Solver (GENIE) relies on the second truncated Taylor
method (TTM) to simulate a (re-parametrized) Probability Flow ODE for sampling from denoising diffusion mod-
els. The second TTM captures the local curvature of the ODE’s gradient field and enables more accurate extrapola-
tion and larger step sizes than the first TTM (Euler’s method), which previous methods such as DDIM [58] utilize.

log-density of the perturbed data, i.e., higher-order score functions. Because such higher-order
scores are usually not available, existing works typically use simple first-order solvers or samplers
with low accuracy [1, 57, 58, 60], higher-order methods that rely on suboptimal finite difference or
other approximations [61–63], or alternative approaches [64–66] for accelerated sampling. Here,
we fundamentally avoid such approximations and directly model the higher-order gradient terms:
Importantly, our novel Higher-Order Denoising Diffusion Solver (GENIE) relies on Jacobian-vector
products (JVPs) involving second-order scores. We propose to calculate these JVPs by automatic
differentiation of the regular learnt first-order scores. For computational efficiency, we then distill
the entire higher-order gradient of the ODE, including the JVPs, into a separate neural network. In
practice, we only need to add a small head to the first-order score network to predict the components
of the higher-order ODE gradient. By directly modeling the JVPs we avoid explicitly forming
high-dimensional higher-order scores. Intuitively, the higher-order terms in GENIE capture the local
curvature of the ODE and enable larger steps when iteratively solving the generative ODE (Fig. 1).

Experimentally, we validate GENIE on multiple image modeling benchmarks and achieve state-of-
the-art performance in solving the generative ODE of DDMs with few synthesis steps. In contrast to
recent methods that fundamentally modify the generation process of DDMs by training conditional
GANs [67] or by distilling the full sampling trajectory [68, 69], GENIE solves the true generative
ODE. Therefore, we also show that we can still encode images in the DDM’s latent space, as required
for instance for image interpolation, and use techniques such as guided sampling [4, 57, 70].

We make the following contributions: (i) We introduce GENIE, a novel second-order ODE solver for
fast DDM sampling. (ii) We propose to extract the required higher-order terms from the first-order
score model by automatic differentiation. In contrast to existing works, we explicitly work with
higher-order scores without finite difference approximations. To the best of our knowledge, GENIE is
the first method that explicitly uses higher-order scores for generative modeling with DDMs. (iii) We
propose to directly model the necessary JVPs and distill them into a small neural network. (iv) We
outperform all previous solvers and samplers for the generative differential equations of DDMs.

2 Background
We consider continuous-time DDMs [1, 57, 71] whose forward process can be described by

pt(xt|x0) = N (xt;αtx0, σ
2
t I), (1)

where x0 ∼ p0(x0) is drawn from the empirical data distribution and xt refers to diffused data
samples at time t ∈ [0, 1] along the diffusion process. The functions αt and σt are generally chosen
such that the logarithmic signal-to-noise ratio [48] log α2

t

σ2
t

decreases monotonically with t and the data
diffuses towards random noise, i.e., p1(x1)≈N (x1;0, I). We use variance-preserving [57] diffusion
processes for which σ2

t = 1− α2
t (however, all methods introduced in this work are applicable to

more general DDMs). The diffusion process can then be expressed by the (variance-preserving) SDE

dxt = − 1
2βtxt dt+

√
βt dwt, (2)

where βt = − d
dt logα

2
t , x0 ∼ p0(x0) and wt is a standard Wiener process. A corresponding reverse

diffusion process that effectively inverts the forward diffusion is given by [57, 72, 73]

dxt = − 1
2βt [xt + 2∇xt

log pt(xt)] dt+
√
βt dwt, (3)

and this reverse-time generative SDE is marginally equivalent to the generative ODE [47, 57]

dxt = − 1
2βt [xt +∇xt

log pt(xt)] dt, (4)
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where ∇xt log pt(xt) is the score function. Eq. (4) is referred to as the Probability Flow ODE [57],
an instance of continuous Normalizing flows [74, 75]. To generate samples from the DDM, one can
sample x1 ∼ N (x1;0, I) and numerically simulate either the Probability Flow ODE or the generative
SDE, replacing the unknown score function by a learned score model sθ(xt, t) ≈ ∇xt

log pt(xt).

The DDIM solver [58] has been particularly popular to simulate DDMs due to its speed and simplicity.
It has been shown that DDIM is Euler’s method applied to an ODE based on a re-parameterization of

the Probability Flow ODE [58, 69]: Defining γt =
√

1−α2
t

α2
t

and x̄t = xt
√

1 + γ2
t , we have

dx̄t
dγt

=
√
1 + γ2

t

dxt
dt

dt

dγt
+ xt

γt√
1 + γ2

t

= − γt√
1 + γ2

t

∇xt log pt(xt), (5)

where we inserted Eq. (4) for dxt

dt and used β(t) dtdγt = 2γt
γ2
t +1

. Letting sθ(xt, t) := − ϵθ(xt,t)
σt

denote
a parameterization of the score model, the approximate generative DDIM ODE is then given by

dx̄t = ϵθ (xt, t) dγt, (6)

where we used σt =
√

1− α2
t =

γt√
γ2
t +1

(see App. A for a more detailed derivation of Eq. (6)). The

model ϵθ(xt, t) can be learned by minimizing the score matching objective [1, 76]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ϵ∼N (0,I)

[
g(t)∥ϵ− ϵθ(xt, t)∥22

]
, xt = αtx0 + σtϵ, (7)

for small 0 < tcutoff ≪ 1. As is standard practice, we set g(t) = 1. Other weighting functions g(t)
are possible; for example, setting g(t) = βt

2σ2
t

recovers maximum likelihood learning [47–50].

3 Higher-Order Denoising Diffusion Solver
As discussed in Sec. 2, the so-known DDIM solver [58] is simply Euler’s method applied to the DDIM
ODE (cf. Eq. (6)). In this work, we apply a higher-order method to the DDIM ODE, building on
the truncated Taylor method (TTM) [59]. The p-th TTM is simply the p-th order Taylor polynomial
applied to an ODE. For example, for the general dydt = f(y, t), the p-th TTM reads as

ytn+1
= ytn + hn

dy

dt
|(ytn ,tn)

+ · · ·+ 1

p!
hpn

dpy

dtp
|(ytn ,tn)

, (8)

where hn = tn+1 − tn (see App. B.1 for a truncation error analysis with respect to the exact ODE
solution). Note that the first TTM is simply Euler’s method. Applying the second TTM to the DDIM
ODE results in the following scheme:

x̄tn+1 = x̄tn + hnϵθ(xtn , tn) +
1

2
h2
n

dϵθ
dγt

|(xtn ,tn)
, (9)

where hn = γtn+1 − γtn . Recall that γt =
√

1−α2
t

α2
t

, where the function αt is a time-dependent

hyperparameter of the DDM. The total derivative dγtϵθ := dϵθ
dγt

can be decomposed as follows

dγtϵθ(xt, t) =
∂ϵθ(xt, t)

∂xt

dxt
dγt

+
∂ϵθ(xt, t)

∂t

dt

dγt
, (10)

where ∂ϵθ(xt,t)
∂xt

denotes the Jacobian of ϵθ(xt, t) and

dxt
dγt

=
∂xt
∂x̄t

dx̄t
dγt

+
∂xt
∂γt

=
1√

γ2
t + 1

ϵθ(xt, t)−
γt

1 + γ2
t

xt. (11)

If not explicitly stated otherwise, we refer to the second TTM applied to the DDIM ODE, i.e., the
scheme in Eq. (9), as Higher-Order Denoising Diffusion Solver (GENIE). Intuitively, the higher-order
gradient terms used in the second TMM model the local curvature of the ODE. This translates into a
Taylor formula-based extrapolation that is quadratic in time (cf. Eqs. (8) and (9)) and more accurate
than linear extrapolation, as in Euler’s method, thereby enabling larger time steps (see Fig. 1 for a
visualization). In App. B, we also discuss the application of the third TTM to the DDIM ODE. We
emphasize that TTMs are not restricted to the DDIM ODE and could just as well be applied to the
Probability Flow ODE [57] (also see App. B) or neural ODEs [74, 75] more generally.
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(a) Ground truth (b) DDIM (c) GENIE

Figure 2: Modeling a complex 2D toy distribution: Samples in (b) and (c) are generated via DDIM and GENIE,
respectively, with 25 solver steps using the analytical score function of the ground truth distribution.
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Figure 3: Top: Single step error
using analytical score function.
Bottom: Norm of difference
ξt(∆t) between analytical and
approximate derivative computed
via finite difference method.

The Benefit of Higher-Order Methods: We showcase the benefit
of higher-order methods on a 2D toy distribution (Fig. 2a) for which
we know the score function as well as all higher-order derivatives
necessary for GENIE analytically. We generate 1k different accu-
rate “ground truth” trajectories xt using DDIM with 10k steps. We
compare these “ground truth” trajectories to single steps of DDIM
and GENIE for varying step sizes ∆t. We then measure the mean
L2-distance of the single steps x̂t(∆t) to the “ground truth” trajec-
tories xt, and we repeat this experiment for three starting points
t ∈ {0.1, 0.2, 0.5}. We see (Fig. 3 (top)) that GENIE can use larger
step sizes to stay within a certain error tolerance for all starting
points t. We further show samples for DDIM and GENIE, using 25
solver steps, in Fig. 2. DDIM has the undesired behavior of sampling
low-density regions between modes, whereas GENIE looks like a
slightly noisy version of the ground truth distribution (Fig. 2a).

Comparison to Multistep Methods: Linear multistep methods are
an alternative higher-order method to solve ODEs. Liu et al. [63]
applied the well-established Adams–Bashforth [AB, 77] method
to the DDIM ODE. AB methods can be derived from TTMs by ap-
proximating higher-order derivatives dpy

dtp using the finite difference
method [78]. For example, the second AB method is obtained from the second TTM by replacing
d2y
dt2 with the first-order forward difference approximation (f(ytn , tn)− f(ytn−1

, tn−1))/hn−1.
In Fig. 3 (bottom), we visualize the mean L2-norm of the difference ξt(∆t) between the analytical
derivative dγtϵθ and its first-order forward difference approximation for varying step sizes ∆t for
the 2D toy distribution. The approximation is especially poor at small t for which the score function
becomes complex (App. E for details on all toy experiments).

3.1 Learning Higher-Order Derivatives
The above observations inspire to apply GENIE to DDMs of more complex and high-dimensional data
such as images. Regular DDMs learn a model ϵθ for the first-order score; however, the higher-order
gradient terms required for GENIE (cf. Eq. (10)) are not immediately available to us, unlike in the
toy example above. Let us insert Eq. (11) into Eq. (10) and analyze the required terms more closely:

dγtϵθ(xt, t) =
1√

γ2
t + 1

∂ϵθ(xt, t)

∂xt
ϵθ(xt, t)︸ ︷︷ ︸

JVP1

− γt
1 + γ2

t

∂ϵθ(xt, t)

∂xt
xt︸ ︷︷ ︸

JVP2

+
∂ϵθ(xt, t)

∂t

dt

dγt
. (12)

We see that the full derivative decomposes into two JVP terms and one simpler time derivative term.
The term ∂ϵθ(xt,t)

∂xt
plays a crucial role in Eq. (12). It can be expressed as

∂ϵθ(xt, t)

∂xt
= −σt

∂sθ(xt, t)

∂xt
≈ −σt∇⊤

xt
∇xt

log pt(xt), (13)

which means that GENIE relies on second-order score functions ∇⊤
xt
∇xt

log pt(xt) under the hood.

Given a DDM, that is, given ϵθ, we could compute the derivative dγtϵθ for the GENIE scheme
in Eq. (9) using automatic differentiation (AD). This would, however, make a single step of GENIE at
least twice as costly as DDIM, because we would need a forward pass through the ϵθ network to com-
pute ϵθ(xt, t) itself, and another pass to compute the JVPs and the time derivative in Eq. (12). These
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forward passes cannot be parallelized, since the vector-part of JVP1 in Eq. (12) involves ϵθ itself, and
needs to be known before computing the JVP. To accelerate sampling, this overhead is too expensive.

Figure 4: Our distilled model kψ that predicts the
gradient dγtϵθ is implemented as a small additional
output head on top of the first-order score model
ϵθ . Purple layers are used both in ϵθ and kψ; green
layers are specific for ϵθ and kψ .

Gradient Distillation: To avoid this overhead, we
propose to first distill dγtϵθ into a separate neural
network. During distillation training, we can
use the slow AD-based calculation of dγtϵθ, but
during synthesis we call the trained neural network.
We build on the observation that the internal
representations of the neural network modeling ϵθ
(in our case a U-Net [79] architecture) can be used
for downstream tasks [80, 81]: specifically, we
provide the last feature layer from the ϵθ network
together with its time embedding as well as xt
and the output ϵθ(xt, t) to a small prediction
head kψ(xt, t) that models the different terms
in Eq. (12) (see Fig. 4). The overhead generated by
kψ is small, for instance less than 2% for our CIFAR-10 model (also see Sec. 5), and we found this
approach to provide excellent performance. Note that in principle we could also train an independent
deep neural network, which does not make use of the internal representations of ϵθ and could
therefore theoretically be run in parallel to the ϵθ model. We justify using small prediction heads
over independent neural networks because AD-based distillation training is slow: in each training
iteration we first need to call the ϵθ network, then calculate the JVP terms, and only then can we
call the distillation model. By modeling dγtϵθ via small prediction heads, while reusing the internal
representation of the score model, we can make training relatively fast: we only need to train kψ
for up to 50k iterations. In contrast, training score models from scratch takes roughly an order of
magnitude more iterations. We leave training of independent networks to predict dγtϵθ to future work.
Mixed Network Parameterization: We found that learning dγtϵθ directly as single output of a
neural network can be challenging. Assuming a single data point distribution p0(x0) = δ(x0 = 0),
for which we know the diffused score function and all higher-order derivatives analytically, we found
that the terms in Eq. (12) all behave very differently within the t ∈ [0, 1] interval (for instance, the
prefactor of JVP1 in Eq. (12) approaches 1 as t → 0, while JVP2’s prefactor vanishes). As outlined
in detail in App. C.2.3, this simple single data point assumption implies an effective mixed network
parameterization, an approach inspired by the “mixed score parametrizations” in Vahdat et al. [49]
and Dockhorn et al. [60]. In particular, we model

kψ = − 1

γt
k
(1)
ψ +

γt
1 + γ2

t

k
(2)
ψ +

1

γt(1 + γ2
t )

k
(3)
ψ ≈ dγtϵθ, (14)

where k(i)
ψ (xt, t), i ∈ {1, 2, 3}, are different output channels of the neural network (i.e. the additional

head on top of the ϵθ network). The three terms in Eq. (14) exactly correspond to the three terms
of Eq. (12), in the same order. We show the superior performance of this parametrization in Sec. 5.3.
Learning Objective: Ideally, we would like our model kψ to match dγtϵθ exactly, for all t ∈ [0, T ]
and xt in the diffused data distribution, which the generative ODE trajectories traverse. This suggests
a simple (weighted) L2-loss, similar to regular score matching losses for DDMs [1, 57]:

min
ψ

Et∼U [tcutoff ,1],x0∼p(x0),ϵ∼N (0,I)

[
gd(t)∥kψ(αtx0 + σtϵ, t)− dγtϵθ(αtx0 + σtϵ, t)∥22

]
(15)

for diffused data points αtx0 + σtϵ and gd(t) = γ2
t to counteract the 1/γt in the first and third

terms of Eq. (14). This leads to a roughly constant loss over different time values t. During training
we compute dγtϵθ via AD; however, at inference time we use the learned prediction head kψ to
approximate dγtϵθ. In App. C.2.4, we provide pseudo code for training and sampling with heads
kψ . Note that our distillation objective is consistent and principled: if kψ matches dγtϵθ exactly, the
resulting GENIE algorithm recovers the second TTM exactly (extended discussion in App. B.4).
Alternative Learning Approaches: As shown in Eq. (13), GENIE relies on second-order score
functions. Recently, Meng et al. [82] directly learnt such higher-order scores with higher-order score
matching objectives. Directly applying these techniques has the downside that we would need to ex-
plicitly form the higher-order score terms ∇⊤

xt
ϵθ(xt, t), which are very high-dimensional for data such

as images. Low-rank approximations are possible, but potentially insufficient for high performance. In
our approach, we are avoiding this complication by directly modeling the lower-dimensional JVPs. We
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found that the methods from Meng et al. [82] can be modified to provide higher-order score matching
objectives for the JVP terms required for GENIE and we briefly explored this (see App. D). However,
our distillation approach with AD-based higher-order gradients worked much better. Nevertheless,
this is an interesting direction for future research. To the best of our knowledge, GENIE is the first
solver for the generative differential equations of DDMs that directly uses higher-order scores (in the
form of the distilled JVPs) for generative modeling without finite difference or other approximations.

4 Related Work

Accelerated Sampling from DDMs. Several previous works address the slow sampling of DDMs:
One line of work reduces and readjusts the timesteps [3, 64] used in time-discretized DDMs [1, 71].
This can be done systematically by grid search [32] or dynamic programming [83]. Bao et al. [65]
speed up sampling by defining a new DDM with optimal reverse variances. DDIM [58], discussed in
Sec. 2, was also introduced as a method to accelerate DDM synthesis. Further works leverage modern
ODE and SDE solvers for fast synthesis from (continuous-time) DDMs: For instance, higher-order
Runge–Kutta methods [57, 84] and adaptive step size SDE solvers [62] have been used. These
methods are not optimally suited for the few-step synthesis regime, in which GENIE shines; see
also Sec. 5. Most closely related to our work is Liu et al. [63], which simulates the DDIM ODE [58]
using a higher-order linear multistep method [77]. As shown in Sec. 3, linear multistep methods
can be considered an approximation of the TTMs used in GENIE. Furthermore, Tachibana et al. [61]
solve the generative SDE via a higher-order Itô–Taylor method [59] and in contrast to our work, they
propose to use an “ideal derivative trick” to approximate higher-order score functions. In App. B.2,
we show that applying this ideal derivative approximation to the DDIM ODE does not have any
effect: the “ideal derivatives” are zero by construction. Note that in GENIE, we in fact use the DDIM
ODE, rather than, for example, the regular Probability Flow ODE [57], as the base ODE for GENIE.

Alternatively, sampling from DDMs can also be accelerated via learning: For instance, Watson et al.
[66] learn parameters of a generalized family of DDMs by optimizing for perceptual output quality.
Luhman and Luhman [68] and Salimans and Ho [69] distill a DDIM sampler into a student model,
which enables sampling in as few as a single step. Xiao et al. [67] replace DDMs’ Gaussian samplers
with expressive generative adversarial networks, similarly allowing for few-step synthesis. GENIE
can also be considered a learning-based approach, as we distill a derivative of the generative ODE into
a separate neural network. However, in contrast to the mentioned methods, GENIE still solves the true
underlying generative ODE, which has major advantages: for instance, it can still be used easily for
classifier-guided sampling [4, 57, 70] and to efficiently encode data into latent space—a prerequisite
for likelihood calculation [47, 57] and editing applications [17]. Note that the learnt sampler [66]
defines a proper probabilistic generalized DDM; however, it isn’t clear how it relates to the generative
SDE or ODE and therefore how compatible the method is with applications such as classifier guidance.

Other approaches to accelerate DDM sampling change the diffusion itself [60, 85, 86] or train DDMs
in the latent space of a Variational Autoencoder [49]. GENIE is complementary to these methods.

Higher-Order ODE Gradients beyond DDMs. TTMs [78] and other methods that leverage higher-
order gradients are also applied outside the scope of DDMs. For instance, higher-order derivatives
can play a crucial role when developing solvers [87] and regularization techniques [88, 89] for neural
ODEs [74, 75]. Outside the field of machine learning, higher-order TTMs have been widely studied,
for example, to develop solvers for stiff [90] and non-stiff [90, 91] systems.

Concurrent Works. Zhang and Chen [92] motivate the DDIM ODE from an exponential integrator
perspective applied to the Probability Flow ODE and propose to apply existing solvers from the
numerical ODE literature, namely, Runge–Kutta and linear multistepping, to the DDIM ODE directly.
Lu et al. [93] similarly recognize the semi-linear structure of the Probability Flow ODE, derive
dedicated solvers, and introduce new step size schedulers to accelerate DDM sampling. Karras
et al. [94] propose new fast solvers, both deterministic and stochastic, specifically designed for the
differential equations arising in DDMs. Both Zhang et al. [95] and Karras et al. [94] realize that
the DDIM ODE has “straight line solution trajectories” for spherical normal data and single data
points—this exactly corresponds to our derivation that the higher-order terms in the DDIM ODE are
zero in such a setting (see App. B.2). Bao et al. [96] learn covariance matrices for DDM sampling
using prediction heads somewhat similar to the ones in GENIE; in App. G.1, we thoroughly discuss
the differences between GENIE and the method proposed in Bao et al. [96].
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5 Experiments

Datasets: We run experiments on five datasets: CIFAR-10 [97] (resolution 32), LSUN Bedrooms [98]
(128), LSUN Church-Outdoor [98] (128), (conditional) ImageNet [99] (64), and AFHQv2 [100] (512).
On AFHQv2 we only consider the subset of cats; referred to as “Cats” in the remainder of this work.

Architectures: Except for CIFAR-10 (we use a checkpoint by Song et al. [57]), we train our own score
models using architectures introduced by previous works [1, 4]. The architecture of our prediction
heads is based on (modified) BigGAN residual blocks [57, 101]. To minimize computational overhead,
we only use a single residual block. See App. C for training and architecture details.

Evaluation: We measure sample quality via Fréchet Inception Distance [FID, 102] (see App. F.1).

Synthesis Strategy: We simulate the DDIM ODE from t=1 up to t=10−3 using evaluation times
following a quadratic function (quadratic striding [58]). For variance-preserving DDMs, it can be
beneficial to denoise the ODE solver output at the cutoff t=10−3, i.e., x0 = xt−σtϵθ(xt,t)

αt
[57, 103].

Note that the denoising step involves a score model evaluation, and therefore “loses” a function
evaluation that could otherwise be used as an additional step in the ODE solver. To this end,
denoising the output of the ODE solver is left as a hyperparameter of our synthesis strategy.

Analytical First Step (AFS): Every additional neural network call becomes crucial in the low number
of function evaluations (NFEs) regime. We found that we can improve the performance of GENIE
and all other methods evaluated on our checkpoints by replacing the learned score with the (analytical)
score of N (0, I) ≈ pt=1(xt) in the first step of the ODE solver. The “gained” function evaluation
can then be used as an additional step in the ODE solver. Similarly to the denoising step mentioned
above, AFS is treated as a hyperparameter of our Synthesis Strategy. AFS details in App. F.2.

Accounting for Computational Overhead: GENIE has a slightly increased computational overhead
compared to other solvers due to the prediction head kψ . The computational overhead is increased
by 1.47%, 2.83%, 14.0%, and 14.4% on CIFAR-10, ImageNet, LSUN Bedrooms, and LSUN Church-
Outdoor, respectively (see also App. C.2.5). This additional overhead is always accounted for
implicitly: we divide the NFEs by the computational overhead and round to the nearest integer. For
example, on LSUN Bedrooms, we compare baselines with 10/15 NFEs to GENIE with 9/13 NFEs.

5.1 Image Generation

In Fig. 5 we compare our method to the most competitive baselines. In particular, on the same score
model checkpoints, we compare GENIE with DDIM [58], S-PNDM [63], and F-PNDM [63]. For
these four methods, we only include the best result over the two hyperparameters discussed above,
namely, the denoising step and AFS (see App. F.6 for tables with all results). We also include three
competitive results from the literature [64–66] that use different checkpoints and sampling strategies:
for each method, we include the best result for their respective set of hyperparameters. We do not
compare in this figure with Knowledge Distillation [KD, 68], Progressive Distillation [PG, 69] and
Denoising Diffusion GANs [DDGAN, 67] as they do not solve the generative ODE/SDE and use
fundamentally different sampling approaches with drawbacks discussed in Sec. 4.

For NFEs ∈ {10, 15, 20, 25}, GENIE outperforms all baselines (on the same checkpoint) on all four
datasets (see detailed results in App. F.6 and GENIE image samples in App. F.7). On CIFAR-10
and (conditional) ImageNet, GENIE also outperforms these baselines for NFEs=5, whereas DDIM
outperforms GENIE slightly on the LSUN datasets (see tables in App. F.6). GENIE also performs
better than the three additional baselines from the literature (which use different checkpoints and
sampling strategies) with the exception of the Learned Sampler [LS, 66] on LSUN Bedrooms for
NFEs=20. Though LS uses a learned striding schedule on LSUN Bedrooms (whereas GENIE simply
uses quadratic striding), the LS’s advantage is most likely due to the different checkpoint. In Tab. 1,
we investigate the effect of optimizing the striding schedule, via learning (LS) or grid search (DDIM
& GENIE), on CIFAR-10 and find that its significance decreases rapidly with increased NFEs (also
see App. F.6 for details). In Tab. 1, we also show additional baseline results; however, we do not
include commonly-used adaptive step size solvers in Fig. 5, as they are arguably not well-suited for
this low NFE regime: for example, on the same CIFAR-10 checkpoint we use for GENIE, the adaptive
SDE solver introduced in Jolicoeur-Martineau et al. [62] obtains an FID of 82.4 at 48 NFEs. Also
on the same checkpoint, the adaptive Runge–Kutta 4(5) [84] method applied to the ProbabilityFlow
ODE achieves an FID of 13.1 at 38 NFEs (solver tolerances set to 10−2).
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Figure 5: Unconditional perfor-
mance on four popular bench-
mark datasets. The first four meth-
ods use the same score model
checkpoints, whereas the last
three methods all use different
checkpoints. (†): numbers are
taken from literature.

Method NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours) (*) 11.2 5.28 4.49 3.94 3.64
GENIE (ours) 13.9 5.97 4.49 3.94 3.67
DDIM [58] (*) 27.6 11.2 7.35 5.87 5.16
DDIM [58] 29.7 11.2 7.35 5.87 5.16
S-PNDM [63] 35.9 10.3 6.61 5.20 4.51
F-PNDM [63] N/A N/A 10.3 5.96 4.73
Euler–Maruyama 325 230 164 112 80.3

FastDDIM [64] (†) - 9.90 - 5.05 -
Learned Sampler [66] (†/ *) 12.4 7.86 5.90 4.72 4.25
Learned Sampler [66] (†) 14.3 8.15 5.94 4.89 4.47
Analytic DDIM [65] (†) - 14.0 - - 5.71
CLD-SGM [60] 334 306 236 162 106
VESDE-PC [57] 461 461 461 461 462

Table 1: Unconditional CIFAR-10
generative performance (measured
in FID). Methods above the mid-
dle line use the same score model
checkpoint; methods below all use
different ones. (†): numbers are
taken from literature. (*): meth-
ods either learn an optimal striding
schedule (Learned Sampler) or do
a small grid search over striding
schedules (DDIM & GENIE); also
see App. F.6

The results in Fig. 5 suggest that higher-order gradient information, as used in GENIE, can be
efficiently leveraged for image synthesis. Despite using small prediction heads our distillation seems
to be sufficiently accurate: for reference, replacing the distillation heads with the derivatives computed
via AD, we obtain FIDs of 9.22, 4.11, 3.54, 3.46 using 10, 20, 30, and 40 NFEs, respectively (NFEs
adjusted assuming an additional computational overhead of 100%). As discussed in Sec. 3, linear
multistep methods such as S-PNDM [63] and F-PNDM [63] can be considered (finite difference)
approximations to TTMs as used in GENIE. These approximations can be inaccurate for large
timesteps, which potentially explains their inferior performance when compared to GENIE. When
compared to DDIM, the superior performance of GENIE seems to become less significant for large
NFE: this is in line with the theory, as higher-order gradients contribute less for smaller step sizes (see
the GENIE scheme in Eq. (9)). Approaches such as FastDDIM [64] and AnalyticDDIM [65], which
adapt variances and discretizations of discrete-time DDMs, are useful; however, GENIE suggests
that rigorous higher-order ODE solvers leveraging the continuous-time DDM formalism are still
more powerful. To the best of our knowledge, the only methods that outperform GENIE abandon
this ODE or SDE formulation entirely and train NFE-specific models [67, 69] which are optimized
for the single use-case of image synthesis.

5.2 Guidance and Encoding
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Figure 6: Sample quality as a func-
tion of guidance scale on ImageNet.

As discussed in Sec. 4, one major drawback of approaches such
as KD [68], PG [69] and DDGAN [67] is that they abandon
the ODE/SDE formalism, and cannot easily use methods
such as classifier(-free) guidance [57, 70] or perform image
encoding. However, these techniques can play an important role
in synthesizing photorealistic images from DDMs [3, 4, 15, 17],
as well as for image editing tasks [12, 17].
Classifier-Free Guidance [70]: We replace the unconditional
model ϵθ(xt, t) with ϵ̂θ(xt, t, c, w) = (1 + w)ϵθ(xt, t, c) −
wϵθ(xt, t) in the DDIM ODE (cf Eq. (6)), where ϵθ(xt, t, c)
is a conditional model and w > 1.0 is the “guidance scale”.
GENIE then requires the derivative
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Figure 8: Encoding and subsequent decoding on LSUN Church-Outdoor. Left: Visual reconstruction. Right:
L2-distance to reference in Inception feature space [104], averaged over 100 images.

dγt ϵ̂θ(xt, t, c, w) = (1 + w)dγtϵθ(xt, t, c)− wdγtϵθ(xt, t). (16)

for guidance. Hence, we need to distill dγtϵθ(xt, t, c) and dγtϵθ(xt, t), for which we could also share
parameters [70]. We compare GENIE with DDIM on ImageNet in Fig. 6. GENIE clearly outperforms
DDIM, in particular for few NFEs, and GENIE also synthesizes high-quality images (see Fig. 7).
Image Encoding: We can use GENIE also to solve the generative ODE in reverse to encode
given images. Therefore, we compare GENIE to DDIM on the “encode-decode” task, analyzing
reconstructions for different NFEs (used twice for encoding and decoding): We find that GENIE
reconstructs images much more accurately (see Fig. 8). For more details on this experiment as well
as the guidance experiment above, see App. F.4 and App. F.3, respectively. We also show latent
space interpolations for both GENIE and DDIM in App. F.5.

5.3 Ablation Studies Table 2: CIFAR-10 ablation studies (measured in FID).
Ablation NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

Standard 13.9 6.04 4.49 3.94 3.67
No mixed 14.7 6.32 4.82 4.31 4.10
No weighting 14.8 7.45 5.89 5.17 4.80

Bigger model 13.7 5.58 4.46 4.05 3.77

We perform ablation studies over architec-
ture and training objective for the prediction
heads used in GENIE: In Tab. 2, “No mixed”
refers to learning dγtϵθ directly as single
network output without mixed network
parameterization; “No weighting” refers to setting gd(t) = 1 in Eq. (15); “Standard” uses both the
mixed network parameterization and the weighting function gd(t) = γ2

t . We can see that having both
the mixed network parametrization and the weighting function is clearly beneficial. We also tested
deeper networks in the prediction heads: for “Bigger model” we increased the number of residual
blocks from one to two. The performance is roughly on par with “Standard”, and we therefore opted
for the smaller head due to the lower computational overhead.

5.4 Upsampling Table 3: Cats (upsampler) generative perfor-
mance (measured in FID).

Method NFEs=5 NFEs=10 NFEs=15

GENIE (ours) 5.53 4.90 4.83
DDIM [58] 9.47 6.64 5.85
S-PNDM [63] 14.6 11.0 8.83
F-PNDM [63] N/A N/A 11.7

Cascaded diffusion model pipelines [2] and DDM-based
super-resolution [8] have become crucial ingredients in
DDMs for large-scale image generation [105]. Hence,
we also explore the applicability of GENIE in this
setting. We train a 128 × 128 base model as well as a
128 × 128 → 512 × 512 diffusion upsampler [2, 8] on
Cats. In Tab. 3, we compare the generative performance of GENIE to other fast samplers for the
upsampler (in isolation). We find that GENIE performs very well on this task: with only five NFEs
GENIE outperforms all other methods at NFEs=15. We show upsampled samples for GENIE with
NFEs=5 in Fig. 9. For more quantitative and qualitative results, we refer to App. F.6 and App. F.7,
respectively. Training and inference details for the score model and the GENIE prediction head,
for both base model and upsampler, can be found in App. C.
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Figure 9: High-resolution images generated with the 128 × 128 → 512 × 512 GENIE upsampler
using only five neural network calls. For the two images at the top, the upsampler is conditioned on
test images from the Cats dataset. For the two images at the bottom, the upsampler is conditioned on
samples from the 128× 128 GENIE base model (generated using 25 NFEs); an upsampler neural
network evaluation is roughly four times as expensive as a base model evaluation.

6 Conclusions
We introduced GENIE, a higher-order ODE solver for DDMs. GENIE improves upon the commonly
used DDIM solver by capturing the local curvature of its ODE’s gradient field, which allows for
larger step sizes when solving the ODE. We further propose to distill the required higher-order
derivatives into a small prediction head—which we can efficiently call during inference—on top of
the first-order score network. A limitation of GENIE is that it is still slightly slower than approaches
that abandon the differential equation framework of DDMs altogether, which, however, comes at the
considerable cost of preventing applications such as guided sampling. To overcome this limitation,
future work could leverage even higher-order gradients to accelerate sampling from DDMs even
further (also see App. G.2).
Broader Impact. Fast synthesis from DDMs, the goal of GENIE, can potentially make DDMs an
attractive method for promising interactive generative modeling applications, such as digital content
creation or real-time audio synthesis, and also reduce DDMs’ environmental footprint by decreasing
the computational load during inference. Although we validate GENIE on image synthesis, it could
also be utilized for other tasks, which makes its broader societal impact application-dependent. In
that context, it is important that practitioners apply an abundance of caution to mitigate impacts given
generative modeling can also be used for malicious purposes, discussed for instance in Vaccari and
Chadwick [106], Nguyen et al. [107], Mirsky and Lee [108].
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