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Abstract

Although autoregressive models have achieved promising results on image gener-
ation, their unidirectional generation process prevents the resultant images from
fully reflecting global contexts. To address the issue, we propose an effective image
generation framework of Draft-and-Revise with Contextual RQ-transformer to
consider global contexts during the generation process. As a generalized VQ-VAE,
RQ-VAE first represents a high-resolution image as a sequence of discrete code
stacks. After code stacks in the sequence are randomly masked, Contextual RQ-
Transformer is trained to infill the masked code stacks based on the unmasked
contexts of the image. Then, we propose the two-phase decoding, Draft-and-Revise,
for Contextual RQ-Transformer to generate an image, while fully exploiting the
global contexts of the image during the generation process. Specifically. in the
draft phase, our model first focuses on generating diverse images despite rather
low quality. Then, in the revise phase, the model iteratively improves the quality of
images, while preserving the global contexts of generated images. In experiments,
our method achieves state-of-the-art results on conditional image generation. We
also validate that the Draft-and-Revise decoding can achieve high performance by
effectively controlling the quality-diversity trade-off in image generation.

1 Introduction

Figure 1: Examples of image inpainting by
an AR model (middle) and ours (right).

Learning discrete representations of images enables
autoregressive (AR) models to achieve promising re-
sults on image generation. Here, an image is encoded
into a feature map, which is represented as a sequence
of discrete codes [13, 33] or code stacks [23]. Then,
an AR model generates a sequence of codes in the
raster scan order and decodes the codes into an image.
Consequently, AR models show high performance
and scalability on large-scale datasets [13, 23, 26].

Despite the promising results of AR models, we pos-
tulate that the ability of AR models is limited due to the lack of considering global contexts in the
generation process. Specifically, since AR models generate images by sequentially predicting the
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next code and attending to only precedent codes generated, they neither exploit the later part of the
generated image nor consider the global contexts during generation. For example, Figure 1 (middle)
shows that an AR model fails to generate a coherent image, when it is asked to inpaint the masked
region of Figure 1 (left) with a school bus. Such a failure is due to the inability of AR models to refer
to the context of traffic lane on the right side of the masked region.

To address this issue, we propose an effective image generation framework, Draft-and-Revise, with a
contextual transformer to exploit the global contexts of images. Given a randomly masked image, the
contextual transformer is first trained to infill the masks by bidirectional self-attentions similarly to
BERT [8]. To fully leverage the contextual prediction in generation, we propose Draft-and-Revise
decoding which has two phases, draft and revise, imitating the image generation process of a human
expert who draws a draft first and iteratively revises the draft to improve its quality. In the draft phase,
the model first infills an empty image to generate a draft image with diverse contents despite the
rather low-quality. In the revise phase, the visual quality of the draft is iteratively improved, while the
global contexts of the draft are preserved and exploited. Consequently, our Draft-and-Revise with
contextual transformer effectively generates high-quality images with diverse contents.

We use residual-quantized VAE (RQ-VAE) [23] to implement our image generation framework, since
RQ-VAE generalizes vector-quantized VAE (VQ-VAE) [33] by representing an image as a sequence
of code stacks instead of a sequence of codes. Then, we propose Contextual RQ-Transformer as a
contextual transformer for masked code stack modeling of RQ-VAE. Specifically, given a sequence
of randomly masked code stacks, Contextual RQ-Transformer first uses a bidirectional transformer to
capture the global contexts of unmasked code stacks. Based on the global contexts, the masked code
stacks are predicted in parallel, while the codes in each masked code stack are sequentially predicted.
In experiments, our Draft-and-Revise framework with Contextual RQ-Transformer achieves state-of-
the-art results on conditional image generation and remarkable improvements on image inpainting. In
addition, we demonstrate that Draft-and-Revise decoding can effectively control the quality-diversity
trade-off in image generation to achieve high performance.

The main contributions of this paper are summarized as follows. 1) We propose an intuitive and
powerful framework, Contextual RQ-Transformer, for masked code stack modeling of RQ-VAE
based on a bidirectional transformer. 2) We propose a novel two-phase decoding, Draft-and-Revise,
for bidirectional transformers to fully exploit the global contexts during image generation and
achieve state-of-the-art results on class- and text-conditional image generation benchmarks. 3) An
extensive ablation study validates the effectiveness of Draft-and-Revise decoding on controlling the
quality-diversity trade-off and its capability to generate high-quality images with diverse contents.

2 Related Work

Discrete Representation for Image Generation By representing an image as a sequence of codes,
VQ-VAE [33] becomes an important part for high-resolution image generation [6, 10, 15, 23, 26, 33],
but suffers from low quality of reconstructed images. However, VQGAN [13] significantly improves
the perceptual quality of reconstructed images by adding the adversarial and perceptual losses into the
training objective of VQ-VAE. As a generalized approach of VQ-VAE and VQGAN, RQ-VAE [23]
represents an image as a sequence of code stacks, which consists of ordered codes, and reduces the
sequence length, while preserving the reconstruction quality. Then, RQ-Transformer [23] achieves
high performance with lower computational costs on generating high-resolution images. However, as
an AR model of RQ-VAE, RQ-Transformer cannot capture the global contexts of generated images.

Generation Tasks with Bidirectional Transformers To overcome the limitation of AR models
on unidirectional architecture, bidirectional transformers have been studied for generative tasks.
After a bidirectional transformer is trained to infill a random mask as the masked token modeling of
BERT [8], an effective decoding method has been proposed for bidirectional transformers to generate
texts [14, 30], images [6, 35], or videos [16]. For image generation, M6-UFC [35] first incorporates
the masked token modeling in the codes of VQGAN [13] for image generation. MaskGIT [6] proposes
the confidence-based decoding to achieve high performance on ImageNet [7]. Similar to M6-UFC [35]
and MaskGIT [6], we also incorporate the masked token modeling of RQ-VAE in a bidirectional
transformer for image generation. However, instead of the confidence-based decoding [6, 35],
we propose a novel two-phase decoding for a bidirectional transformer to achieve state-of-the-art
performance and validate its effectiveness. Recently, discrete diffusion models [1, 4, 12, 15] also uses
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Figure 2: The overview of Draft-and-Revise framework with Contextual RQ-Transformer. Our
framework exploits global contexts of images to generate high-quality images with diverse contents.

bidirectional transformers to generate an image, and the training with an absorbing state [1] is also
the same to infill randomly masked sequence [4, 6]. However, different from the reverse process of
diffusion models, our decoding method has explicit two phases to generate high-quality images with
diverse contents.

3 Draft-and-Revise Framework for Effective Image Generation

In this section, we propose our Draft-and-Revise framework for effective image generation using
bidirectional contexts of images. We first review RQ-VAE [23] as a generalization of VQ-VAE. Then,
we propose Contextual RQ-Transformer which is trained to infill a randomly masked sequence of
code stacks of RQ-VAE by understanding bidirectional contexts of unmasked parts in the sequence.
Lastly, we propose draft-and-revise decoding for a bidirectional transformer to effectively generate
high-quality images exploiting global contexts of images. Figure 2 provides the overview of our
proposed framework, including Contextual RQ-Transformer and Draft-and-Revise decoding.

3.1 Residual-Quantized Variational Autoencoder (RQ-VAE)

RQ-VAE [23] represents an image as a sequence of code stacks. Let a codebook C = {(k, e(k))}k∈[K]

include pairs of a code k and its code embedding e(k) ∈ Rnz , where K = |C| is the codebook size
and nz is the dimensionality of e(k). Given a vector z ∈ Rnz , Q(z; C) is defined as the code of z:

Q(z; C) = argmin
k

∥z− e(k)∥22 . (1)

Then, RQ with depth D represents a vector as a code stack which consists of D codes:

RQ(z; C, D) = (k1, · · · , kD) ∈ [K]D, (2)

where kd is the d-th code of z. Specifically, RQ first initializes the 0-th residual vector as r0 = z, and
then recursively discretizes a residual vector rd−1 and computes the next residual vector rd as

kd = Q(rd−1; C), rd = rd−1 − e(kd), (3)

for d ∈ [D]. Finally, z is approximated by the sum of the D code embeddings ẑ :=
∑D

d=1 e(kd). We
remark that RQ is a generalized version of VQ, as RQ with D=1 is equivalent to VQ. For D > 1,
RQ conducts a finer approximation of z as the quantization errors are sequentially reduced as d
increases. Here, the coarse-to-fine approximation ensures the D codes to be sequentially dependent.

RQ-VAE represents an image as a map of code stacks. Specifically, a given image X is first converted
to a low-resolution feature map Z = E(X) ∈ RH×W×nz , and then each feature vector Zhw at spatial
position (h,w) is discretized into a code stack by RQ with depth D. As a result, we get a map of
code stacks S ∈ [K]H×W×D. Further details of RQ-VAE are referred to Appendix.
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3.2 Contextual Transformer for Image Generation with Global Contexts

As a bidirectional transformer for RQ-VAE, we propose Contextual RQ-Transformer for image
generation based on a contextual understanding of images. First, we adopt the pretraining of BERT [8]
to formulate a masked code stack modeling of RQ-VAE. Then, we introduce how Contextual RQ-
Transformer infills the randomly masked code stacks after reading the given contextual information.

3.2.1 Masked Code Stack Modeling of RQ-VAE

By adopting the pretraining of BERT [8], we formulate the masked code stack modeling of RQ-VAE
with a contextual transformer to generate an image by iterative mask-infilling as non-AR models [14].
We first convert the map S ∈ [K]H×W×D into a sequence of code stacks S′ ∈ [K]N×D using the
raster-scan ordering, where N = HW and S′

n = (S′
n1, · · · ,S′

nD) ∈ [K]D for n ∈ [N ]. We denote
S′ as S for the brevity of notation. A mask vector m is defined as a binary vector m ∈ {0, 1}N to
indicate the spatial positions to be masked. Then, the masked sequence S\m of S by m is defined as

(S\m)n =

{
Sn if mn = 0

[MASK]D if mn = 1
, (4)

where [MASK] is a mask token to substitute for Snd if mn = 1. Given a random mask vector
m ∼ q(m), the masked code stacks given S\m are modeled as∏

n:mn=1

p(Sn|S\m) =
∏

n:mn=1

D∏
d=1

p(Snd|Sn,<d,S\m), (5)

where q(m) is a mask distribution where the masking portion
∑N

n=1 mi/N in (0, 1] as well as the
masking positions are randomly chosen. Instead of fixing the portion to 15% as in BERT, training a
model with a random masking portion from (0, 1] enables the model to generate new images based on
various masking patterns including mn = 1 for all n. We explain the details of q(m) in Section 3.2.3.

The left-hand side of Eq. 5 implies that all masked code stacks can be decoded in parallel based on
the contexts of S\m. If D = 1, Eq. 5 becomes equivalent to conventional masked token modeling of
texts [8] and images [6, 16] where a single token at each masked position is predicted. For D > 1, the
D codes of Sn are autoregressively predicted, as they are sequentially computed in Eq. 3 for a coarse-
to-fine approximation and hence well-suited for an AR prediction. We show that the effectiveness of
our framework is generalizable regardless of D in Appendix B. In addition, the parallel decoding can
control the trade-off between the quality and sampling speed of image generation.

3.2.2 Contextual RQ-Transformer

We modify the previous RQ-Transformer [23] for masked code stack modeling with bidirectional
contexts in Eq. 5. Contextual RQ-Transformer consists of Bidirectional Spatial Transformer and
Depth Transformer: Bidirectional Spatial Transformer understands contextual information in the
unmasked code stacks using bidirectional self-attentions, and Depth Transformer infills the masked
code stacks in parallel, by autoregressively predicting the D codes at each position.

Bidirectional Spatial Transformer Given a masked sequence of code stacks S\m, bidirectional
spatial transformer first embeds the masked sequence S\m using the code embeddings of RQ-VAE as

un = PEN (n) +

{∑D
d=1 e(Snd) if mn = 0

e[MASK] if mn = 1
, (6)

where PEN (n) is an embedding for position n, and e[MASK] ∈ Rnz is a mask embedding. Then, the
bidirectional self-attention blocks, f spatial

θ , extracts the context vector hn to predict a code stack Sn,

(h1, · · · ,hN ) = f spatial
θ (u1, · · · ,uN ). (7)

Depth Transformer The code stack at a masked position Sn = (Sn1, · · · ,SnD) is autoregressively
predicted. The input of depth transformer (vnd)

D
d=1 is defined as

vnd = PED(d) +

{
hn if d = 1∑d−1

d′=1 e(Snd′) if d > 1
(8)
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Algorithm 1 UPDATE of S

Require: A sequence of code stacks S, a partition Π = (m1, · · · ,mT ), a model θ
1: for t = 1, · · · , T do
2: Sample Sn ∼ pθ(Sn|S\mt) ∀n : mt

n = 1 ▷ update the codes at masked positions
3: end for
4: return S

Algorithm 2 Draft-and-Revise decoding

Require: Partition sampling distributions pdraft and prev, the number of revision iterations M
/* draft phase */

1: Sempty ← ([MASK], · · · , [MASK])N ▷ initialize empty code map
2: Sample Π ∼ p(Π;Tdraft)
3: Sdraft ← UPDATE(Sempty,Π; θ) ▷ generate a draft code map

/* revision phase */
4: S0 ← Sdraft

5: for m = 1, · · · ,M do
6: Sample Π ∼ p(Π;Trevise)
7: Sm ← UPDATE(Sm−1,Π; θ) ▷ iteratively revise the code map
8: end for
9: return SM

where PED(d) is the positional embedding for depth d. Then, depth transformer fdepth
θ , which

consists of causal attention blocks, outputs the logit pnd to predict the d-th code Snd at position n as

pnd = fdepth
θ (vn1, · · · ,vnd) and pθ(Snd = k|Sn,<d,S\m) = softmax(pnd)k. (9)

We remark that the architecture of Contextual RQ-Transformer subsumes bidirectional transformers.
Specifically, RQ-Transformer with the depth D = 1 is equivalent to a bidirectional transformer since
the depth transformer becomes a multilayer perceptron with layer normalization [2].

3.2.3 Training of Contextual RQ-Transformer

For the training of Contextual RQ-Transformer, let us define a mask distribution q(m) with a mask
scheduling function γ. Following previous approaches [6, 14, 16], the scheduling function γ is chosen
to be decreasing and to satisfy γ(0) = 1 and γ(1) = 0. Then, a mask m ∼ q(m) is specified as

r ∼ Unif([0, 1)) and m ∼ Unif({m : |m| = ⌈γ(r) ·N⌉}), (10)

where |m| =
∑

n∈[N ] mn is the count of masked positions. Finally, the training objective of
Contextual RQ-Transformer is to minimize the negative log-likelihood of masked code stacks:

L = Em∼q(m)

[
ES

[ ∑
n:mn=1

D∑
d=1

− log pθ(Snd|Sn,<d,S\m)

]]
. (11)

3.3 Draft-and-Revise: Two-Phase Decoding with Global Contexts of Generated Images

We propose a novel decoding algorithm, Draft-and-Revise, for Contextual RQ-Transformer to
effectively generate high-quality images with diverse visual contents. We remark that our effective
decoding method is required for bidirectional transformers to fully exploit the global contexts of
images and achieve high performance of image generation. Here, we introduce the details of our
Draft-and-Revise decoding and then explain how the two-phase decoding of Draft-and-Revise can
effectively control the quality-diversity trade-off of generated images.

We define a partition Π = (m1, · · · ,mT ) as a collection of pairwise disjoint T mask vectors to
cover all spatial positions, where

∑T
t=1 m

t
n = 1 for all n ∈ [N ]. A partition Π is sampled from the

distribution p(Π;T ), which is the uniform distribution over all balanced partitions with size T :

p(Π;T ) = Unif
(
{Π = (m1, · · · ,mT ) : |mt| = N

T ∀t ∈ [T ]}
)
. (12)
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Table 1: FIDs, ISs, Precisions, and Recalls for class-conditional generation on ImageNet [7]. †
denotes the use of pretrained classifier for rejection sampling, gradient guidance, or training.

Params H ×W ×D FID↓ IS↑ Precision↑ Recall↑
BigGAN-deep [5] 112M - 6.95 202.6 0.87 0.23
StyleGAN-XL† [29] 166M - 2.3 262.1 0.78 0.53
ADM [9] 554M - 10.94 101.0 0.69 0.63
ADM-G† [9] 608M - 4.59 186.7 0.82 0.52
ImageBART [12] 3.5B 16×16×1 21.19 61.6 - -
VQ-Diffusion [15] 518M 16×16×1 11.89 - - -
LDM-8 [27] 395M 32×32 15.51 79.03 0.65 0.63
LDM-8-G† [27] 506M 32×32 7.76 209.52 0.84 0.35
MaskGIT [6] 227M 16×16×1 6.18 182.1 0.80 0.51
VQ-GAN [13] 1.4B 16×16×1 15.78 74.3 - -
RQ-Transformer [23] 1.4B 8×8×4 8.71 119.0 0.71 0.58
RQ-Transformer [23] 3.8B 8×8×4 7.55 134.0 0.73 0.58
RQ-Transformer† [23] 3.8B 8×8×4 3.80 323.7 0.82 0.50
Contextual RQ-Transformer 333M 8×8×4 5.45 172.6 0.81 0.49
Contextual RQ-Transformer 821M 8×8×4 3.45 221.9 0.82 0.52
Contextual RQ-Transformer 1.4B 8×8×4 3.41 224.6 0.79 0.54
Validation Data - - 1.62 234.0 0.75 0.67

We first define a procedure UPDATE(S,Π) to update the sequence S as described in Algorithm 1,
which updates Sn with mt

n = 1 for t ∈ [T ]. Then, Draft-and-Revise decoding in Algorithm 2
generates a draft from the empty sequence of code stacks and improves the quality of the draft.

Draft phase In the draft phase, our model gradually infills the empty sequence of code stacks to
generate a draft image, considering the global contexts of infilled code stacks. Let Sempty be an empty
sequence of code stacks with Sempty

n = [MASK]D for all n. Given a partition size Tdraft, our model
generates a draft image as

Sdraft = UPDATE(Sempty,Π; θ) where Π ∼ p(Π;Tdraft). (13)

Revise phase The generated draft Sdraft is repeatedly revised to improve the visual quality of the
image, while preserving the overall structure of the draft. Given a partition size Trevise and the number
of updates M , the draft S0 = Sdraft is repeatedly updated M times as

Sm = UPDATE(Sm−1,Π; θ) where Π ∼ p(Π;Trevise) for m = 1, · · · ,M . (14)

Note that Draft-and-Revise is not a tailored method, since we can adopt any mask-infilling-based
generation method [4, 6] for UPDATE in Algorithm 1. For example, confidence-based decoding [6,
16], which iteratively updates S from high-confidence to low-confidence predictions, can be used for
UPDATE. However, we find that confidence-based decoding generates low-diversity images with
oversimplified contents, since a model tends to predict simple visual patterns with high confidence. In
addition, confidence-based decoding often leads to biased unmasking patterns, which are not used in
training. We attach the detailed discussion about confidence-based decoding in Appendix C. Thus, we
use a uniformly random partition Π in UPDATE as the most simplified rule, leaving investigations
on sophisticated update methods as future work.

We postulate that our Draft-and-Revise can generate high-quality images with diverse contents by
explicitly dividing two phases. Specifically, a model first generates draft images with diverse visual
contents despite the rather low quality of drafts. After semantically diverse images are generated as
drafts, we use sampling strategies such as temperature scaling [19] and classifier-free guidance [20]
in the revise phase to improve the visual quality of the drafts, while preserving the major semantic
contents in drafts. Thus, our method can improve the performance of image generation by effectively
controlling the quality-diversity trade-off. In addition, we emphasize that the two-phased decoding is
intuitive and resembles the image generation process of human experts, who repeatedly refine their
works to improve the quality after determining the overall contents first.
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Figure 3: The examples of generated 256×256 images of our model trained on (Top) ImageNet and
(Bottom) CC-3M. The used text conditions are "Sunset over the skyline of a {beach, city}.", "an
avocado {in the desert, on the seashore}.", and "a painting of a {dog, cat} with sunglasses.".

4 Experiments

In this section, we show that our Draft-and-Revise with Contextual RQ-Transformer can outperform
previous approaches for class- and text-conditional image generation. In addition, we conduct an
extensive ablation study to understand the effects of Draft-and-Revise decoding on the quality and
diversity of generated images, and the sampling speed. We use the publicly released RQ-VAE [23]
to represent a 256×256 resolution of images as 8×8×4 codes. For a fair comparison, we make
Contextual RQ-Transformer have the same model size as the previous RQ-Transformer [23]. For
training, the quarter-period of cosine is used as the mask scheduling function γ in Eq. 10 following
the previous studies [6, 24]. We include the implementation details in Appendix.

4.1 Class-conditional Image Generation

We train Contextual RQ-Transformer with 333M, 821M, and 1.4B parameters on ImageNet [7] for
class-conditional image generation. For Draft-and-Revise decoding, we use Tdraft = 64, Trevise = 2,
and M = 2. We use temperature scaling [19] and classifier-free guidance [20] only in the revise phase,
while none of the strategies are applied in the draft phase. Fréchet Inception Distance (FID) [18],
Inception Score (IS) [28], and Precision and Recall [22] are used for evaluation measures.

Table 1 shows that Contextual RQ-Transformer significantly outperforms the previous approaches.
Notably, Contextual RQ-Transformer with 333M parameters outperforms RQ-Transformers with
1.4B and 3.8B parameters on all evaluation measures, despite having only about 4.2× and 11.4×
fewer parameters. In addition, the performance is improved as the number of parameters increases to
821M and 1.4B. Our model with 333M parameters is competitive with MaskGIT [6], and hence we
conduct additional analysis on the effect of confidence-based decoding in Appendix C. Contextual
RQ-Transformer can achieve the lower FID score without a pretrained classifier than ADM-G and
3.8B parameters of RQ-Transformer with the use of pretrained classifier. StyleGAN-XL also uses
a pretrained classifier during both training and image generation and achieves the lowest FID in
Table 1. However, our model with 1.4B parameters has higher precision and recall than StyleGAN-
XL, implying that our model generates images of better fidelity and diversity without a pretrained
classifier. Our high performance without a classifier is remarkable, since the gradient guidance
and rejection sampling are the tailored techniques to the model-based evaluation metrics in Table 1.
Considering that the performance is marginally improved as the number of parameters increases from
821M to 1.4B, an improved RQ-VAE can boost the performance of Contextual RQ-Transformer,
since the reconstruction quality determines the best results of generated images.

4.2 Text-conditional Image Generation

We train our model with 333M and 654M parameters on CC-3M [32] for text-to-image (T2I)
generation as described in Appendix A. A text condition is encoded into 32 tokens using Byte Pair
Encoding [31, 34]. We report CLIP-score [25] with ViT-B/32 [11] as the correspondence between
texts and images.
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Figure 4: Ablation study of Draft-and-Revise decoding. (a) FIDs with the partition sizes of the draft
phase Tdraft. (b) Precision and recall with the revision iterations M . (c) FID with Trevise.

Figure 5: Examples of generated images in the draft phase (left) and revise phases at each iteration
M = 1, 2, 3, 4, 5. The draft images are generated with Tdraft = 8 (top) and Tdraft = 64 (bottom).

Table 2: FIDs and CLIP scores [25] on the valida-
tion dataset of CC-3M [32] for T2I generation.

Params FID↓ CLIP-s↑
VQ-GAN [13] 600M 28.86 0.20
ImageBART [12] 2.8B 22.61 0.23
LDM-4 [27] 645M 17.01 0.24
RQ-Transformer [23] 654M 12.33 0.26
Ours 333M 10.44 0.26
Ours 654M 9.80 0.26

Contextual RQ-Transformer in Table 2 out-
performs the previous T2I generation models.
Contextual RQ-Transformer with 333M param-
eters achieves better FID than RQ-Transformer
with 654M parameters, and outperforms Im-
ageBART and LDM-4, although our model has
12× fewer parameters than ImageBART. When
we increase the number of parameters to 654M,
our model achieves state-of-the-art FID on CC-
3M. In Figure 3, our model generates images
with unseen texts in CC-3M.

4.3 Conditional Image Inpainting

We conduct conditional image inpainting where a model infills a masked area according to the given
condition and contexts. Figure 1 shows the example of image inpainting by RQ-Transformer (middle)
and Contextual RQ-Transformer (right), when the class-condition is school bus. RQ-Transformer
cannot attend to the right and bottom sides of the masked area and fails to generate a coherent image
with given contexts. However, our model can complete the image to be coherent with given contexts
by exploiting global contexts. We attach more examples of image inpainting in Appendix.

4.4 Ablation Study on Draft-and-Revise

We conduct an extensive ablation study to demonstrate the effectiveness of Draft-and-Revise decoding
of our framework. We use Contextual RQ-Transformer with 821M parameters trained on ImageNet.

Quality improvement of draft images in the revise phase Figure 4(a) shows the effects of Tdraft
on draft images and their quality improvement in the revised phase with Trevise = 2 and M = 2.
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In the draft phase, FID is improved as Tdraft increases from 4 to 64. At each inference, Contextual
RQ-Transformer generates N/Tdraft code stacks in parallel, starting with the empty sequence. Thus,
the model with a large Tdraft generates a small number of code stacks at each inference and can avoid
generating incoherent code stacks in the early stage of the draft phase. Although FIDs in the draft
phase are worse due to low precision, we intend to increase the diversity of generated images, since
the precision is significantly improved in the revise phase as shown in Figure 4(b).

Effect of revision iteration M and partition size Trevise in the revise phase Figure 4(b) shows
the effects of the number of updates M in the revise phase on the quality and diversity of generated
images. Since the quality-diversity trade-off exists as the updates are repeated, we select M = 2 as the
default hyperparameter to balance the precision and recall, considering that the increase of precision
starts to slow down. Interestingly, Figure 5 shows that the overall contents remain unchanged even
after M > 2. Thus, we claim that Draft-and-Revise decoding does not harm the perceptual diversity
of generated images throughout the revise phase despite the consistent deterioration of recall.

Figure 4(c) shows the effects of Trevise on the quality of generated images. The FIDs are significantly
improved in the revise phase regardless of the choice of Trevise, but increasing Trevise slightly dete-
riorates FIDs. We remark that some code stacks of a draft can be erroneous due to its low quality,
and a model with large Trevise slowly updates a small number of code stacks at once in the revise
phase. Therefore, the updates with large Trevise can be more influenced by the erroneous code stacks.
Although Trevise = 2 updates half of an image at once, our draft-and-revise decoding successfully
improves the quality of generated images, while preserving the global contexts of drafts, as shown
in Figure 5. The study on self-supervised learning [17] also reports similar results, where a masked
auto-encoder reconstructs the global contexts of an image after masking half of the image.

Table 3: The effects of classifier-free
guidance on the image generation.

Draft Revise FID P R
5.78 0.72 0.58

✓ 3.45 0.82 0.52
✓ ✓ 8.90 0.92 0.33

Quality-diversity control of Draft-and-Revise Our
Draft-and-Revise decoding can effectively control the
quality-diversity trade-off in generated images. Table 3
shows FID, precision (P), and recall (R) according to
the use of classifier-free guidance [20] with a scale of
1.8, while applying temperature scaling with 0.8 only to
the revise phase. Contextual RQ-Transformer without
the guidance already outperforms RQ-Transformer with
3.8B parameters and demonstrates the effectiveness of our
framework. When the guidance is used for both draft and
revise phases, the precision dramatically increases but the recall decreases to 0.33. Consequently,
FID becomes worse due to the lack of diversity in generated images. However, when the guidance is
applied only to the revise phase, our model achieves the lowest FID, as the quality and diversity are
well-balanced. Thus, the explicitly separated two phases of Draft-and-Revise can effectively control
the issue of quality-diversity trade-off by generating diverse drafts and then improving their quality.

Table 4: Comparison of FID and the
sampling speed of image generation.

FID s/sample
VQGAN 15.78 0.16
RQ-Transformer 8.71 0.04

Contextual RQ-Transformer
Tdraft = 8 5.41 0.03
Tdraft = 32 3.73 0.06
Tdraft = 64 3.45 0.10

Trade-off between quality and sampling speed Table 4
shows that our framework can control the trade-off between
the quality and sampling speed according to Tdraft after we
fix Trevise = 2 and M = 2. We generate 5,000 samples with
batch size of 100 as the previous study [23]. Contextual
RQ-Transformer with Tdraft = 8 outperforms both FID and
sampling speed of VQGAN and RQ-Transformer with 1.4B
parameters. Although the sampling speed becomes slow
with increased Tdraft, the FID scores are consistently im-
proved. We remark that the sampling speed with Tdraft = 64
is about 3× slower than RQ-Transformer, but our model
outperforms 3.8B parameters of RQ-Transformer with rejec-
tion sampling in Table 1. The results show that our framework has inexpensive costs to generate
high-quality images, considering that rejection sampling requires generating up to 20× more samples.
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5 Conclusion

In this study, we have proposed Draft-and-Revise for an effective image generation framework with
Contextual RQ-Transformer. After an image is represented as a sequence of code stacks, Contextual
RQ-Transformer is trained to infill a randomly masked sequence. Then, Draft-and-Revise decoding is
used to generate high-quality images by first generating a draft image with diverse contents and then
improving its visual quality based on the global contexts of the draft. Consequently, we can achieve
state-of-the-art results on ImageNet and CC-3M, demonstrating the effectiveness of our framework.

Our study has two main limitations to be further explored. Firstly, Draft-and-Revise decoding always
updates all code stacks in the revise phase, although some code stacks might not need an update. In
future work, a selective method can be developed to improve the efficiency of the revise phase by a
sophisticated approach. Secondly, our generative model is not validated on various downstream tasks.
Since masked token modeling is successful self-supervised learning for texts [8] and images [3, 17], a
unified model for both generative and discriminative tasks [21] is worth exploration for future work.
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