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A Proof of Theorem 2

R(X,Y )(pθ ◦ Φ)−R(X,g(Y ))(pθ ◦ Φ) =
∫

− log pθ(Y |Φ(X))dPY,Φ(X)

+

∫
log pθ(g(Y )|Φ(X))dPg(Y ),Φ(X)

= −
∫

log
pθ(Y |Φ(X))

pθ(g(Y )|Φ(X))
dP(Y,Φ(X))

= −
∫

dPg(Y )

∫
log

pθ(Y |Φ(X))
pθ(g(Y )|Φ(X))

dP(Y,Φ(X))|g(Y ) (8)

By the definition of pθ(y|Φ(x), g(Y ) = z) in Theorem 2, pθ(y|Φ(x))
pθ(g(y)|Φ(x)) = pθ(y|Φ(x), g(Y ) = z) holds,

where z = g(y). Therefore, we obtain

(6) = −
∫

dPg(Y )

∫
log

pθ(Y |Φ(X))
pθ(g(Y )|Φ(X))

dP(Y,Φ(X))|g(Y )

= −
∫

dPg(Y )

∫
log pθ(Y |Φ(X), g(Y ) = z)dP(Y,Φ(X))|g(Y )=z

= −
∑

z∈Z

P (g(Y ) = z)

∫
log pθ(Y |Φ(X), g(Y ) = z)dP(Y,Φ(X))|g(Y )=z

= −
∑

z!!↪→∈Z"↪→
P (g(Y ) = z!!↪→)

∫
log pθ(Y |Φ(X), g(Y ) = z!!↪→)dP(Y,Φ(X))|g(Y )=z!!↪→

+
∑

z↪→∈Z−Z"↪→
P (g(Y ) = z ↪→)

∫
log pθ(Y |Φ(X), g(Y ) = z ↪→)dP(Y,Φ(X))|g(Y )=z↪→ . (9)

Noting that, for any z ↪→ ∈ Z − Z""↪→ and y := g−1(z ↪→)1, pθ(y|Φ(x), g(Y ) = z ↪→) = 1 holds, we can see that
log pθ(y|Φ(x), g(Y ) = z ↪→) = 0. The second term in the last line thus equals to zero, which concludes the
proof. !

B Proof of Theorem 3

Before proving Theorem 3, we recap the problem setting of variable selection for invariance learning discussed
in the first paragraph of Section 4. Let X := X1 ×X2 where X1 := Rn1 and X2 := Rn2 with n1, n2 ∈ N, so
that X = Rn with n = n1+n2. Throughout our theoretical analysis, to avoid discussing the non-trivial effects
of nonlinear Φ, we focus on the simplified case of variable selections, where the feature map Φ is chosen from
the projections of x to a subset of its components. For example, Φ may be Φ(x1, x2, x3) = (x1, x3) when x
is three-dimensional. Recall that Φi denote the Xi-component of Φ (i = 1, 2) and ImΦ2 &= ∅ means that the
range of Φ has a X2-component.

We rephrase the problem simplification (※) in Section 4. Throughout our theoretical analysis, the domain set E
is defined by all the probability distributions with the fixed marginal distribution PXI

1 ,Y I of (X1, Y ); namely,
all domains Tall := {(Xe, Y e)}e∈E are defined by

Tall :=
{
(X,Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y I

}
. (※)

In this case, any variable (Xe, Y e) ∈ Tall satisfies (i) PY e|ΦX1 (Xe) equals to PY I |XI
1

, and (ii) the marginal
distribution PΦX1 (X) of the invariant feature ΦX1(X) equals to PXI

1
. The above setting and definition persist

through our theoretical analysis.

1z ↪→ ∈ Z − Z""↪→ implies that |g−1(z ↪→)| = 1 and therefore, g−1(z ↪→) is determined uniquely. Note that
there is no chance that |g−1(z ↪→)| = 0 by the surjectivity of g.
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We prepare some additional notations to state Theorem 3 and its proof more clearly and briefly. Recall that the
single training domain e∗ for the target task and the domains Ead for the additional task play important roles
in our problem setting (see Section 2.2). Throughout the section, the domains are abbreviated as follows. The
single training domain (Xe∗ , Y e∗) ∈ Tall for the target task is abbreviated by (X∗, Y ∗). For the domains Ead

of the additional task with higher class labels, {Xe, Y e}e∈Ead is abbreviated by a subclass Tad ⊂ Tall. For a
projection Φ : X → RnΦ with its range nΦ variables, let p∗,Φ : RnΦ → PY denote the conditional probability
density functions (p.d.f.) of P (Y ∗|Φ(X∗)). With a slight abuse of notation, for any probability Pθ on X × Y
and a projection Φ, the density function of the conditional distribution Pθ(Y |Φ(X)) is denoted by pθ ◦ Φ.

We add some additional explanations and interpretations about the definition (※). Throughout this section, the
projection to the components of X1 is denoted by ΦX1 , which is the desired projection to give the invariant
predictor. From the condition of Tall, for the projection ΦX1 , the conditional probability PY |ΦX1 (X) for any
random variable (X,Y ) ∈ Tall is the same; namely, letting pI : X1 → PY denote the conditional p.d.f. of the
invariant predictor PY I |XI

1
, we have

pe ◦ ΦX1 = pI (10)
for any (Xe, Y e) ∈ Tall, where pe is the conditional p.d.f. of PY e|ΦX1 (Xe).

We restate Theorem 3 as follows.
Theorem 6 (Theorem 3 in the main body, with some notation arrangements). Assume that all domains Tall :=
{(Xe, Y e)}e∈E are fixed as (※); namely,

Tall :=
{
(X,Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y I

}
. (11)

Additionally, assume that the following condition holds:

(A) For any projection Φ with ImΦ2 &= ∅, there exist (Xe1 , Y e1), (Xe2 , Y e2) ∈ Tad such that
P (g(Y e1)|Φ(Xe1)) &= P (g(Y e2)|Φ(Xe2)).

Then, there exists λ∗ ∈ R such that a minimizer (θ†, θ†ad,Φ
†) of the objective function

min
θ,θad,Φ




R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2




 (12)

is o.o.d. optimial, i.e.,
pθ† ◦ Φ† ∈ argmin

pθ :X→PY
Ro.o.d.(pθ),

where pθ and pZ|H
θad

in minθ,θad,Φ run all the p.d.f.s, and Φ runs all the variable selections. The gradient ∇θad

should be understood as the functional derivative on the space of p.d.f.

Before proving Theorem 6, we prepare one lemma, which asserts that, if ImΦ2 &= ∅, at least one domain in
Tad has non-trivial gradient:
Lemma 7.

min
θad,Φ:ImΦ2 %=∅

∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2 > 0.

Proof. It suffices to prove that, for any projection Φ with ImΦ2 &= ∅ and pZ|H
θad

, there is (Xe, Y e) ∈ Tad such
that ‖∇θ̂ad=θad

R(Xe,g(Y e))(pZ|H
θ̂ad

◦ Φ)‖2 &= 0. We prove this by contradiction. Suppose that there exist a

projection Φ with ImΦ2 &= ∅ and pZ|H
θad

which satisfy

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2 = 0 (∀(Xe, Y e) ∈ Tad).

From Assumption (A), take (Xe1 , Y e1) and (Xe2 , Y e2) in Tad such that P (g(Y e1)|Φ(Xe1)) &=
P (g(Y e2)|Φ(Xe2)).

Note that the risk is defined by the cross-entropy loss:

R(Xe,g(Y e))(pZ|H
θ̂ad

◦ Φ) = −
∫

log pZ|H
θ̂ad

(g(Y e)|Φ(Xe))dPXe,Y e .

It is well known that this is minimized in the space of probability distributions if and only if pZ|H
θ̂ad

equals to

P (Y e|Φ(Xe)). From ‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2 = 0 for (Xe1 , Y e1) and (Xe2 , Y e2), we can

conclude that pZ|H
θad

should equal to both of P (g(Y e1)|Φ(Xe1)) and P (g(Y e2)|Φ(Xe2)). This contradicts
with the assumption P (g(Y e1)|Φ(Xe1)) &= P (g(Y e2)|Φ(Xe2)).
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Proof of Theorem 6
Let Φid denote the identity map of X . Define the constants C1, C2, and C3 by

C1 := R(X∗,Y ∗)(p∗,Φ
id

◦ Φid) = H(Y ∗|X∗),

C2 := R(X∗,Y ∗)(p∗,Φ
I

◦ ΦI) = H(Y ∗|X∗
1 ) = H(Y I |XI

1 ),

C3 :=
C2 − C1

minθad,Φ:ImΦ2 %=∅
∑

(Xe,Y e)∈Tad
‖∇θ̂ad=θad

R(Xe,g(Y e))(pZ|H
θ̂ad

◦ Φ)‖2
,

where H(Y I |XI
1 ) and H(Y ∗|X∗) denote the conditional entropy. Note that C3 is well-defined because of the

positivity result of Lemma 7.

Take λ∗ such that λ∗ > C3. For notational simplicity, the objective function (12) is denoted by O(θ, θad,Φ);
namely,

O(θ, θad,Φ) := R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2.

We prove the theorem in three steps.

Step 1 minp:X→PY Ro.o.d.(p) = H(Y I |XI
1 ).

proof of Step 1
We will prove pI ∈ argmin

p:X→PY
Ro.o.d.(p). From the definition

Ro.o.d.(p) = max
(Xe,Y e)∈Tall

−
∫

log p(Y e|Xe)dPY e,Xe ,

pI ∈ argmin
p:X→PY

Ro.o.d.(p) holds if and only if

max
(Xe,Y e)∈Tall

−
∫

log pθ(Y
e|Xe)dPY e,Xe ≥ max

(Xe,Y e)∈Tall

−
∫

log pI(Y e|Xe
1)dPY e,Xe

for any pθ : X → PY . Note that, as discussed before Theorem 6, for any (Xe, Y e) ∈ Tall, we have
PY e|Xe

1
= PY I |XI

1
. Then, it suffices to prove that for any pθ there exists (Xe′ , Y e′) ∈ Tall such that
∫

− log pθ(Y
e′ |Xe′)dPY e′ ,Xe′ ≥

∫
− log pI(Y I |XI

1 )dPXe,Y e . (13)

Define (Xe′ , Y e′) ∈ Tall such that its distribution is the direct product PXI
1 ,Y I ⊗ P

Xe′
2

, where P
Xe′

2
is an

arbitrary distribution on X2. In this case, the left hand side of (13) is given by
∫

− log pθ(Y
e′ |Xe′)dPY e′ ,Xe′ =

∫
− log pθ(Y

e′ |Xe′
1 , Xe′

2 )dPY e′ ,Xe′

=

∫
dP

Xe′
2

∫
− log pθ(Y

I |XI
1 , X

e′
2 )dPXI

1 ,Y I . (14)

We can see that, for any x2 ∈ X2, the inequality
∫

− log pθ(Y
I |XI

1 , X
e′
2 = x2))dPXI

1 ,Y I ≥
∫

− log pI(Y I |XI
1 )dPXI

1 ,Y I

holds, since the minimum of the cross entropy loss is attained at the conditional p.d.f. pI . Integrating this
inequality with P

Xe′
2

, we have
∫

dPXe
2

∫
− log pθ(Y

I |XI
1 , X

e
2)dPXI

1 ,Y I ≥
∫

− log pI(Y I |XI
1 )dPXI

1 ,Y I . (15)

Eqs. (14) and (15) show (13), from which the assertion is obtained by −
∫
log pI(Y I |XI

1 )dPXI
1 ,Y I =

H(Y I |XI
1 ).

Step 2 Any minimizer of the objective function,

(θ†, θ†ad,Φ
†) ∈ argmin

θ,θad,Φ
O(θ, θad,Φ),

satisfies ImΦ†
2 = ∅.
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proof of Step 2
It suffices to prove that minΦ:ImΦ2=∅,θ,θad

O(θ, θad,Φ) < minΦ:ImΦ2 %=∅,θ,θad
O(θ, θad,Φ). First, we have

min
Φ:ImΦ2 %=∅,θ,θad

O(θ, θad,Φ)

= min
Φ:ImΦ2 %=∅,θ,θad




R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Ze))(pZ|H

θ̂ad
◦ Φ)‖2




 .

> min
Φ:ImΦ2 %=∅,θ,θad

{
R(X∗,Y ∗)(pθ ◦ Φ) +

C2 − C1

minθad,Φ:ImΦ2 %=∅
∑

(Xe,Y e)∈Tad
‖∇θ̂ad=θad

R(Xe,g(Y e))(pZ|H
θ̂ad

◦ Φ)‖2

×
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2

}

≥ min
Φ:ImΦ2 %=∅,θ,θad

{R(X∗,Y ∗)(pθ ◦ Φ) + C2 − C1}

= min
Φ:ImΦ2 %=∅,θ,θad

{R(X∗,Y ∗)(pθ ◦ Φ)}+ C2 − C1

≥ R(X∗,Y ∗)(p∗,Φ
id

◦ Φid) + C2 − C1 = C2.

On the other hand, by taking Φ = ΦI , we obtain

min
Φ:ImΦ2=∅,θ,θad

O(θ, , θad,Φ)

≤ R(X∗,Y ∗)(pI) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θ∗ad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ ΦI)‖2.

Since pZ|H
θ̂ad

◦ ΦI = pI(g(Y I)|XI
1 ) does not depend on θad, the gradient is zero, and therefore

min
Φ:ImΦ2=∅,θ,θad

O(θ, , θad,Φ) ≤ R(X∗,Y ∗)(pI) = C2.

We thus obtain
min

Φ:ImΦ2=∅,θ,θad

O(θ, θad,Φ) ≤ C2 < min
Φ:ImΦ2 %=∅,θ,θad

O(θ, θad,Φ),

which completes the proof.

Step 3 If (pθ† , p
Z|H
θ†ad

,Φ†) ∈ argmin
θ,θad,Φ

O(θ, θad,Φ), then Ro.o.d.(pθ† ◦ Φ†) = H(Y I |XI
1 ).

proof of Step 3
From Step 1, we have H(Y I |XI

1 ) ≤ Ro.o.d.(pθ† ◦ Φ†). We will probe the converse inequality.

From Step 2, we have ImΦ†
2 = ∅. This tells Ro.o.d.(pθ† ◦ Φ†) = Re∗(pθ† ◦ Φ†), since PX1,Y are the same

for all elements in Tall. Therefore,

Ro.o.d.(pθ† ◦ Φ†) = R(X∗,Y ∗)(pθ† ◦ Φ†)

≤ min
θad




R(X∗,Y ∗)(pθ† ◦ Φ†) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θ∗ad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2






= min
Φ,θ,θad




R(X∗,Y ∗)(pθ ◦ Φ) + λ∗ ·
∑

(Xe,Y e)∈Tad

‖∇θ̂ad=θad
R(Xe,g(Y e))(pZ|H

θ̂ad
◦ Φ)‖2






≤ C2 = H(Y I |XI
1 ).

Final step for the proof of Theorem 6
For (θ†, θ†ad,Φ

†) ∈ argmin
θ,θad,Φ

O(θ, θad,Φ), Step 1 and Step 3 show

Ro.o.d.(pθ† ◦ Φ†) = H(Y I |XI
1 ) = min

p:θ→PY
Ro.o.d.(p),

which completes the proof.
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C Proof of Theorem 4

Before the proof, let us rearrange some notations introduced in Section 4.2. Notations are the same as in
Appendix B. Recall that we assume, given hyperparameter λ, the minimization of (5) achieves the global
optimum perfectly, which yields the projection (variable selection) Φλ(x) : X → Rnλ (nλ ≤ n1 + n2) and
the conditional p.d.f. of PY e∗ |Φλ(Xe∗ ), denoted by p∗,λ(y|Φλ(x)). The X1 and X2 components of Φλ(X) are
denoted by Φλ

1 (X) and Φλ
2 (X), respectively.

We rephrase the o.o.d. risk (1) and its evaluation (6) by Method I with some notational rearrangements. For
λ ∈ Λ and the training variable (X∗, Y ∗) for the target task, the conditional p.d.f. of P (Y ∗|Φλ(X∗)) given
the selected variables is denoted by p∗,λ : Rnλ → PY . Then, the the o.o.d. risk Ro.o.d.(λ) of p∗,λ ◦ Φλ and
its evaluation RI(λ) ((6) in the main body) are represented as

Ro.o.d.(λ) := max
(X,Y )∈Tall

R(X,Y )(p∗,λ ◦ Φλ),

RI(λ) := max

{
max

(X,Y )∈Tad

R(X,g(Y ))(p∗,λ ◦ Φλ),R(X∗,Y ∗)(p∗,λ ◦ Φλ)

}
,

respectively. We restate Theorem 4 with some notation arrangements:
Theorem 8 (Theorem 4 in the main body, with some notational arrangements). Assume that all domains
Tall := {(Xe, Y e)}e∈E are fixed as (※) in Appendix B; namely,

Tall :=
{
(X,Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y I

}
.

Additionally, assume the following two conditions:

(I) there is λI ∈ Λ such that ΦλI
= ΦX1 , where ΦX1 is the projection to the X1-components.

(II) Let p∗ be the p.d.f of PX∗,g(Y ∗). For any λ with ImΦλ
2 &= ∅, there is (Xeλ , Y eλ) ∈ Tad such that

(x, z) ∼ PXeλ ,g(Y eλ ) satisfies p∗(z|Φλ(x)) ≤ e−β − ε with probability 1 in PXeλ ,g(Y eλ ).

Here, ε ∈ R>0 is a sufficiently small positive real number (that is, 0 < ε 0 1) and β := H(Y ∗|(X∗
1 )) is the

conditional entropy of ((X∗
1 ), Y

∗). Then, we have

argmin
λ∈Λ

RI(λ) ⊂ argmin
λ∈Λ

Ro.o.d.(λ).

To prove Theorem 8, we prepare three lemmas, in which the notations are the same as in Theorem 8 and
conditions (I) and (II) in Theorem 8 are also imposed.
Lemma 9. λI ∈ argmin

λ∈Λ
Ro.o.d.(λ).

Lemma 10. If λ̂ ∈ argmin
λ∈Λ

RI(λ), then ImΦλ̂
2 = ∅.

Lemma 11. If λ̂ ∈ Λ satisfies ImΦλ̂
2 = ∅, then RI(λ̂) = Ro.o.d.(λ̂).

we prove Theorem 8 based on the above lemmas, before proving them.

proof of Theorem 8.
Take λ̂ ∈ argminRI(λ). Then, ImΦλ̂

2 = ∅ holds by Lemma 10 and therefore, RI(λ̂) = Ro.o.d.(λ̂) holds
by Lemma 11. Moreover, Ro.o.d.(λ̂) ≥ Ro.o.d.(λI) holds by Lemma 9 and Ro.o.d.(λI) = RI(λI) holds
by Lemma 11 (since ΦλI

is the projection onto X1, ImΦλI

2 = ∅). By the assumption λ̂ ∈ argmin
λ∈Λ

RI(λ),

RI(λI) ≥ RI(λ̂) holds. Arranging these inequalities, we obtain

RI(λ̂) = Ro.o.d.(λ̂) ≥ Ro.o.d.(λI) = RI(λI) ≥ RI(λ̂), (16)

in which the inequalities must be equalities. Hence, we obtain Ro.o.d.(λ̂) = Ro.o.d.(λI). Because λI achieves
the minimum of Ro.o.d. (Lemma 9), so does λ̂, which concludes the proof. !

Since Lemma 9 is proven in the proof of Theorem 6 (especially, the proof in Step 1), we may prove the others.

proof of Lemma 10.
Let us prove the contraposition of Lemma 10. Take λ̂ ∈ Λ with ImΦλ̂

2 &= ∅. To prove that λ̂ /∈ argminRI(λ),
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we may prove that RI(λ̂) > RI(λI) since λI ∈ Λ (Assumption (I) in the statement). It then suffices to prove
the following:

there exists (X̄, Ȳ ) ∈ Tad such that
∫

− log p∗,λ̂(g(Ȳ )|Φλ̂(X̄))dPX̄,g(Ȳ ) > RI(λI). (17)

From Condition (II), we can take (Xe
λ̂ , Y e

λ̂) ∈ Tad such that

(x, z) ∼ PX
e
λ̂ ,g(Y

e
λ̂ ) satisfies p∗(z|Φλ̂(x)) ≤ e−β − ε with probability 1.

To prove (17), we prepare one supplementary inequality:

Supplementary Inequality
∫

− log p∗,λ̂
(
g(Y e

λ̂)|Φλ̂(Xe
λ̂)
)
dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−β − ε

}
.

This inequality can be easily seen; from the way of taking eλ̂, we have

− log p∗(z|Φλ̂(x)) ≥ − log{e−β − ε}
with probability 1 with respect to (x, z) ∼ PX

e
λ̂ ,g(Y

e
λ̂ ), and thus the integration proves the inequality.

Proof of Inequality (17).
It follows from the above supplementary inequality that

∫
− log p∗,λ̂(g(Y e

λ̂)|Φλ̂(Xe
λ̂))dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−β − ε

}
> β = H(Y ∗|X∗

1 ). (18)

Since ΦλI
= ΦX1 by Condition (I), the discussion at (10) tells that RI(λI) = H(Y I |XI

1 ) = H(Y ∗|X∗
1 ),

which concludes (17) and the proof.

Proof of Lemma 11.
Take λ̂ ∈ Λ that satisfies ImΦλ̂

2 = ∅. Then, P
Φλ̂(X),Y

= P
Φλ̂(XI ),Y I holds for any (X,Y ) ∈ Tall because of

PX1,Y = PXI
1 ,Y , and therefore, R(X,g(Y ))(p∗,λ̂◦Φλ̂) = R(XI ,g(Y I ))(p∗,λ̂◦Φλ̂) and R(X∗,Y ∗)(p∗,λ̂◦Φλ̂) =

R(XI ,Y I )(p∗,λ̂ ◦ Φλ̂) hold. These two equalities lead the following equality:

RI(λ̂) = max

{
max

(X,Y )∈Tad

R(X,g(Y ))(p∗,λ̂ ◦ Φλ̂),R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂)

}

= max

{
R(XI ,g(Y I ))(p∗,λ̂ ◦ Φλ̂),R(XI ,Y I )(p∗,λ̂ ◦ Φλ̂)

}
(19)

It follows from Theorem 2 that

R(XI ,Y I )(p∗,λ̂ ◦ Φλ̂)

= R(XI ,g(Y I ))(p∗,λ̂ ◦ Φλ̂)

+
∑

z!!↪→∈Z"↪→
P (Y I = g−1(z!!↪→))

∫
− log p∗,λ̂(Y I |Φλ̂(XI), g(Y I) = z!!↪→)dPXI ,Y I |g(Y I )=z!!↪→

≥ R(XI ,g(Y I ))(p∗,λ̂ ◦ Φλ̂)

Therefore, from (19), we have RI(λ̂) = R(XI ,Y I )(p∗,λ̂ ◦Φλ̂). Since P
Φλ̂(X),Y

are the same for any elements
in Tall, we obtain

R(XI ,Y I )(p∗,λ̂ ◦ Φλ̂) = max
(X,Y )∈Tall

R(X,Y )(p∗,λ̂ ◦ Φλ̂) = Ro.o.d.(p∗,λ̂ ◦ Φλ̂),

which concludes the proof.

D Proof of Theorem 5

Before proving Theorem 5, we rephrase the evaluation (7) of the o.o.d. risk by Method II with some notation
rearrangements. By using notation simplifications in Appendices B and C, the evaluation RII(λ) by method
II (corresponding to (7) in the main body) is represented as

RII(λ) := max
(X,Y )∈Tad∪{(X∗,Y ∗)}

{
R(X,g(Y ))(p∗,λ ◦ Φλ) +Dλ(Y )

}
,
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where the correction term Dλ(Y ) is defined by

Dλ(Y ) :=
∑

z!!↪→∈Z"↪→

{
P (g(Y ) = z!!↪→)

∫
− log p∗,λ(Y ∗|Φλ(X∗), g(Y ∗) = z!!↪→)dP(X∗,Y ∗)|g(Y ∗)=z!!↪→

}

Note that, in Dλ(Y ), although the random variable Y is given by (X,Y ) ∈ Tall, the marginal distributions of
Y s are the same by the assumption of Tall. Thus, hereafter, we use Dλ for the notation, and

Dλ =
∑

z!!↪→∈Z"↪→

{
P (g(Y ∗) = z!!↪→)

∫
− log p∗,λ(Y ∗|Φλ(X∗), g(Y ∗) = z!!↪→)dP(X∗,Y ∗)|g(Y ∗)=z!!↪→

}
.

Note also that βλ = H(Y ∗|X∗
1 )−Dλ. We restate Theorem 5 with some notation arrangements:

Theorem 12 (Theorem 5 in the main body, with some notation arrangements). Assume that all domains Tall :=
{(Xe, Y e)}e∈E are fixed as (※) in Appendix B; namely,

Tall :=
{
(X,Y ) : a random variable on X × Y

∣∣∣PΦX1 (X),Y = PXI
1 ,Y I

}
.

Notations are the same as in the statement of Theorem 8. In addition to the condition (I), assume the following
condition (II)’:

(II)’ Let p∗ be the p.d.f. of PX∗,g(Y ∗). For any λ with ImΦλ
2 &= ∅, there is (Xeλ , Y eλ) ∈ Tad such that

(x, z) ∼ PXeλ ,g(Y eλ ) satisfies p∗(z|Φλ(x)) ≤ e−βλ − ε with probability 1 in PXeλ ,g(Y eλ ).

Here, ε is some positive real number and

βλ := H(Y ∗|X∗
1 )−Dλ(Y

∗).

Then, we have
argmin

λ∈Λ
RII(λ) ⊂ argmin

λ∈Λ
Ro.o.d.(λ).

We first show lemmas before the proof of the theorem.

Lemma 13. If λ̂ ∈ argmin
λ∈Λ

RII(λ), then ImΦλ̂
2 = ∅.

Lemma 14. If λ̂ ∈ Λ satisfies ImΦλ̂
2 = ∅, then RII(λ̂) = Ro.o.d.(λ̂).

proof of Theorem 12
Combining the above two lemmas and Lemma 9, we can derive the required assertion in essentially the same
manner as in the proof of Theorem 8.

proof of Lemma 13.
Let us prove the contraposition of Lemma 13. Take λ̂ ∈ Λ with ImΦλ̂

2 &= ∅. To prove that λ̂ /∈ argminRII(λ),
we may prove that RII(λ̂) > RII(λI) since λI ∈ Λ (Assumption (I) in the statement). To show this, it suffices
to prove the following statement:

there is (X̄, Ȳ ) ∈ Tad such that R(X̄,g(Ȳ ))(λ̂) +Dλ̂ > RII(λI). (20)

Take (Xe
λ̂ , Y e

λ̂) ∈ Tad as in Condition (II)’. Then, in the same way as the proof of Lemma 10, we have the
following inequality:

∫
− log p∗,λ̂

(
g(Y e

λ̂)|Φλ̂(Xe
λ̂)
)
dPX

e
λ̂ ,g(Y

e
λ̂ ) ≥ − log

{
e−β

λ̂ − ε
}
,

which leads us to obtain

R(X
e
λ̂ ,g(Y

e
λ̂ ))(λ̂) +Dλ̂ > βλ̂ +Dλ̂ = H(Y ∗|X∗

1 ) = R(Y ∗,X∗)(p∗,λ
I

◦ ΦλI

). (21)

On the other hand, for any (X,Y ) ∈ Tall the marginal distribution of (Y,ΦI(X)) is the same as that of
(Y ∗, X∗

1 ). Noting that R(X,g(Y ))(p∗,λ
I
◦ ΦλI

) +DλI depends only on (Y,X1), we have

RII(λI) = R(X∗,g(Y ∗))(p∗,λ
I

◦ ΦλI

) +DλI . (22)

Now, Lemma 2 implies

R(Y ∗,X∗)(p∗,λ
I

◦ ΦλI

) = R(X∗,g(Y ∗))(p∗,λ
I

◦ ΦλI

) +DλI . (23)
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From (21), (22), and (23), we thus have

R(X
e
λ̂ ,g(Y

e
λ̂ ))(p∗,λ

I

◦ ΦλI

) +Dλ̂ > RII(λI),

which shows (20) and completes the proof.

proof of Lemma 14.
Take λ̂ ∈ Λ such that ImΦλ̂

2 = ∅. It follows from ImΦλ̂
2 = ∅ that P

Φλ̂(X),Y
= P

Φλ̂(X∗),Y ∗ holds for all
(X,Y ) ∈ Tall. Therefore,

Ro.o.d.(λ̂) = max
(X,Y )∈Tall

R(X,Y )(p∗,λ̂ ◦ Φλ̂) = R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂).

Likewise, from the condition of λ̂, the definition of RII(λ̂) involves the same distribution for (Y,Φλ̂(X)), and
thus

RII(λ̂) = R(X∗,g(Y ∗))(p∗,λ̂ ◦ Φλ̂) +Dλ̂.

In a similar way to the proof of Lemma 13, Theorem 2 tells

R(X∗,Y ∗)(p∗,λ̂ ◦ Φλ̂) = R(X∗,g(Y ∗))(p∗,λ̂ ◦ Φλ̂) +Dλ̂.

This completes the proof.

E Sufficient Conditions of (ii) and (ii)’

In the section, we reveal sufficient conditions of e∗ for there to exist (Xeλ , Y eλ) that satisfies (ii) and (ii)’ in
Theorems 4 and 5, respectively.
Theorem 15. Notations are the same as in Theorem 8. Assume that (X∗, Y ∗) satisfies the following condition:

(A2) For a sufficiently small ε 0 1, any λ with ImΦλ
2 &= ∅, any a ∈ ImΦλ

1 , and any b ∈ Y , there exists
c(λ, a, b)2 such that

P (Y ∗ = b|Φλ
1 (X

∗) = a,Φλ
2 (X

∗) = c) ≥ (1− e−β) + ε.

Then, for any λ with ImΦλ
2 &= ∅, there exists (Xeλ , Y eλ) ∈ Tall such that the inequality in Theorem 8 (ii)

holds.

Remark. The condition (A2) means that, in the domain e = e∗, the affection of domain-specific factors (= X2)
to the response variable Y e∗ is large; indeed, the inequality in (A2) means that, if λ fails to remove domain-
specific factors (i.e., ImΦλ

2 &= ∅), we can control the probability of Y e∗ = b by selecting c for any b ∈ Y . Note
also that the inequality (A2) is a lower bound of the likelihood, while the condition in (ii), Theorem 8, is an
upper bound of the likelihood. Although imposing an upper bound might look reasonable to reflect non-fitting
of the projection Φλ, Theorem 15 shows that we can use lower bound as a sufficient condition.

Proof. Fix λ with ImΦλ
2 &= ∅. Take (X̄, Ȳ ) ∈ Tall such that its probability measure corresponds to

P̄X2|Y,X1 × PY I ,XI
1
, where P̄X2|Y,X1 is defined by, setting ĉ(λ̂, a, b) by

ĉ(λ̂, a, b) ∈ argmin
c∈X2

P (g(Y ∗) = g(b)|Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2 (c)),

P̄X2|Y =b,X1=a := δX2=ĉ(λ̂,a,b). Here, for c ∈ X2, the probability measure δX2=c on X2 denotes a Dirac
measure at c ∈ X2.

Before proving Theorem 15, we prepare the following inequalities:
Supplementary Inequality 1.

∀a ∈ X1, ∀b ∈ Y, P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
ĉ(λ̂, a, b)

))
≤ e−β − ε.

To see the fact, take b∗ ∈ Y such that g(b∗) &= g(b)3. Then, by the condition (ii) of Theorem 5 and ImΦλ̂
2 &= ∅,

there exists c(λ̂, a, b) ∈ X2 such that

P
(
Y ∗ = b∗

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))
≥ 1− e−β + ε.

2c(λ, a, b) means c ∈ X2 is determined by given λ ∈ Λ, a ∈ X1, b ∈ Y .
3Such b∗ always exists by the following reason if |Z| ≥ 2 by the following reason. Take Z 1 z∗ &= g(b).

By the surjectivity of g, g−1(z∗) &= ∅. Taking b∗ ∈ g−1(z∗), g(b∗) = z∗ &= g(b).
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Therefore,

P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
ĉ(λ̂, a, b)

))

= min
c∈X2

P
(
g(Y ∗) = g(b)|Φλ̂

1 (X
∗) = Φλ̂

1 (a),Φ
λ̂
2 (X

∗) = Φλ̂
2 (c)

)

≤ P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))

= 1−
∑

z̄ %=g(b)

P
(
g(Y ∗) = z̄

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))

≤ 1− P
(
g(Y ∗) = g(b∗)

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))

≤ 1− P
(
Y ∗ = b∗

∣∣∣Φλ̂
1 (X

∗) = Φλ̂
1 (a),Φ

λ̂
2 (X

∗) = Φλ̂
2

(
c(λ̂, a, b)

))

≤ 1− (1− e−β + ε)

≤ e−β − ε.

Proof of Theorem 15
We may prove that PX̄,Ȳ (A) = 1 where

{
(x, y) ∈ X × Y

∣∣∣∣∣P
(
g(Y ∗) = g(b)

∣∣∣Φλ̂(X∗) = Φλ̂(x)
)
≤ e−β − ε

}
.

Then,

PX̄,Ȳ (A) =

∫
1AdPX̄,Ȳ =

∫
1Ad(P̄X2|Y,X1 × PY I ,XI

1
)

=

∫
dPY I ,XI

1

∫
1AdP̄X2|Y,X1 =

∫
dPY I ,XI

1
(x1, y)δX2=ĉ(λ̂,x1,y)

(A(x1,y))

holds where A(x1,y) := {x2 ∈ X2|((x1, x2), y) ∈ X × Y}. By the Supplementary Inequality 1,
ĉ(λ̂, x1, y) ∈ A(x1,y) holds and therefore, δX2=ĉ(λ̂,x1,y)

(A(x1,y)) = 1, which leads us to the equation∫
dPY I ,XI

1
(x1, y)δX2=ĉ(λ̂,x1,y)

(A(x1,y)) = 1.

Theorem 16. Notations are same as in Theorem 8 and 12. (X∗, Y ∗) satisfies the following condition:

(A2)’ For a sufficiently small ε 0 1, the following statement holds:
∀λ with ImΦλ

2 &= ∅, ∀α ∈ ImΦλ
1 , ∀b ∈ Y , ∃c(λ, a, b) s.t. P (Y ∗ = b|Φλ

1 (X
∗) = a,Φλ

2 (X
∗) =

c) ≥ (1− e−βλ) + ε.

Then, ∀λ with ImΦλ
2 &= ∅, there exists (Xeλ , Y eλ) ∈ Tall such that the inequality in (ii)’ holds.

The proof of Theorem 16 is essentially same as the one of Theorem 15 and therefore, we omit.

F The real-world feasibility of (ii) and (ii)’

In the subsection, we discuss the feasibility of (ii) and (ii)’, and show these conditions are not necessarily
strong.

First, we discuss the Condition (ii). Since β = H(Y e|ΦX1(Xe)) is the conditional entropy, we have
0 ≤ β ≤ log |Y|

and hence
1
|Y| − ε ≤ e−β − ε ≤ 1− ε

holds. We can see that Condition (ii) is weak if e−β − ε approaches 1, or if β is small. Recall that ΦX1(Xe)
is the bias-removed feature of Xe (digit of CMNIST, or object of ImageNet, for example). We can then
expect that, in many real-world settings, β = H(Y e|ΦX1(Xe)) is often small, since the bias-removed feature
ΦX1(Xe) should have a large amount of information on the labels. Condition (ii) is satisfied if the likelihood
pe

∗
(z|Φλ(x)) evaluated at a random point (x, z) ∼ PXe,g(Y e) is bounded by the large value e−β − ε for at

least one e ∈ Ead, so that the inequality in (ii) is likely to hold. Noting that (ii)’ is weaker than (ii), the
feasibility of (ii)’ is concluded from one of (ii).
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G Additional Experiment

G.1 Additional Experiments of Colored MNIST in Section 6

Although the Colored MNIST experiment in Section 6 fixes its flip rate to 25%, we additionally demonstrate
by changing its flip rate among {10%, 15%, 20%, 25%}.

Table 4: Test Acc. of Hierarchical Colored MNIST (5runs)

flip rate Test Acc. on Best possible Oracle ERM FT FF DSAN Ours + CV1 Ours + CV2 Ours+TDV

0.25
e = 0.1

.750 .715(.001)
.693(.001) .676(.003) .677(.002) .593(.007) .706(.005) .664 (.013) .690 (.008)

e = 0.9 .433 (.004) .250 (.020) .248(.015) .073(.003) .753(.011) .618 (.018) .657(.008)

0.20
e = 0.1

.800 .769(.001)
.800(.001) .727(.002) .725(.004) .639(.003) .752(.006) .721 (.015) .745 (.007)

e = 0.9 .525 (.004) .368 (.029) .364(.011) .080(.004) .576(.014) .685 (.019) .719 (.004)

0.15
e = 0.1

.850 .822(.000)
.802(.002) .782(.006) .786(.003) .682(.002) .806(.006) .794 (.008) .794 (.008)

e = 0.9 .630 (.006) .493 (.038) .512(.019) .091(.005) .673(.006) .774 (.006) .774 (.006)

0.10
e = 0.1

.900 .872(.001)
.848(.002) .827(.004) .829(.003) .593(.007) .857(.005) .842 (.008) .834 (.001 )

e = 0.9 .719 (.004) .611(.016) .623(.021) .073(.003) .756(.007) .800 (.007) .821 (.006)

Table 5: Baselines of CV methods

Tr-CV LOD-CV

0.25 .702 (.002) .590 (.004)
.597 (.006) .460 (.197)

0.20 .754 (.004) .716 (.018)
.678 (.008) .692 (.010)

0.15 .801 (.016) .787 (.004)
.678 (.008) .774 (.006)

0.10 .854 (.005) .836 (.004)
.751 (.013) .819 (.008)

Table 6: Means and SEs of {(Accuracy of TDV on e = 0.9) -(Accuracy of Each CV on e = 0.9) }
(5runs).

CV I CV II Tr-CV LOD-CV

0.25 .051 (.053) .040 (.017) .163 (.006) .197 (.205)
0.20 .143 (.012) .034 (.017) .132 (.008) .023 (.018)
0.15 .102 (.006) .000 (.000) .102 (.007) .003 (.002)
0.10 .065 (005) .021 (.010) .075 (.010) .005 (.002)

Table 4 and 5 show that, among several CV methods, our method II keeps a high predictive performance
regardless of flipping rates. Table 6 the difference between accuracies by TDV and each CV for the same data
set with e = 0.9. The result verifies that CVII selects preferable hyperparameters with smaller errors.

G.2 Additional Experiments: Colored MNIST II

We conduct an additional Colored MNIST experiment, changing annotation and coloring rules from ones in
Section 6. Setting Y = [3] and Z := [2], we aim to predict Y e from digit image data Xe, which is in the three
categories 0− 2 (Y e = 0), 3 or 4 (Y e = 1) and 5− 9 (Y e = 2). The label is changed randomly to one of the
rest with a some probability ranging from {10%, 15%, 20%, 25%}. The domain index e ∈ [0.0, 1.0] controls
the color of the digit; for Y e = 0, 1, the digit is colored in red with probability e and for Y e = 2 colored
in green with probability e. In the experiment, De∗ ∼ PX0.1,Y 0.1 is drawn with sample size ne∗ = 5000,
and Y e is predicted based on Xe for e = 0.1 and 0.9. Regarding Ze, we consider the task where we predict
Ze = 0 for Xe in 0 − 2 and Ze = 1 for 3 − 9 (that is, g(0) = 0 and g(1) = g(2) = 1). We obtain the final
label by flipping with some probability. As the domain-specific factor, we color the digit red for Ze = 0 with
probability e and green for Ze = 1 with probability e. We set Ead = {0.1, 0.3, 0.5, 0.7, 0.9} with ne = 5000
for ∀e ∈ Ead. We model Φ by a 3-layer neural net. With the maximum epoch 500, we select (t,λafter) from
3× 10 candidates with t ∈ {0, 100, 200},λafter ∈ {100, 101, ..., 109} by each CV method.

Table 7 and 8 shows test accuracies for 2000 random samples in the domains e = 0.1 and e = 0.9. The
results demonstrate that the proposed methods significantly outperform the others for e = 0.9. Among the
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Table 7: Test Accuracy for Hierarchical Colored MNIST (5runs)

flip rate Test Acc. on Best passible Oracle ERM FT FF DSAN Ours + CVI Ours + CVII Ours+ TDV

0.25
e = 0.1

.750 .729 (.004)
.771 (.001) .771 (.001) ..771 (.001) .767 (.004) .727 (.004) .714 (.013) .673 (.006)

e = 0.9 .125 (.003) .128 (.002) .131(.002) .085 (.003) .622 (.015) .644 (.019) .690 (.009)

0.20
e = 0.1

.800 .780 (.002)
.796 (.000) .800 (.001) .796 (.001) .789 (.004) .773 (.003) .745 (.008) .738 (.018)

e = 0.9 .177 (.006) .201 (.004) .200(.007) .091 (.005) .644 (.011) .707 (.012) .732 (.008)

0.15
e = 0.1

.850 .828 (.004)
.822 (.000) .823 (.001) .824 (.002) .815 (.002) .814 (.007) .797 (.011) .822 (.001)

e = 0.9 .277 (.007) .323 (.006) .312(.012) .091 (.002) .724 (.037) .743 (.020) .782 (.012)

0.10
e = 0.1

.900 .880 (.004)
.852 (.002) .855(.001) .856 (.001) .833(.003) .848 (.005) .848 (.005) .857 (.005)

e = 0.9 .468 (.002) .497 (.005) .500(.007) .106 (.010) .792 (.005) .792 (.005) .829 (.005)

Table 8: Baselines of CV methods

Tr-CV LOD-CV

0.25 .759 (.008) .362 (.059)
.459 (.012) .372 (.037)

0.20 .794 (.004) .338 (.048)
.541 (.007) .334 (.029)

0.15 .834 (.002) .348 (.031)
.634 (.008) .358 (.024)

0.10 .876 (.003) .502 (.196)
.708 (.006) .497 (.194)

two proposed methods, CV II yields the higher test accuracy. Table 9 shows the difference between accuracies
by TDV and each CV for the same data set with e = 0.9. The results verify that CVII selects preferable
hyperparameters with smaller errors.

G.3 Additional Experiment: Synthesized Data

We compared the proposed method with the other approaches using synthesized data with X = R2, Y = [3]
and Z := [2]. We used distributions N0 := N (0, 102)×N (e, 102), N1 := N (30, 102)×N (−4e, 102) and
N2 := N (−30, 102) × N (−e, 102), where N (a, b) denotes a normal distribution with its (mean, variance)
= (a, b). Given x ∼ Ni, the task is to predict Ni among i = 0, 1, 2. The aim of IL is to ignore the second
component of x, as it works as a domain-specific factor. Given e∗ ∈ N≥0 ranging from 0 to 50, each experiment
draws De∗ ∼ PXe∗ ,Y e∗ with its sample size ne∗ = 2000, and then predicts Y −e∗ from X−e∗ . Setting g by
g(0) = 0 and g(1) = g(2) = 1, we draw De

ad ∼ PXe,Ze from Ead = {−100,−50, 0, 50, 100} with its
sample size ne = 1000 (∀e ∈ Ead). We model Φ by a 3-layer neural net. Setting the maximum epoch 500, we
select (t,λafter) from 3 × 5 candidates with t ∈ {0, 100, 200} and λafter ∈ {100, 101, ..., 104} by each of
the CV methods.

Table 10 shows the test accuracy of the estimates for e = −e∗ over 2000 random samples (x, y) ∼
PX−e∗ ,Y −e∗ . When e∗ = 0 and 5, the domain bias of training (e∗) are similar to the one of test (−e∗),
and hence, the fine-tuning methods yield high performances, which may use biased correlation. As e∗ in-
creases, the difference between the training (e∗) and test (−e∗) distributions becomes larger, and the previous
methods fail to achieve high accuracy. The proposed methods (Ours) keep higher performance than the others
even for large e∗. Among the CV methods, our two methods (CVI, CVII) significantly outperform the others
for larger e∗. For this data set, CVI and CVII show almost the same performance.

G.4 Additional Experiment: Bird recognition

Our method is applied to the Bird recognition problem [4], which aims to predict three labels Y e of images
Xe: waterbird (Y e= 0), landbird (Y e= 1) and no bird (Y e= 2). The dataset is made by combining back-
ground images from the Places dataset [6] and bird images from the CUB dataset [5] in two different ways
E := {e1, e2}. In domain e1, we prepare three types of image: landbird image with land background, wa-
terbird image with water background, and no bird with land background (Figure 3, left). In domain e2, we
have landbird images with water background, waterbird images with land background, and no bird with water
background (Figure 3, right). For the sample of the target task, we used the domain e∗ = e1 and gener-
ated ne∗ = 8649 data De∗ ∼ PXe1 ,Y e1 . The sample in the higher level De

ad of (Xe, Ze), whose label is
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Table 9: Means and SEs of {(Accuracy of TDV on e = 0.9) -(Accuracy of Each CV on e = 0.9) }
(5runs).

CV I CV II Tr-CV LOD-CV

0.25 .068 (.007) .046 (.023) .231 (.013) .319 (.033)
0.20 .088 (.004) .025 (.006) .191 (.014) .398 (.025)
0.15 .059 (.038) .039 (.022) .148 (.019) .430 (.028)
0.10 .037 (.010) .037 (.010) .121 (.008) .332 (.196)

Table 10: Average Test ACCs and SEs of Synthesized Data on e = −e∗ (5 runs): Oracle shows the
results of the experiments with the first component. The best scores are bolded.

e∗ = 0 e∗ = 5 e∗ = 10 e∗ = 15 e∗ = 20 e∗ = 25 e∗ = 30 e∗ = 35 e∗ = 40 e∗ = 45 e∗ = 50
Oracle 906 (.007)
ERM .789 (.218) .791 (.174) .637 (.188) .329 (.201) .324 (.328) .311 (.260) .159 (.193) .140 (.171) .132 (.161) .166 (.147) .051 (.101)

FT .899 (.000) .863 (.001) .575 (.002) .568 (.001) .673 (.103) .583 (.088) .402 (.004) .350 (.001) .003 (.000) .000 (.000) .000 (.000)
FF .899 (.000) .861 (.002) .540 (.102) .568 (.001) .673 (.102) .628 (.001) .401 (.001) .351 (.002) .066 (.132) .000 (.000) .000 (.000)

DSAN .684 (.008) .367 (.016) .195 (.015) .112 (.008) .045 (.008) .013 (.003) .006 (.001) .001(.001) .000 (.000) 000 (.000) .000 (.000)
Ours + Our CV I .799 (.232) .784 (.231) .884 (.021) .875 (.044) .815 (.098) .738 (.209) .865 (.047) .659 (.233) .666 (.285) .776 (.080) .699 (.255)
Ours + Our CV II .799 (.232) .783 (.231) .884 (.021) .875 (.044) .815 (.098) .738 (.209) .865 (.047) .659 (.233) .563 (.291) .776 (.080) .699 (.255)

Ours + Tr-CV .790 (.230) .776 (.225) .609 (.163) .491 (.095) .366 (.147) .248 (.192) .376 (.033) .215 (.168) .148 (.127) .189 (.108) .031 (.138)
Ours + LOD-CV .662 (.180) .521 (.145) .569 (.204) .538 (.168) .450 (.158) .371 (.213) .641 (.221) .571 (.221) .380 (.196) .423 (.218) .316 (.127)

Ours + TDV .915 (.005) .905 (.006) .896 (.002) .895 (.010) .848 (.059) .849 (.069) .887 (.030) .764 (.152) .796 (.174) .848 (.055) .775 (.179)

landbird (Ze = 0) and no landbird (Ze = 1) (i.e., g(1) = 0 and g(0) = g(2) = 1), is drawn from both
e1 and e2 with ne1 = ne2 = 8649. Here, we use De∗ as De1

ad with labels of De∗ re-annotated by g. We
made a predictor of Y e based on Xe, and evaluated the test accuracy in the two domains e = e1, e2. We
model Φ by ResNet50 [1]. Setting the maximum epoch 5, we select (t,λafter) from 5 × 5 candidates with
t ∈ [5],λafter ∈ {100, 101, ..., 104} by each CV method.

Figure 3: Visualization of Bird recognition problem

Data on environment1 Data on environment2

Landbirds + land

Waterbirds + water No birds + water

Landbirds + water

Waterbirds + land No birds + land

Table 11 shows test accuracies with 2162 random samples for e1 and e2. We can see that the proposed frame-
work together with CV methods succeeded in capturing the predictor invariant to the change of background,
while the other methods failed. ERM and FT show much higher accuracy for e1 than Oracle and worst results
for e2, which implies that these methods learn biased correlation in De∗ .
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Table 11: Average Test Accuracies and SEs of Bird recognition problem (5 runs). Oracle shows
a result of ERM with samples from both e1 and e2 given. TDV selects λ which yields the highest
performance on e2. Best scores are bolded.

Test Acc. on e1 Test Acc. on e2

Oracle .875 (.018)
ERM .902 (.008) .317 (.044)

FT .909 (.012) .364 (.028)
FE .767 (.024) .052 (.013)

Ours +Our CV I .897 (.020) .727 (.062)
Ours +Our CV II .897 (.020) .727 (.062)

Ours +Tr-CV .919 (.006) .651 (.031)
Ours +LOD CV .338 (.048) .334 (.029)

Ours +TDV .886 (.035) .782 (.020)

G.5 Additional Experiment: ImageNet

In the main body, only test accuracies on e2 are shown. The result adding test accuracies on the training domain
e1 are as follows:

ImageNet: Y = [3],Z = [2].
Test Acc. on e1 Test Acc. on e2

random guess .333

Oracle .743 (.018)
ERM .750 (.016) .417 (.016)

FT .793 (.018) .463 (.030)
FF .439 (.002) .482 (.117)

DSAN .288 (.012) .278 (.004)
Ours + CV I .843 (.024) .652 (.028)
Ours + CV II .852 (.009) .666 (.027)
Ours + Tr-CV .873 (.009) .641 (.033)

Ours + LOD CV .857 (.012) .525 (.028)
Ours + TDV .857 (.012) .673 (.035)

ImageNet: Y = [7],Z = [2].
Test Acc. on e1 Test Acc. on e2

random guess .143

Oracle .749 (.008)
ERM .740 (.017) .507 (.020)
FT .626 (.028) .409 (.020)
FF .191 (.004) .226 (.046)

DSAN .184 (.012) .293 (.008)
Ours + CV I .853 (.006) .622 (.011)
Ours + CV II .853 (.006) .622 (.011)
Ours + Tr-CV .850 (.004) .612 (.012 )

Ours + LOD CV .825 (.017) .572 (.022)
Ours + TDV .837 (.019) .634 (.003)

ImageNet: Y = [3],Z = [2].
Test Acc. on e1 Test Acc. on e2

random guess .333

Oracle .743 (.018)
ERM .750 (.016) .417 (.016)

FT .793 (.018) .463 (.030)
FF .439 (.002) .482 (.117)

DSAN .288 (.012) .278 (.004)
Ours + CV I .843 (.024) .652 (.028)
Ours + CV II .852 (.009) .666 (.027)
Ours + Tr-CV .873 (.009) .641 (.033)

Ours + LOD CV .857 (.012) .525 (.028)
Ours + TDV .857 (.012) .673 (.035)
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H Experimental Details

H.1 Visualizations of Experiment Results

Synthesized data in Appendix G.3 is visualized as in Figure 4. Synthesized data in the CVs comparison exper-
iment (Section 6) is visualized as in Figure 5.

Figure 4: Synthesized Data in Appendix G.3. Left and middle figures illustrate training and test data
on e∗ = 5 and 50, respectively. As e∗ increases, the test data and train data are more different, and
therefore ERM yields lower performance. Right figure illustrates De

ad.

Figure 5: Synthesized Data in Section 6. Left figure illustrates the training and test data of second
experiment. Right figure illustrates D40

ad and Dead
ad with ead = −9.

H.2 Explicit representation of Synthetic data used in CV comparison experiment

N1 = N (−180, 202)×N (−5e, 302),

N2 = N (−100, 202)×N (−3e, 302),

N3 = N (−20, 202)×N (−1e, 302),

N4 = N (60, 202)×N (−2e, 302),

N5 = N (140, 202)×N (−4e, 302),

N6 = N (−140, 202)×N (4e, 302),

N7 = N (−60, 202)×N (2e, 302),

N8 = N (20, 202)×N (1e, 302),
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N9 = N (100, 202)×N (3e, 302),

N10 = N (180, 202)×N (5e, 302).

H.3 Detail of ImageNet experiment data set

In the ImageNet experiment in Section 6, Y is set as follows:

• Y = [3]:{bird, turtle ,snake }
• Y = [7]: {bird, turtle, snake, cat, food, vehicle, building },
• Y = [17]: {bird, turtle, snake, cat, dog, monkey, spider, butterfly, food, vehicle, building, shoes,

hat, instrument, tellephone, bottle, chair}.

Images of bolded labels are composed of different species among e1 and e2. Explicitly, dataset are composed
as follows:

Y = [3]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel

turtle loggerhead, leathback .box turtle, mud turtle

snake thunder snake, garther snake, ringneck. snake

Y = [7]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel
turtle loggerhead, leathback .box turtle, mud turtle
snake thunder snake, garther snake, ringneck. snake

cat persian cat, siamese cat, egyptian cat
food cucumber, strawberry, pizza

vechicle submarine, container ship golfcart, jeep
building lighthouse, fountaink castle, water tower
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Y = [17]

label e1 e2

bird ruffed grouse, indigo bunting albatross, water ouzel
turtle loggerhead, leathback .box turtle, mud turtle
snake thunder snake, garther snake, ringneck. snake

cat persian cat, siamese cat, egyptian cat
dog eskimo dog, dalmatian newfoundland, German shepherd

monkey guenon, colobus, titi
spider wolf spider, garden spider, barn spider

butterfly ringlet, monarch, cabbage butterfly
food pizza, strawberry cucumber, broccoli

vechicle submarine, container ship golfcart, jeep
building lighthouse, fountaink castle, water tower

shoes clog, sandal running shoe, loafer
hat pickelhaube, crash helmet, hat with a wide brim

instrument acoustic guitar, electric guitar, violin
tellephone cellular telephone, dial telephone, pay-phone

bottle pill bottle, pop bottle beer bottle, wine bottle
chair barber chair, folding chair, rocking chair

H.4 model architectures and optimization procedures

Through the experiment in the present paper, all models of competitors are composed of neural networks where
its loss function, activation function, and optimizer are cross entropy, Relu Networks and Adam [3]. In the
following explanation, NN with its model architecture a → h1 → · · ·hk → hn → P[m] means that its
input and hidden dimensions are a and (h1, ..., hn) respectively, and its output is probability density functions
on [m]. NN with its model architecture a → h1 → · · ·hk → hn → b means that its input, hidden and
output dimensions are a, (h1, ..., hn) and b respectively. All the experiment, we add L2-reguralized term to
our objective function.

We add explanations of previous CV methods. Tr-CV implements cross-validation with using only D∗. In
LOD-CV, a model is learnt with excluding one of the De ⊂ Dad from Dad, and evaluate its performance by
De. Changing the role of e ∈ Ead, and taking their mean, we evaluate final CV-value.

H.4.1 Colored MNIST

We set model architecture of Φ used in our method 2 → 440 → 440 → 440. We set model architecture of
and ERM 2 → 440 → 440 → P[3]. When we use FT and FF, its model architecture on pre-train phase and
retraining phase are 2 → 440 → 440 → P[2] and 2 → 440 → 440 → P[3] respectively. We set running
rate and hyperparameter of L2-regularized term 0.0004 and 0.002 respectively. When we use DSAN [7], we
inherit learning condition in the Amazon Review dataset experiment. When training, we use batch learning. We
set K = 10 of our CV method.

H.4.2 ImageNet

We set model architecture of Φ used in our method ResNet50 [1] with changing its output dimension 256.
We set model architecture of and ERM ResNet50 [1] with changing its output P[|Y|]. When we use FT and
FF, its model architecture on pre-train phase and retraining phase are ResNet50 [1] with changing its output
dimension 2 and |Y| respectively. We set running rate and hyperparameter of L2-regularized term 0.00004 and
0.001 respectively. When training, we use minibatch learning with a minibatch size 56. When we use DSAN
[7], we inherit learning condition in the Amazon Review dataset experiment. We set K = 5 of each CV method.
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H.4.3 CV comparison experiment

We set model architecture of Φ used in our method 2 → 8 → 8 → 1. We set running rate and hyperparameters
of L2-regularized term 0.05 and 0.001 respectively. When training, we use minibatch learning with dividing
D∗, Dead

and D40 into 50 equal parts respectively. We set K = 10 of each CV method.

H.4.4 Appendix: Colored MNIST II

We set model architecture of Φ used in our method 2 → 440 → 440 → 440. We set model architecture
of ERM 2 → 440 → 440 → P[3]. When we use FT and FF, its model architecture on pre-train phase and
retraining phase are 2 → 440 → 440 → P[2] and 2 → 440 → 440 → P[3] respectively. We set running
rate and hyperparameter of L2-regularized term 0.0004 and 0.002 respectively. When we use DSAN [7], we
inherit learning condition in the Amazon Review dataset experiment. When training, we use batch learning. We
set K = 10 of our CV method.

H.4.5 Appendix: Synthesized Data

We set model architecture of Φ used in our method 2 → 20 → 20 → 1. We set model architecture of ERM
2 → 20 → 20 → P[3]. When we use FT and FF, its model architecture on pre-train phase and retraining phase
are 2 → 20 → 20 → P[2] and 2 → 20 → 20 → P[3] respectively. We set running rate and hyperparameters
of L2-regularized term 0.0115 and 0.01 respectively. When we use DSAN [7], we inherit learning condition
in the Amazon Review dataset experiment. When training, we use batch learning. We set K = 10 of each CV
method.

H.4.6 Appendix: Birds recognition

We set model architecture of Φ used in our method ResNet50 [1] with changing its output dimension 256. We
set model architecture of ERM ResNet50 [1] with changing its output P[3]. When we use FT and FF, its model
architecture on pre-train phase and retraining phase are ResNet50 [1] with changing its output dimension 2 and
3 respectively. We set running rate and hyperparameter of L2-regularized term 0.00004 and 0.001 respectively.
When training, we use minibatch learning with a minibatch size 56. We set K = 5 of each CV method.
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