
In the supplementary material, we first provide more implementation details of the network archi-
tecture (§1), then present the per-category evaluation (§2.1), latency and runtime memory analysis
(§2.2), more ablation studies (§2.3) and visualization of quantitative results (§2.4).

1 Implementation Details

As mentioned in the main paper, the CAGroup3D architecture consists of a backbone with dual
resolution named BiResNet, a class-aware 3D proposal generation module and a RoI-Conv refinement
module. We first detail the backbone and proposal generation module, then elaborate the RoI-Conv
refinement module as well as its competitors, and finally present the details of our loss functions.

1.1 BiResNet Backbone

Our backbone network is built upon MinkowskiEngine [3], an auto-differentiation library for sparse
tensors. In all experiments, we voxelize the original point clouds into sparse tensors with a voxel
size of 0.02m and feed them into the backbone network. BiResNet contains two branches, one is the
sparse modification of ResNet18 [5] to extract pyramid contextual features with proper downsampling
modules, the other one is an auxiliary branch to hold a high-resolution feature map whose resolution is
1/2 of the input 3D voxels. To achieve information interaction between the two streams, we construct
a bilateral fusion block, which includes fusing the high-resolution branch into the low-resolution
(high-to-low) and low-resolution into high-resolution (low-to-high). As for high-to-low fusion, high-
resolution features are downsampled by a sparse convolution block with a specifical stride (e.g., 2
and 4 for different stages) before being added to the low-resolution feature map. Meanwhile, an
interpolation operation and another channel-compression convolution are used to upsample the low-
resolution feature map before being fused with the high-resolution auxiliary branch. All convolution
layers are followed by batch or instance normalization and ReLU activation function. The output of
the backbone network are 64-dimensional voxel-wise latent features.

1.2 Class-aware 3D Proposal Generation Module

The class-aware 3D proposal generation module consists of a semantic and vote prediction module,
a class-aware local grouping module and an anchor-free proposal head. The detailed computation
procedure is provided in Algorithm 0. The proposal head comprises three parallel sparse convolutional
layers with weights shared across all class-individual feature maps. For each candidate object, theses
layers output classification probabilities for each class, bounding box parameters and 3D centerness
values separately. Finally, we filter out those proposal bounding boxes with score less than 0.01, then
apply oriented NMS with 3D IoU threshold of 0.5 to remove overlapped bounding boxes and reduce
the number of proposals.

1.3 RoI-Conv Refinement Module

Given the proposals of Stage-I, we further select 128 proposals whose 3D IoU with ground truth
are greater than 0.3 as training samples for each scene, while reserve all proposals during inference.
Finally, the proposals and voxel features from backbone are fed into RoI-Conv pooling module with
two stacked sparse abstraction blocks to obtain the RoI-specific features. We also provide more
implementation details of other RoI pooling strategies mentioned in the main paper.

PointRCNN. We first slightly enlarge the proposals by 0.3m, then randomly take out 128 voxels
{ln}128n=1 within each proposal for further processing. These cropped voxels are regarded as input
points and fed into the hierarchical PointNet++ [9] with two SA layers to obtain the final RoI-specific
features. The first SA layer uses farthest point sampling (FPS) to sample 32 key points from the input
and applies a set abstraction operation [7] centered on each key points to encode local patterns. The
radius and number of neighbors are set to 0.4m and 16. Finally the sampled key points are pooled to
a feature vector by the last SA layer for further proposal refinement.

Part-A2. Instead of directly processing the irregular points within proposals as PointRCNN, Part-A2

converts the contiguously distributed points into regular voxels with a fixed spatial shape, where the
average pooling operation is adopted to pool the points in the same voxel. For a fair comparison, we
adopt the same spatial shape (i.e., 7× 7× 7) as ours, and then several sparse convolutions are stacked
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Algorithm 1 Algorithm of Class-Aware 3D proposal Generation Module.

Input: Seed voxels {oi}Ni=1, semantic threshold τ , kernel sizes of aggregation k(a),
Voxel sizes of different classes {dj}Nclass

j=1 , scale factor α.
Output: Proposals P

1: Initialize class-aware aggregation results A = {}.
/*Voxel-wise Semantic and Vote Prediction*/

2: {pi}Ni=1 = {MLPvote(oi)}Ni=1, {si}Ni=1 = {MLPsem(oi) ∈ [0, 1]Nclass}Ni=1
/*Class-Aware Local Grouping*/

3: for j ← 0 to Nclass do
/*Slice a semantic subset with τ*/

4: cj = {pi : sji > τ, i = 1, ..., N}
/*Class-Aware Re-voxelization*/

5: {vi}
|Vj |
i=1 = VFE(cj , α · dj , Avg)

/*Class-dependent SpConv Aggregation with k(a)*/
6: A(j) = {a(j)i | a

(j)
i = SparseConv(j)3D (vi, {vi}

|Vj |
i=1, k

(a))}|Vj |
i=1

/*Merge the subset*/
7: A append A(j) ▷ Not a unique OP that each loc may have multiple features.
8: end for

/*Proposal Head with NMS*/
9: P = NMS

(
{MLP(Al)}

|V0|+...+|VNclass
|

l=0

)
10: Return P

to aggregate all part features into a feature vector. Notably, we follow the original paper [10] and
keep the empty voxels in each proposal to encode the bounding box’s geometric information.

Ours-SA. In this variant, we replace the sparse convolution operation used for encoding local patterns
in our sparse abstraction block with set abstraction [9]. Specifically, given the RoI-specific points set

G̃ = {gk}|G̃|k=1 sampled from the proposals, instead of exploiting sparse convolution centered on each
points, we adopt ball query to cover neighboring voxels. Then a PointNet operation is applied on
each query group to learn the local patterns. We follow the same two-layers architecture and proposal
sampling resolutions as our RoI-Conv module. Their corresponding radius and number of neighbors
are set to (0.3m, 2.0m) and (16, 7× 7× 7) respectively.

As mentioned in the main paper, we compare our RoI-Conv module with the above three variants both
on detection scores and computation cost. Note that the computation cost is measured by training
memory with the batch size of 8. The experiments show that our RoI-Conv module has significant
superiority. All the experiments are run on the same workstation and environment.

We further explain how we change the depth of RoI module introduced in the main paper. To be
specific, we stack different number of sparse abstraction blocks with fixed sparse kernel size k(p) = 5
and decreasing proposal sampling resolutions {Gt}, t = 1, ..., n, where n is the number of blocks.
For example, {Gt} = {1} means we only sample one grid point (proposal center) for each proposal
and aggregate input voxels from backbone by directly applying sparse convolution centered on these
points; {Gt} = {7, 5, 1} means the first sparse abstraction block outputs a voxel set Q1 where the
voxels are sampled from the proposals with 7× 7× 7 resolution and serve as convolution centers
to encode their local patterns from the input voxels. The second sparse abstraction block further
samples a smaller voxel set Q2 from the proposals with 5× 5× 5 resolution, and similarly obtains
the voxelwise output features by applying sparse convolution centered onQ2 to cover their neighbors
from Q1. Finally, Q2 is fed into the last sparse abstraction block. We use a sparse convolution
with k(p) = 5 to aggregate all the part features into the proposal center and get the RoI-specific
feature vector. Other settings can be easily understood by analogy with the above explanation. Note
that the sparse kernel size k(p) in the last block is equal to the proposal sampling resolution in the
second-to-last block to aggregate all information in the proposal.
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1.4 Loss Function Details

Our model is trained end-to-end with a multi-task loss including semantic loss Lsem, voting loss
Lvote-reg, centerness loss Lcntr, bounding box estimation loss Lbox, classification losses Lcls for Stage-I
and bbox refinement loss Lrebox for Stage-II.

L = βsemLsem + βvoteLvote + βcntrLcntr

+βboxLbox + βclsLcls + βreboxLrebox.
(1)

The second stage loss Lrebox consists of a regression loss Lsmooth-ℓ1 and a iou loss Liou. For the regres-
sion loss, both the 3D proposals and their corresponding ground-truth bounding boxes are transformed
into the canonical coordinate systems, which means the 3D proposal bi = (xi, yi, zi, hi, wi, li, θi)

and ground-truth bounding box bgti = (xgt
i , ygti , zgti , hgt

i , wgt
i , lgti , θgti ) would be transformed to

b̃i = (0, 0, 0, hi, wi, li, 0),

b̃gti = (xgt
i − xi, y

gt
i − yi, z

gt
i − zi, h

gt
i , wgt

i , lgti , θgti − θi).
(2)

Then following the traditional residual learning method and sin-cos heading encoding strategy, we
obtain the final target t as follow:

t = (
xgt
i − xi

d
,
ygti − yi

d
,
zgti − zi

d
, log(

hgt
i

hi
), log(

wgt
i

wi
), log(

lgti
li
), sin(∆θ), cos(∆θ)), (3)

where d =
√
h2
i + w2

i + l2i , ∆θ = θgti − θi. Finally the smooth-L1 loss is adopted to compute the
regression loss. For the iou loss, we get the final refined bounding boxes decoded from the prediction
logits and compute their rotated IoU with ground-truth bouding boxes as used in Stage-I.

The balancing factors are set default as βsem = 1.0, βvote = 1.0, βcntr = 1.0, βbox = 1.0, βcls =
1.0, βrebox = 0.5.

Table 1: 3D detection scores per category on the ScanNetV2, evaluated with mAP@0.25 IoU.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt frig showr toil sink bath ofurn mAP

VoteNet [8] 47.87 90.79 90.07 90.78 60.22 53.83 43.71 55.56 12.38 66.85 66.02 52.37 52.05 63.94 97.40 52.32 92.57 43.37 62.90

MLCVNet [11] 42.50 88.50 90.00 87.40 63.50 56.90 47.00 57.00 12.00 63.90 76.10 56.70 60.90 65.90 98.30 59.20 87.20 47.90 64.50

BRNet [2] 49.90 88.30 91.90 86.90 69.30 59.20 45.90 52.10 15.30 72.00 76.80 57.10 60.40 73.60 93.80 58.80 92.20 47.10 66.10

H3DNet [12] 49.40 88.60 91.80 90.20 64.90 61.00 51.90 54.90 18.60 62.00 75.90 57.30 57.20 75.30 97.90 67.40 92.50 53.60 67.20

Group-free [6] 52.10 92.90 93.60 88.00 70.70 60.70 53.70 62.40 16.10 58.50 80.90 67.90 47.00 76.30 99.60 72.00 95.30 56.40 69.10

FCAF3D [4] 57.20 87.00 95.00 92.30 70.30 61.10 60.20 64.50 29.90 64.30 71.50 60.10 52.40 83.90 99.90 84.70 86.60 65.40 71.50

Ours 60.37 93.00 95.25 92.32 69.95 67.95 63.60 67.29 40.70 77.01 83.87 69.43 65.65 73.00 99.97 79.70 86.98 66.12 75.12

Table 2: 3D detection scores per category on the ScanNetV2, evaluated with mAP@0.50 IoU.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt frig showr toil sink bath ofurn mAP

VoteNet [8] 8.10 76.10 67.20 68.80 42.40 15.30 6.40 28.00 1.30 9.50 37.50 11.60 27.80 10.00 86.50 16.80 78.90 11.70 33.50

BRNet [2] 28.70 80.60 81.90 80.60 60.80 35.50 22.20 48.00 7.50 43.70 54.80 39.10 51.80 35.90 88.90 38.70 84.40 33.00 50.90

H3DNet [12] 20.50 79.70 80.10 79.60 56.20 29.00 21.30 45.50 4.20 33.50 50.60 37.30 41.40 37.00 89.10 35.10 90.20 35.40 48.10

Group-free [6] 26.00 81.30 82.90 70.70 62.20 41.70 26.50 55.80 7.80 34.70 67.20 43.90 44.30 44.10 92.80 37.40 89.70 40.60 52.80

FCAF3D [4] 35.80 81.50 89.80 85.00 62.00 44.10 30.70 58.40 17.90 31.30 53.40 44.20 46.80 64.20 91.60 52.60 84.50 57.10 57.30

Ours 41.35 82.82 90.82 85.62 64.93 54.33 37.33 64.10 31.38 41.08 63.62 44.38 56.95 49.26 98.19 55.44 82.40 58.82 61.27

Table 3: 3D detection scores per category on the SUN RGB-D, evaluated with mAP@0.25 IoU.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

VoteNet [8] 75.50 85.60 31.90 77.40 24.80 27.90 58.60 67.40 51.10 90.50 59.10

MLCVNet [11] 79.20 85.80 31.90 75.80 26.50 31.30 61.50 66.30 50.40 89.10 59.80

H3DNet [12] 73.80 85.60 31.00 76.70 29.60 33.40 65.50 66.50 50.80 88.20 60.10

BRNet [2] 76.20 86.90 29.70 77.40 29.60 35.90 65.90 66.40 51.80 91.30 61.10

HGNet [1] 78.00 84.50 35.70 75.20 34.30 37.60 61.70 65.70 51.60 91.10 61.60

Group-free [6] 80.00 87.80 32.50 79.40 32.60 36.00 66.70 70.00 53.80 91.10 63.00

FCAF3D [4] 79.00 88.30 33.00 81.10 34.00 40.10 71.90 69.70 53.00 91.30 64.20

Ours 81.37 90.81 32.64 82.97 39.19 42.74 73.49 72.22 59.64 92.91 66.80
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Table 4: 3D detection scores per category on the SUN RGB-D, evaluated with mAP@0.50 IoU.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet mAP

VoteNet [8] 45.40 53.40 6.80 56.50 5.90 12.00 38.60 49.10 21.30 68.50 35.80

H3DNet [12] 47.60 52.90 8.60 60.10 8.40 20.60 45.60 50.40 27.10 69.10 39.00

BRNet [2] 55.50 63.80 9.30 61.60 10.00 27.30 53.20 56.70 28.60 70.90 43.70

Group-free [6] 64.00 67.10 12.40 62.60 14.50 21.90 49.80 58.20 29.20 72.20 45.20

FCAF3D [4] 66.20 69.80 11.60 68.80 14.80 30.10 59.80 58.20 35.50 74.50 48.90

Ours 68.55 67.44 13.82 70.84 17.28 30.92 59.91 61.27 39.22 72.73 50.20

2 More Results

2.1 Per-class Evaluation

We evaluate per-category on ScanNet V2 and SUN RGB-D under different IoU thresholds. Table 1,
2 report the results on 18 classes of ScanNet V2 with 0.25 and 0.5 box IoU thresholds respectively.
Table 3, 4 show the results on 10 classes of SUN RGB-D with 0.25 and 0.5 box IoU thresholds. Our
approach outperforms the baseline VoteNet [8] and previous state-of-the-art method FCAF3D [4]
significantly in almost every category. Notably, our model significantly performs better than prior
works on tiny classes (e.g., picture: +10.80 and +13.48 better than the SOTA on ScanNet V2), which
demonstrates the effectiveness of our local grouping strategy.

2.2 Latency and Memory Analysis.

We also report the latency and memory usage of our CAGroup3D on ScanNet V2. For a fair
comparison, we re-measure all the methods on the same workstation (Single NVIDIA RTX 3090
GPU card, 256G RAM, and Xeon(R) E5-2638 v3) and enviroment (Unbuntu-16.04, Python 3.7,
Cuda-11.1 and Pytorch-1.8.1). The official code of other methods is used for evaluation. Table
5 shows that our method achieves better performance with a competitive speed. The time cost of
CAGroup3D is mainly on class-aware local grouping step, which iterates over all the classes to
generate high-quality 3D proposals. However, in our approach, we use semantic threshold to select a
point subset for each category, which can significantly reduce the computation usage. To achieve
faster running speed, we also present a light-weight version with the larger voxel size (0.04m). With
this modification, our model can be faster and still maintain a high performance. In addition, we
further add the inference time comparison between our RoI-Conv module and other alternatives in
Table 6. It can be seen that RoI-Conv pooling module is significantly more memory-and-time efficient
than previous pooling operation. Hope it can be useful for the following two-stage methods.

Table 5: Performance comparison of latency and runtime memory on ScanNet V2 dataset. All
methods are tested on same workstation.

Method 1-stage 2-stage total latency memory mAP@0.25 mAP@0.5
VoteNet [8] 101.0ms - 101.0ms 2,507MB 58.6 33.5

Group-free [6] 153.1ms - 153.1ms 3,678MB 69.1 52.8
FCAF3D [4] 114.9ms - 114.9ms 3,755MB 71.5 57.3
Ours(light) 111.6ms 12.3ms 123.9ms 2,947MB 74.0 60.1

Ours 144.8ms 34.5ms 179.3ms 3,544MB 75.1 61.3

Table 6: Comparison with other RoI pooling approaches.

RoI Method mAP@0.25 mAP@0.5 memory speed

PointRCNN 73.65 57.83 8,054MB 62.9ms
Part-A2 74.01 58.89 6,540MB 47.9ms
Ours-SA 73.89 58.14 11,508MB 45.5ms

Ours-SpConv 74.50 60.31 2,468MB 34.5ms
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Table 7: Ablation study of feature shifting.

Feature Shifting mAP@0.25 mAP@0.5

74.18 60.17
✓ 74.50 60.31

Table 8: Ablation study of loss weight.

βrebox mAP@0.25 mAP@0.5

1.0 74.29 60.15
0.5 74.50 60.31

2.3 More Ablation Studies

The effect of feature offsets. We provide the ablative studies of the feature shifting operation in
our class-aware grouping module on ScanNet V2. We can observe in Table 7 that feature shifting is
slightly better than the variant of non-shift. As discussed in VoteNet, to generate more reliable object
representations, a MLP is used to transform seeds’ features extracted from backbone to vote space,
so that the grouped features can align with the voted points automatically.

The effect of different loss weights. As mentioned in §1.4, we simply set all the loss weights to 1.0
except for the bbox refinement βrebox, which is adjusted to 0.5 for balancing the value of Stage-I box
loss Lbox and Stage-II refinement loss Lrebox. Our method is not sensitive to loss weight and causes
only minimal fluctuations (e.g. less than 0.3) as shown in Table 8.

More possible combinations of the imporatant modules. In Table 9, we list more results of
combining different modules mentioned in the main paper including Semantic Prediction, Diverse
Local Group, RoI-Conv and BiResNet. It can be seen that our well-designed modules can still boost
the performance with various combinations, which shows the robustness and effectiveness of our
method.

Table 9: Effect of Semantic Prediction, Diverse Local Group, RoI-Conv and BiResNet.

Semantic Prediction Diverse Local Group BiResNet RoI-Conv mAP@0.25 mAP@0.5

✓ 69.10 57.62
✓ ✓ ✓ 73.14 59.85

✓ ✓ 70.99 58.42
✓ ✓ ✓ ✓ 74.50 60.31

2.4 Quantitative Results

We provide the visualization of our prediction bounding boxes on ScanNet V2 and SUN RGB-D
datasets. Please see Figure 1 for more qualitative results. Notably, our method can even accurately
detect some miss-annotated objects in SUN RGB-D as in the bottom left of the figure.
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