
BayesPCN: A Continually Learnable
Predictive Coding Associative Memory

Jason Yoo
Department of Computer Science
University of British Columbia

Vancouver, Canada
jasony97@cs.ubc.ca

Frank Wood
Department of Computer Science
University of British Columbia

Vancouver, Canada
fwood@cs.ubc.ca

Abstract

Associative memory plays an important role in human intelligence and its mech-
anisms have been linked to attention in machine learning. While the machine
learning community’s interest in associative memories has recently been rekindled,
most work has focused on memory recall (read) over memory learning (write).
In this paper, we present BayesPCN, a hierarchical associative memory capable of
performing continual one-shot memory writes without meta-learning. Moreover,
BayesPCN is able to gradually forget past observations (forget) to free its memory.
Experiments show that BayesPCN can recall corrupted i.i.d. high-dimensional data
observed hundreds to a thousand “timesteps” ago without a large drop in recall
ability compared to the state-of-the-art offline-learned parametric memory models.

1 Introduction

One of the hallmarks of biological intelligence is the ability to robustly recall learned associations.
Biological agents are able to associate stimuli of various modalities and rely on their memories to
perform everyday tasks from navigation to entity recognition. Yet these agents are not only good
at recall but can quickly and continually form new memories from as little as a single experience.
How do biological agents achieve this feat while mitigating catastrophic forgetting [French, 1999]?
And how can we build neural networks that demonstrate these properties? This paper addresses these
questions, focusing on fast, continual learning of neural artifacts that perform robust recall of i.i.d.
high-dimensional observations.

Associative memory models have been of interest in machine learning for decades [Steinbuch,
1961, Hopfield, 1982]. They have been used to solve a wide range of problems from sequence
processing [Schmidhuber, 1992, Graves et al., 2014, Schlag et al., 2021] to pattern detection [Widrich
et al., 2020, 2021, Seidl et al., 2021]. Their study has allowed us to build models that replicate
aspects of biological intelligence [Kanerva, 1988, Hawkins and Blakeslee, 2004] and provided novel
perspectives on machine learning toolsets like dot-product attention, transformers, and linear layers
of deep neural networks [Ramsauer et al., 2020, Bricken and Pehlevan, 2021, Irie et al., 2022].

Our main aim is to recall exact memories from a neural network that can rapidly and continually learn
from a stream of data. Towards this end we introduce BayesPCN, a Bayesian take on the generative
predictive coding network (GPCN) [Salvatori et al., 2021] that combines predictive coding and locally
conjugate Bayesian updates1. There are currently a number of associative memory systems that are
continually learnable [Hopfield, 1982, Kanerva, 1988, Hawkins and George, 2007, Ramsauer et al.,
2020, Sharma et al., 2022]. However, to our knowledge, BayesPCN is the first parametric associative
memory model to continually learn hundreds of high-dimensional observations while maintaining

1Code is available at https://github.com/plai-group/bayes-pcn

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Figure 1: BayesPCN recall before and after the one-shot write of the top left image into memory.
The first row contains example memory queries, the second row contains the memory’s read outputs
before write, the third row contains the memory’s read outputs immediately after write, the fourth
row contains sample images written into memory after the top left image, and the last row contains the
memory’s read outputs after 192 additional datapoints have been sequentially written into memory.
The model has 3 hidden layers of width 1024. The four leftmost columns illustrate auto-associative
recall while the remaining columns illustrate hetero-associative recall.

good recall performance on inputs with nontrivial amounts of corruption. In addition, it is also the
first hierarchical memory which after repeated forgetting recovers its original memory state.

2 Background

2.1 Auto-Associative and Hetero-Associative Memory

Before we begin let us review two useful concepts: auto-associative memory and hetero-associative
memory. The former, auto-associative memory, refers to a memory system that is content addressable
but for which the query may be a corrupted version of the original data item. One can think about
auto-associative memory systems as a kind of approximate nearest neighbor lookup mechanism.
Hetero-associative memory systems are key-value stores, meaning that the recalled “value” is
potentially of a different type to the “key.” Crucially, hetero-associative memory systems can, in large
part, be implemented by auto-associative memory systems by forming a “joint” object to memorize
by combining the key and value into one object. Hetero-associative queries can then be processed
simply by looking up the joint object “corrupted” by discarding the value.

2.2 Generative Predictive Coding Network

A generative predictive coding network (GPCN) [Salvatori et al., 2021] is an energy-based associative
memory model that has set the state-of-the-art on a number of image associative recall tasks. As
illustrated in Figure 2, GPCN takes the form of a fully connected neural network whose bottom
layer activations characterize the sensory inputs and higher layer activations characterize the internal
representations of the sensory inputs. GPCN’s read operation (recall) initializes the bottom layer
activations to the input query vector and iteratively denoises the query until a stored value is retrieved
by minimizing its energy function w.r.t. some or all of its neuron activations. GPCN’s write operation
(learning) adapts the network parameters to shape the energy function such that the stored datapoints
become the local minima of the energy function.

Before describing GPCN’s read and write mechanisms in more detail, we introduce the notation
we use in this paper. Let M be a GPCN with L + 1 layers of neurons where 0 and L denotes the
bottom and the top layer index respectively. Then, let dl be the width of the l-th layer, xl ∈ Rdl be
the row vector denoting the l-th layer’s pre-activation function neuron values, and f l : Rdl → Rdl

be the l-th layer’s activation function, for instance ReLU. In addition, let W l ∈ Rdl+1×dl where
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Figure 2: Left: A sample 3-layer GPCN/BayesPCN architecture. Circular nodes denote neurons,
arrows denote synaptic weights, x0 denotes the sensory neuron activations, x1, x2 denote the upper
layer hidden neurons activations, W 0,W 1 denote the synaptic weights between network layers, and
W 2 denotes the bias term that influences the top layer neuron activities. Right: graphical model
for the memory model to the left with T i.i.d. sensory observations x0

1:T . GPCN’s graphical model
is black while BayesPCN’s graphical model adds the red components. GPCN treats the synaptic
weights as constants while BayesPCN treats them as normally distributed random variables.

0 ≤ l < L be the synaptic weight matrix between l+1-th and l-th layers and WL ∈ RdL be the “bias”
row vector that influences the dynamics of the top layer neuron activities xL. One can intuitively
think of the model parameters W 0:L as the memory content and the activations x0:L as the read state
of the memory.

GPCN’s read and write are facilitated by predictive coding (PC) [Rao and Ballard, 1999], a
biologically plausible learning rule that can approximate backpropagation [Millidge et al., 2020].
PC’s energy function is the sum of prediction errors across all network layers. For GPCN, the choice
of prediction error is the squared Euclidean distance between the actual layer activations and the
prediction of the same layer activations made by their immediate upper layer activations. This leads
to the following energy function.

E(x0:L,W 0:L) =
1

2
||xL −WL||2 + 1

2

L−1∑
l=0

||xl − f l+1(xl+1)W l||2 (1)

GPCN’s read performs gradient descent on the energy w.r.t. some or all of x0 and x1:L after setting
the initial values of x0 to the memory query x̄0 and fixing the values of W 0:L. GPCN’s write obtains
the read output x0:L

1:T for each of T i.i.d. datapoints to store x0
1:T , takes a gradient step on the energy

w.r.t. W 0:L while fixing x0:L
1:T , and repeats until convergence.

We now take a probabilistic perspective on GPCN. One can view GPCN as a hierarchical generative
model where all neuron activations are modeled by normally distributed random variables and the link
function between the subsequent layers is a layer-specific nonlinearity followed by a linear transform.
Then, GPCN’s read - the minimization of Equation 1 - is equivalent to maximizing the log density in
Equation 2 w.r.t. x0 and x1:L.

log p(x0:L|W 0:L) = logN (xL;WL, I) +

L−1∑
l=0

logN (xl; f l+1(xl+1)W l, I) (2)

In other words, GPCN’s read performs iterated conditional modes [Besag, 1986] on the hierarchical
generative model in the neuron activation space (refer to Algorithms 3 and 4). In addition, GPCN’s
write can be viewed as an approximate maximization of the lower bound on log p(x0

1:T |W 0:L) w.r.t.
W 0:L [Millidge et al., 2021]. This follows from the fact that GPCN learns via PC.

While GPCN possesses impressive associative recall capabilities, the learning rule proposed in
Salvatori et al. [2021] is not amenable to continual learning. Due to its lack of safeguards against
catastrophic forgetting, continually learning GPCN leads to a forgetting of information associated
with older observations or requires a costly offline model refitting on all observations whenever a
new datapoint is observed. BayesPCN’s foremost aim is to address this limitation while preserving
GPCN’s read capabilities as much as possible.
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3 Memory Model

BayesPCN is structurally identical to GPCN, but unlike GPCN the network parameters W 0:L

are treated as latent random variables. This allows BayesPCN’s write operation to be cast as
(approximate) posterior inference over W 0:L given new observations in a way similar to [Wu et al.,
2018a]. In other words, storing T i.i.d. datapoints x0

1:T into memory is equivalent to estimating
p(W 0:L|x0

1:T ). Figure 2 illustrates the graphical model for BayesPCN.

We now review the probabilistic structure of BayesPCN. We assume that, prior to any observations,
the random variables x0:L

t and W 0:L (where t is the datapoint index) are distributed as follows

p(W l) =

{
MN (W l;Rl, σ2

W I, I) if 0 ≤ l < L

N (WL;µ, σ2
W I) if l = L

(3)

p(xl
t|xl+1

t ,W l) =

{
N (xl

t; f
l+1(xl+1

t )W l, σ2
xI) if 0 ≤ l < L

N (xL
t ;W

L, σ2
xI) if l = L

(4)

whereN (µ,Σ) andMN (R,U, V ) denotes normal and matrix normal distribution [Gupta and Nagar,
2018] respectively. We remind the readers that the matrix normal distribution is a normal distribution
for matrix-variate data that compactly specifies the matrix elements’ means, row-wise covariances,
and column-wise covariances. The joint distribution over all random variables when there are T
sensory observations is, due to the conditional independence of x0:L

t , t ∈ {1, ..., T} given W 0:L,

p(x0:L
1:T ,W

0:L) =

[
T∏

t=1

p(x0:L
t |W 0:L)

]
p(W 0:L) =

[
T∏

t=1

L∏
l=0

p(xl|xl+1,W l)

]
L∏

l=0

p(W l) (5)

We note that BayesPCN’s structure leads to two desirable properties that become useful when
approximating p(W 0:L|x0

1:T ) during the write operation. First, by exploiting the linear Gaussian
marginalization formula and conditional independence we can analytically compute the marginal
distribution over all activation vectors x0:L

t .

p(x0:L
t ) =

∫ L∏
l=0

p(xl
t|xl+1

t ,W l)p(W l)dW 0:L =

L∏
l=0

p(xl
t|xl+1

t ) (6)

p(xl
t|xl+1

t ) =

{
N (xl

t; f
l+1(xl+1

t )Rl, (σ2
x + f l+1(xl+1

t )U lf l+1(xl+1
t )

⊤
)I) if 0 ≤ l < L

N (xL
t ;µ, (σ

2
x + σ2

W )I) if l = L
(7)

We stress that neither p(x0
t ) nor p(x0

t |W 0:L) has an analytic form due to the presence of nonlinearities.
In addition, if all activation vectors x0:L

t are observed, the posterior over the model parameters
becomes normally distributed due to the linear Gaussian posterior formula and the fact that W 0:L

are conditionally independent given x0:L
t (the analytical posterior formulae for Equation 9 are in

Appendix C).

p(W 0:L|x0:L
t ) =

1

Z

L∏
l=0

p(xl
t|xl+1

t ,W l)p(W l) =

L∏
l=0

p(W l|xl
t, x

l+1
t ) (8)

p(W l|xl
t, x

l+1
t ) =

{
MN (W l;Rl∗, U l∗, I) if 0 ≤ l < L

N (WL;µ∗,Σ∗) if l = L
(9)

We use Rl∗, U l∗, µ∗,Σ∗ to denote the sufficient statistics of the layer-wise network weight posterior
distributions given xl

t, x
l+1
t .

4 Memory Operations

This section contains the memory operations that BayesPCN supports: read, write, and forget. We
use the shorthand h = x1:L to denote all hidden layer neuron activations and W = W 0:L to denote
all network parameters.
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4.1 Read

The read operation takes the corrupted query vector x̄0 and retrieves the memory’s best guess of the
associated original datapoint x0∗. As in GPCN, this is done by hill climbing the memory’s log density
log p(x0,h|x0

1:T ) w.r.t. the neuron activations x0,h. To clarify, x0,h is the current memory read state
and is not directly related to the past observations x0

1:T . BayesPCN’s auto-associative recall performs
iterated conditional modes on log p(x0,h|x0

1:T ) w.r.t. x0,h and BayesPCN’s hetero-associative recall
performs gradient ascent on log p(x0,h|x0

1:T ) w.r.t. x0,h while keeping the known values of x0

fixed. Algorithm 3 and Algorithm 4 in Appendix A, the recall procedures taken from Salvatori et al.
[2021] and rewritten from the probabilistic perspective, describe this in more detail.

4.2 Write

The write operations aims to take the previous timestep posterior over the model parameters
p(W|x0

1:t−1) and the current timestep observation x0
t to return the current timestep posterior over

the model parameters p(W|x0
1:t). Unfortunately, the analytical form of p(W|x0

1:t) is unavailable due
to the presence of nonlinearities in BayesPCN so one must resort to approximate posterior inference.

We propose a sequential importance sampling posterior inference algorithm for estimating p(W|x0
1:t)

where the particles are high-dimensional Gaussian distributions. Let N ∈ N be the number of
sequential importance sampling particles and n ∈ {1, ..., N} be the particle index. The t-th timestep
posterior estimate p̂(W|x0

1:t) is recursively represented as a weighted Gaussian mixture of the
form p̂(W|x0

1:t) =
∑N

n=1 ω
(n)p(n)(W|x0

1:t,h
(n)
1:t ) where ω(n) is the n-th particle’s importance

weight and p(n)(W|x0
1:t−1,h

(n)
1:t−1) is the n-th particle’s activation conditioned posterior described

in Equation 8. We note that each p(n)(W|x0
1:t−1,h

(n)
1:t−1) is efficiently characterised by the sufficient

statistics µ(n),Σ(n), R0:L−1,(n), U0:L−1,(n). Algorithm 1 describes the write operation in detail (see
Appendix B for its justification).

Algorithm 1 Memory Write

1: Input: Previous network weight distribution p̂(W|x0
1:t−1), current timestep observation x0

t

2: Output: Updated network weight distribution p̂(W|x0
1:t)

3: for each model p(n)(W|x0
1:t−1,h

(n)
1:t−1) and weight ω(n)

t−1 in p̂(W|x0
1:t−1) do

4: Fit the parameters of the current timestep variational distribution:
5: ϕ = argminϕ DKL

(
q
(n)
ϕ (ht) || p̂(n)(x0

t ,ht|x0
1:t−1)

)
6: Sample h

(n)
t : h(n)

t ∼ q
(n)
ϕ (ht)

7: Update the model via linear Gaussian update conditioned on x0
t and h

(n)
t :

8: p(n)(W|x0
1:t,h

(n)
1:t ) ∝ p(n)(W|x0

1:t−1,h
(n)
1:t−1)p

(n)(x0
t ,h

(n)
t |W)

9: Compute the unnormalized particle weight: ω̂(n)
t = ω

(n)
t−1

p(n)(x0
t ,h

(n)
t |x0

1:t−1)

q
(n)
ϕ (h

(n)
t )

10: end for
11: Set p̂(W|x0

1:t) =
∑N

n=1
ω̂

(n)
t∑N

n′=1
ω̂

(n′)
t

p(n)(W|x0
1:t,h

(n)
1:t )

While q(n)(ht) in principle can be any distribution, BayesPCN’s write sets it to q(n)(ht) =
δ
(
argmaxht

log p(x0
t ,ht|x0:L

t )
)

as is standard in predictive coding [Millidge et al., 2021]. In
addition, we define the BayesPCN parameter prior (of an “empty” memory) as p̂(W) =∑N

n=1
1
N p(n)(W) where µ(n), R0:L−1,(n) are initialized using Kaiming initialization. We chose this

prior over a non-mixture prior to obtain a multi-particle posterior approximation despite using a Dirac
variational distribution.
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We now direct our attention to obtaining log p(n)(x0
t ,h|x0

1:t−1) used in the read operations from
p̂(W|x0

1:t). Using Equation 6, we obtain the approximate posterior predictive density

log p(x0
t ,h|x0

1:t−1) = log

N∑
n=1

ω(n)

∫
p(x0

t ,ht|W)p̂(n)(W|x0
1:t−1)dW (10)

= log

N∑
n=1

ω(n)p(n)(x0
t ,ht|x0

1:t−1) (11)

BayesPCN’s write can be seen as a special case of sequential imputation [Kong et al., 1994], an
online parameter inference algorithm that represents the parameter posterior conditioned on partial
observations as a mixture of parameter posteriors conditioned on complete observations. In addition,
whereas the parameter update proposed by Salvatori et al. [2021] is doing local gradient descent for
each W l, BayesPCN’s parameter update is doing local conjugate normal-normal Bayesian update for
each W l. Hence, like GPCN, BayesPCN’s synaptic weight update only utilizes local information.
Lastly, while exact Bayesian updates are invariant to the order of observations, because we are using
predictive coding to fit the variational distribution BayesPCN’s write is technically not invariant to
the order of observations.

4.3 Forget

We also propose a diffusion-based forgetting mechanism for BayesPCN. As more datapoints are
written into a BayesPCN model, the model’s belief over the true parameter location R1:L−1, µ shifts
and the uncertainty over its belief U1:L−1,Σ decreases. This has the effect of making the model’s
parameters less adaptive to new datapoints and typically magnifying R1:L−1, µ’s norms as the prior’s
contribution weakens. One can interpret this as the memory being overloaded. The forget operation
counteracts this phenomenon by nudging the model’s belief over R1:L−1, µ toward the prior (empty
memory state) and increasing its uncertainty U1:L−1,Σ proportional to the forget strength parameter
β. Algorithm 2 describes this in detail (the analytical diffusion formulae are in Appendix D).

Algorithm 2 Memory Forget

1: Input: Previous network weight distribution p̂(W|x0
1:t), forget strength β ∈ [0, 1]

2: Output: Updated network weight distribution p̂(W′|x0
1:t)

3: for each model p(n)(W|x0
1:t,h

(n)
1:t ) in p̂(W|x0

1:t) do
4: for each layer weight distribution p(n)(W l|x(n),l

1:t , x
(n),l+1
1:t ) in p(n)(W|x0

1:t,h
(n)
1:t ) do

5: Obtain the one-step diffused layer weight distribution p(n)(W l′ |x(n),l
1:t , x

(n),l+1
1:t ):

6: p(n)(W l′ |x(n),l
1:t , x

(n),l+1
1:t ) =

∫
p(W l′ |W l, β)p(n)(W l|x(n),l

1:t , x
(n),l+1
1:t )dW l

7: end for
8: Set p(n)(W′|x0

1:t,h
(n)
1:t ) =

∏L
l=0 p

(n)(W l′ |x(n),l
1:t , x

(n),l+1
1:t )

9: end for
10: Set p̂(W′|x0

1:t) =
∑N

n=1 ω
(n)p(n)(W′|x0

1:t,h
(n)
1:t )

If applied an infinite number of times, forget reverts the posterior over the parameters p̂(W|x0
1:t) to

the prior p̂(W) due to the property of diffusion if the particle weights are uniform. In practice, one
would apply forget periodically or when the memory starts to become overloaded from too much
data and stops being performant. Because forget erases stored information for all of datapoints
somewhat evenly, the datapoints from the distant past that forget was applied to more would be, as
the name suggests, more forgotten than the recent datapoints that forget was applied to less.

5 Related Work

We briefly review the most relevant work to BayesPCN, starting with the predictive coding networks.
As covered in Section 2, GPCN [Salvatori et al., 2021] is the model that BayesPCN is built upon.
Self-taught associative memory [Dovrolis, 2018, Smith et al., 2021] is a hierarchical predictive
coding memory that performs unsupervised continual learning using online clustering modules as
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building blocks, unlike BayesPCN’s building blocks of artificial neurons. The sequential neural
coding network [Ororbia et al., 2019, 2018], while not explicitly used as an associative memory,
is also a continually learned predictive coding network similar in structure to GPCN that combats
catastrophic forgetting via task-dependent activation sparsity. BayesPCN on the other hand combats
catastrophic forgetting by incorporating uncertainty over the synaptic weights.

Moving on to general attractor-based memory models, Hopfield networks [Hopfield, 1982] and
their modern variants [Krotov and Hopfield, 2016, Ramsauer et al., 2020, Krotov and Hopfield,
2020, Krotov, 2021, Millidge et al., 2022] are biologically motivated auto-associative memories
that define the neuron activation dynamics via Lagrangian functions. Out of these models only
Krotov [2021]’s model is hierarchical, but theirs is not continually learned. BayesPCN generalizes
the modern Hopfield network and fits into the universal Hopfield network’s similarity-separation-
projection paradigm for associative memories (refer to Appendix E). Sparse Distributed Memory
(SDM) [Kanerva, 1988] is a non-hierarchical memory that exploits high-dimensionality to perform
auto-associative and hetero-associative recall. Hierarchical Temporal Memory (HTM) [Hawkins and
George, 2007, Cui et al., 2016] is a biologically constrained hierarchical memory that continually
learns time-based patterns with sparse representations. HTM does not employ predictive coding and
to our knowledge has not yet been tested on high-dimensional data.

Relative to generative modeling and memory research, our work has connections to the Kanerva
machine’s memory write as inference approach [Wu et al., 2018a,b] and the one-shot memory write
from Bartunov et al. [2019], Pham et al. [2022]. These papers’ models employ meta-learning unlike
aforementioned work. We note that the Kanerva machine also applies conjugate normal-normal
Bayesian update to adapt its top level memory matrix once the model is meta-learned via end-to-end
gradient descent. On the other hand, BayesPCN applies conjugate normal-normal Bayesian update to
all of its weight matrices and this as of itself constitutes learning.

6 Experiments

This section assesses BayesPCN’s recall capabilities on image recovery tasks and examines the effect
of forget on BayesPCN’s behaviour.

We used CIFAR10 [Krizhevsky et al., 2009] and Tiny ImageNet [Le and Yang, 2015] datasets for all
experiments, whose images are of size 3× 32× 32 and 3× 64× 64 respectively. During the write
phase of the experiments, BayesPCN models were given one image to store into their memories
per timestep for up to 1024 images. Then, during the read phase of the experiments, we recorded
the pixel-wise mean squared error (MSE) between the write phase images and the models’ read
outputs given the corrupted write phase images as inputs. For reference, the pixel-wise MSE of 0.01
is distinguishable to human eyes on close inspection of the images.

BayesPCN models were compared against identity models (models that return their inputs as outputs),
modern Hopfield networks (MHN) [Ramsauer et al., 2020], and vanilla GPCNs [Salvatori et al., 2021]
all of which were offline learned. We note that GPCNs have set the state-of-the-art on CIFAR10 and
TinyImageNet image recall tasks. BayesPCN models were also compared against online GPCNs,
GPCNs that naively applied their offline memory write to sequentially arriving observations and
memorized one image per timestep for up to 1024 images. We used our own autodiff implementation
of MHNs based on Appendix E. See Appendix F for additional experiment details.

6.1 Auto-Associative and Hetero-Associative Read

For the auto-associative recall experiments, the memory inputs at the read phase were the write phase
images corrupted by pixel-wise white noise with standard deviation 0.2. For the hetero-associative
recall experiments, we tested two types of training image corruption schemes. The first type, dropout,
randomly blacked out 25% of the image pixels. The second type, mask, blacked out 25% of the
rightmost image pixels. Image recovery under these settings is hetero-associative recall because
one can view the non-blacked out pixels as the “key” and the blacked out pixels as the “value”. We
experimented with 4-layer BayesPCN models that have hidden layer sizes of 256, 512, and 1024,
particle counts of 1 and 4, and activation functions ReLU and GELU. We searched over the same
hyperparameters for offline and online 4-layer GPCNs aside from the particle count. Lastly, we
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White Noise CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 0.1596 0.1600 0.1600 0.1600
MHN 0.0000 0.0000 0.0000 0.0000

GPCN (Offline) 0.0028 0.0046 0.0073 0.0121
GPCN (Online) 0.0103 0.0150 0.0191 0.0210

BayesPCN 0.0017 0.0085 0.0146 0.0337
BayesPCN (forget) 0.0064 0.0102 0.0145 0.0188

White Noise Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 0.1600 0.1602 0.1601 0.1600
MHN 0.0000 0.0000 0.0000 0.0000

GPCN (Offline) 0.0005 0.0010 0.0018 0.0067
GPCN (Online) 0.0089 0.0112 0.0138 0.0181

BayesPCN 0.0011 0.0033 0.0064 0.6606
BayesPCN (forget) 0.0026 0.0059 0.0108 0.0176

Dropout CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 1.1140 1.1178 1.1353 1.1481
MHN 0.0000 0.0000 0.0000 0.0000

GPCN (Offline) 0.0000 0.0000 0.0000 0.0001
GPCN (Online) 0.0022 0.0032 0.0053 0.0073

BayesPCN 0.0000 0.0000 0.0000 0.0001
BayesPCN (forget) 0.0000 0.0001 0.0005 0.0019

Dropout Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 1.0629 1.0889 1.1154 1.1072
MHN 0.0000 0.0000 0.0000 0.0000

GPCN (Offline) 0.0000 0.0000 0.0000 0.0000
GPCN (Online) 0.0036 0.0053 0.0069 0.0099

BayesPCN 0.0000 0.0000 0.0000 0.0000
BayesPCN (forget) 0.0000 0.0000 0.0002 0.0008

Mask CIFAR10 MSE
Sequence Length 128 256 512 1024

Identity 1.1272 1.1373 1.1619 1.1653
MHN 0.0000 0.0000 0.0011 0.0000

GPCN (Offline) 0.0000 0.0000 0.0000 0.0009
GPCN (Online) 0.0127 0.0255 0.0522 0.0791

BayesPCN 0.0000 0.0000 0.0001 0.0019
BayesPCN (forget) 0.0000 0.0008 0.0096 0.0465

Mask Tiny ImageNet MSE
Sequence Length 128 256 512 1024

Identity 1.0876 1.0884 1.0982 1.1132
MHN 0.0000 0.0000 0.0000 0.0010

GPCN (Offline) 0.0000 0.0000 0.0000 0.0001
GPCN (Online) 0.0081 0.0316 0.0441 0.0698

BayesPCN 0.0000 0.0000 0.0000 0.0000
BayesPCN (forget) 0.0000 0.0003 0.0031 0.0235

Table 1: Average MSE between the training images and the associative memory read outputs for the
white noise, dropout, and mask tasks on CIFAR10 and Tiny ImageNet. The reported values are from
the best models of each category. Table 2 shows the same result with standard deviations.

evaluated 4-layer BayesPCN models, which we denote as BayesPCN (forget), that applied forget
with strength β = 0.001 to their weights once every 64 write operations.

Table 1 shows the average MSE between the ground truth images and the associative memory
read outputs for models trained on data sequences of different lengths, where the reported scores
come from the best models of each category. The results were averaged across three random seeds.
Appendix I details how different hyperparameter values affect BayesPCN’s read performance.

BayesPCN’s recall errors were on par with offline GPCN’s recall errors and were orders of magnitude
lower than online GPCN’s recall errors on all hetero-associative recall tasks and sequence lengths.
BayesPCN (forget) performed worse than BayesPCN in these settings but still outperformed online
GPCN on all hetero-associative recall tasks and sequence lengths. On auto-associative recall tasks
with sequences of length ≤ 512, BayesPCN’s recall errors were marginally higher than offline
GPCN’s recall errors but lower than online GPCN’s recall errors. However, when the sequence length
approached 1024, BayesPCN performed worse than online GPCN and on the TinyImageNet auto-
associative recall task became even worse than the identity model. We hypothesize that BayesPCN’s
sudden performance drop stems from the fact that it is not “removing” old information unlike online
GPCN and BayesPCN (forget) due to the conjugate Bayesian update’s observation order invariance
property. This causes BayesPCN to approach the overloaded memory regime, where recall of all
data suffers, once enough information has been stored. Because BayesPCN (forget) deliberately
removes old information and thus is farther away from the overloaded memory regime, it was able to
outperform online GPCN on all auto-associative recall tasks and sequence lengths.

GPCN and BayesPCN models overall found hetero-associative recall easier than auto-associative
recall, likely because the former fixes the key bits during memory read and thus discourages the
algorithm from wandering to less realistic x0 values. Counterintuitively, GPCN and BayesPCN
models were better at Tiny ImageNet recall over CIFAR10 recall. We attribute this behaviour to the
fact that for some models, high-dimensional data recall can ironically be easier than low-dimensional
data recall because individual datapoints are further apart from one another in higher dimensions.

A surprising discovery from this experiment was how good MHN’s recall can be compared to GPCN
and BayesPCN’s recall when the memory query had a moderate amount of noise, a result inconsistent
with the findings from Salvatori et al. [2021]. Because MHN explicitly retains past observations in
a data matrix and its softmax inverse temperature was set very high (β = 10, 000), MHN’s recall
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Figure 3: From left to right, a sample BayesPCN model’s recall MSE for white noise (σ = 0.2), pixel
dropout (25%), and pixel masking (25%) tasks with different forget strength β after sequentially
observing 1024 CIFAR10 images. The results were computed from three seeds and the shaded
regions’ upper and lower borders indicate the maximum and minimum errors observed from the runs.

effectively selected the observation that had the highest dot-product similarity to the memory query
in our experiments. In Appendix G, we assess how MHN’s recall compares to BayesPCN’s recall
when the memory query corruption is much higher. As expected, because the observation with the
highest dot-product similarity to the memory query is often not the right image to recall, BayesPCN
significantly outperformed MHN in hetero-associative recall tasks.

6.2 Forgetting

This section investigates the forget operation’s effect on BayesPCN’s recall behaviour. Specifically,
we show that forget causes BayesPCN to better recall recent observations at the expense of older
observations and that this effect is more pronounced the higher the forget strength is. We trained
six structurally identical BayesPCN models on 1024 CIFAR10 images sequentially and applied
forget with strength β = 0, 0.001, 0.002, 0.005, 0.01, 0.02 to each model once after every 64 write
operations.

Figure 3 compares the models’ recall MSE on 16 data batches of size 64 that were observed
during different points of the training once the models have observed all 1024 datapoints. We see
that BayesPCN with no forget (β = 0) performs similarly on all datapoints regardless of their
observation timestep, which is likely the consequence of conjugate Bayesian update’s observation
order invariance. On the other hand, BayesPCNs with forget (β > 0) consistently perform better on
newer datapoints with this effect being strongly correlated with the value of β. As previously shown,
some amount of forgetting during training can improve the overall performance of the memory across
all datapoints over no forgetting for long training sequences. Lastly, the higher the forget strength was
the lower the recall error on the most recent data batch was for all tasks and forget strength values.

7 Discussion

One can intuitively think of BayesPCN read as an approximate nearest neighbour operation with a
learned similarity metric and write as the continual learning of that metric. MHN on the other hand
uses the dot-product distance as its similarity metric [Millidge et al., 2022]. This explains why MHN
is not good at highly masked image recall because from a pixelwise dot-product distance perspective,
highly masked image queries are often closer to unrelated images than to the ground truth images.

BayesPCN is closely related to the predictive coding theories of the brain’s memory system. For
example, Barron et al. [2020] suggests that the hippocampus may correspond to the top layer of a
predictive coding network and the neo-cortical areas may correspond to the rest of the predictive
coding network. Similarly, Dovrolis [2018] posits that their predictive coding network could serve
as a model of the cortical column albeit without experimental results. It is however unclear how
exactly BayesPCN’s activation gradient descent and locally conjugate Bayesian weight update can be
realized in the brain. Lastly, there are similarities between BayesPCN’s diffusion-based forget and
the synaptic homeostasis hypothesis [Cirelli and Tononi, 2022], where during sleep synaptic weight
strengths are decreased on average to facilitate future learning.

Aside from these biological connections, BayesPCN has many potential machine learning applica-
tions. One possible line of work is using it in conjunction with a neural controller that learns what
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information to store into memory [Graves et al., 2014, Schlag et al., 2021]. Using BayesPCN in this
way would confer the benefit of high query noise tolerance for neural controllers. Another line of
work is using it to solve small data supervised learning problems, leveraging the fact that nearest
neighbour methods work well when data availability is sparse [Ramsauer et al., 2020].

To conclude, we introduced BayesPCN, an associative memory model that can robustly retrieve past
observations given various corrupted inputs, perform one-shot parameter update of a deep neural
network to store new observations as attractors, and forget old observations to better store newer ones.
We demonstrated that BayesPCN’s recall performance is in most cases not significantly worse than
the recall performance of its offline-learned counterpart even though it is continually learned. There
are several intriguing extensions to BayesPCN that may address some of its limitations. Currently,
BayesPCN read can take up to thousands of activation gradient descent iterations to obtain the best
recall result when a lot of data has been stored into memory. Supplementing BayesPCN read with
amortized inference may greatly reduce this computational requirement [Tschantz et al., 2022]. In
addition, BayesPCN read can return a nonsensical output if the memory query is too far away from
the stored datapoints or if the memory is overloaded. Investigating BayesPCN’s latent landscape
may allow us design models with more robust basin of attractions that can easily be reached via
activation gradient descent. Last but not least, extending BayesPCN beyond memorizing i.i.d. data to
memorizing sequences like the human episodic memory would be of great interest.
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