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Appendix

This appendix complements the main paper with proofs, experiment details and additional experiments
and discussions. Appendix A presents full proofs for the main theoretical results in the paper.
In Appendix B, we discuss an approach to derive alternative regret bounds for BORE under a
Thompson sampling perspective. We discuss the theoretical analysis of BORE with its non-constant
approximation for the observations quantile τ in Appendix C. In Appendix D, we present further
details on the experiments setup. Finally, Appendix E presents an additional experiment assessing
dimensionality effects.

A Proofs

This section presents proofs for the main theoretical results in the paper. We start with a few auxiliary
results from the GP-UCB literature [1, 2], following up with the proofs for the main theorems.

A.1 Auxiliary results

Lemma A.1 (Srinivas et al. [1, Lemma 5.3]). The information gain for a sequence of N ≥ 1
observations {xi, zi}Ni=1, where zi = f(xi) + νi, νi ∼ N (0, λ), can be expressed in terms of
the predictive variances. Namely, if f ∼ GP(m, k), then the information gain provided by the
observations is such that:

I(zN , fN |XN ) =
1

2

N∑
i=1

log(1 + λ−1σ2
i−1(xi)) , (A.1)

where fN := [f(xi)]
N
i=1 and XN := {xi}Ni=1 ⊂ X .

Lemma A.2 (Chowdhury and Gopalan [2, Lemma 4]). Following the setting of Lemma A.1, the sum
of predictive standard deviations at a sequence of N points is bounded in terms of the maximum
information gain:

N∑
i=1

σi−1(xi) ≤
√

4(N + 2)ξN . (A.2)

∗Corresponding author.
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Lemma A.3. Let A ⊂ X be a finite set of points where a function f ∼ GP(m, k) was evaluated, so
that the GP posterior covariance function and the corresponding variance are given by:

kA(x,x′) := k(x,x′)− k(x,A)T(K(A) + ηI)−1k(A,x′) (A.3)

σ2
A(x) := kA(x,x) , x,x′ ∈ X , (A.4)

where k(x,A) := [k(x,a)]a∈A and K(A) := [k(a,a′)]a,a′∈A. Then, for any given set B ⊃ A of
evaluations of f , we have:

σ2
B(x) ≤ σ2

A(x), ∀x ∈ X . (A.5)

Proof. The result follows by observing that the GP posterior given observations at A is a prior for
the GP with the new observations at the complement C := B \ A. Then we obtain, for all x ∈ X :

σ2
B(x) := k(x,x)− k(x,B)(K(B) + ηI)−1k(B,x)

= σ2
A(x)− kA(x, C)(KA(C) + ηI)−1kA(C,x)

≤ σ2
A(x) ,

(A.6)

since kA(x, C)(KA(C) + ηI)−1kA(C,x) is non-negative.

A.2 Proof of Theorem 1

Proof of Theorem 1. The proof follows by a simple application of Durand et al. [3, Thm. 1] on
GP-UCB to our settings, as π ∈ H and the stochastic process defining the query locations xt and
observation noise νt := zt − π(xt) satisfies their assumptions of sub-Gaussianity. In particular, νt is
σν-sub-Gaussian with σν ≤ 1, since |νt| ≤ 1, for all t ≥ 1 [4].

A.3 Proof of Theorem 2

To prove Theorem 2, we will follow the procedure of GP-UCB proofs [1, 2] by bounding the
approximation error |π(x)− π̂t(x)| via a confidence bound (Theorem 1) and then applying it to the
instant regret. From the instant regret to the cumulative regret, the bounds are extended by means of
the maximum information gain ξT introduced in the main text. One of the differences with our proof,
however, is that BORE with a PLS classifier is not following the optimal UCB policy, but instead
a pure-exploitation approach by following the maximum of the mean estimator π̂t, which does not
account for uncertainty.

Proof of Theorem 2. Recalling the classifier-based bound in Section 4 and that for any τ ∈ R the
result in Lemma 1 holds, we have:

rt = f(xt)− f(x∗)

≤ Lε(π(x∗)− π(xt))
(A.7)

According to Theorem 1, working with the confidence bounds on π(x), we then have that the instant
regret is bounded with probability at least 1− δ by:

∀t ≥ 1, rt ≤ Lε(π̂t−1(x∗) + βt−1(δ)σt−1(x∗)− π(xt))

≤ Lε(π̂t−1(x∗) + βt−1(δ)σt−1(x∗)− π̂t−1(xt) + βt−1(δ)σt−1(xt))

≤ Lεβt−1(δ)(σt−1(x∗) + σt−1(xt)),

(A.8)

since π̂t−1(x∗) ≤ maxx∈X π̂t−1(x) = π̂t−1(xt). Now we can apply Lemma A.2, yielding with
probability at least 1− δ:

RT :=

T∑
t=1

rt ≤ LεβT (δ)

T∑
t=1

(σt−1(xt) + σt−1(x∗))

≤ LεβT (δ)

(√
4(T + 2)ξT +

T∑
t=1

σt−1(x∗)

) (A.9)

since βt(δ) ≤ βt+1(δ) for all t ≥ 1. This concludes the proof.
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A.4 Proof of Theorem 3

Again, we will be following standard GP-UCB proofs for this result using the bound in Theorem 1.

Proof of Theorem 3. Extending the bound in Equation A.7 with Theorem 1, we have with probability
at least 1− δ:

∀t ≥ 1, rt ≤ Lε(π̂t−1(x∗) + βt−1(δ)σt−1(x∗)− π∗t−1(xt))

≤ Lε(π̂t−1(x∗) + βt−1(δ)σt−1(x∗)− π̂t−1(xt) + βt−1(δ)σt−1(xt))

≤ 2Lεβt−1(δ)σt−1(xt),

(A.10)

since π̂t−1(x∗) + βt−1(δ)σt−1(x∗) ≤ maxx∈X π̂t−1(x) + βt−1(δ)σt−1(x) = π̂t−1(xt) +
βt−1(δ)σt−1(xt)). Turning our attention to the cumulative regret, with the same probability, we have:

RT :=

T∑
t=1

rt ≤ 2LεβT (δ)

T∑
t=1

σt−1(xt)

≤ 4LεβT (δ)
√

(T + 2)ξT ,

(A.11)

which concludes the proof.

A.5 Proof of Theorem 4

Proof. Starting with the regret definition, we can define a bound in terms of the discrepancy between
the two sampling distributions:

rt := Ex∼p̂t [f(x)]− Ex∼`[f(x)]

≤ Lε (Ex∼`[π(x)]− Ex∼p̂t [π(x)])

≤ Lε‖π‖∞
∫
X
|`(x)− qt−1(x)|dx

≤ Lε‖π‖∞

√
1

2
DKL(qt−1||`), ∀t ≥ 1,

(A.12)

where the last line is due to Pinsker’s inequality [4] applied to the total variation distance between p̂t
and ` (third line).

Tp obtain a bound on DKL(p̂t||`), starting from the definition of the terms, with probability at least
1− δ, we have that:

∀t ≥ 0, DKL(p̂t||`) = Ex∼p̂t [log p̂t(x)− log `(x)]

= Ex∼p̂t [log(π̂t(x) + βt(δ)σt(x))− log π(x) + log ηπ − log γ]

≤ Ex∼p̂t [log(π̂t(x) + βt(δ)σt(x))− log π(x)] ,

(A.13)

which follows from ηt :=
∫
X (π̂t(x) + βt(δ)σt(x))p(x) dx ≥

∫
X π(x)p(x) dx =: γ. Now, by the

mean value theorem [5], for all t ≥ 0, we have that the following holds with the same probability:

| log(π̂t(x) + βt(δ)σt(x))− log π(x)| ≤ Lπ|π̂t(x) + βt(δ)σt(x)− π(x)|
≤ 2Lπβt(δ)σt(x) , ∀x ∈ X , (A.14)

since d log(s)
ds < Lπ < ∞ for all s > minx∈X π(x) > 0, and |π̂t(x) − π(x)| ≤ βt(δ)σt(x) by

Theorem 1. The first result in the theorem then follows.

For the second part of the result, we first note that:

∀T ≥ 1, min
t≤T

DKL(p̂t||`) ≤
1

T

T∑
t=1

DKL(p̂t−1||`) (A.15)
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Following the previous derivations, it holds with probability at least 1− δ that:

T∑
t=1

DKL(p̂t||`) ≤ 2Lπ

T∑
t=1

βt−1(δ)Ex̃t∼p̂t [σt−1(x̃t)]

≤ 2LπβT (δ)

T∑
t=1

Ex̃t∼qt [σt−1(x̃t)]

≤ 2LπβT (δ)Ex̃1∼q1,...,x̃T∼qT

[
T∑
t=1

σt−1(x̃t)

]
,

(A.16)

since βT ≥ βt, for all t ≤ T , and expectations are linear operations. Considering the predictive
variances above, recall that, at each iteration t ≥ 1, the algorithm selects a batch of i.i.d. points
Bt := {xt,i}Mi=1, sampled from p̂t, where to evaluate the objective function f . The predictive
variance σ2

t−1 is conditioned on all previous observations, which are grouped by batches. We can
then decompose, for any t ≥ 1:

σ2
t (x) = σ2

t−1(x)− kt−1(x,Bt)(Kt−1(Bt) + ηI)−1kt−1(Bt,x) , (A.17)

where we use the notation introduced in Lemma A.3, and:

kt(x,x
′) = kt−1(x,x′)− kt−1(x,Bt)(Kt−1(Bt) + ηI)−1kt−1(Bt,x′), t ≥ 1, (A.18)

k0(x,x′) := k(x,x′) . (A.19)

Therefore, the predictive variance of the batched algorithm is not the same as the predictive variance
of a sequential algorithm, and we cannot direcly apply Lemma A.2 to bound the last term in
Equation A.16.

Lemma A.3 tells us that the predictive variance given a set of observations is less than the predictive
variance given a subset of observations. Selecting only the first point from within each batch and
applying Lemma A.3, we get, for t ≥ 1:

σ2
t (x) ≤ s2t (x) := k(x,x)− k(x,Xt)(K(Xt) + ηI)−1k(Xt,x) , (A.20)

where Xt := {xi,1}ti=1, with xi,1 ∈ Bi, i ∈ {1, . . . , t}. Note that the right-hand side of the equation
above is simply the non-batched GP predictive variance. Furthermore, sample points within a batch
are i.i.d., so that xt,1 ∼ qt and x̃t ∼ qt are identically distributed. We can now apply Lemma A.2,
yielding:

Ex̃1∼q1,...,x̃T∼qT

[
T∑
t=1

σt−1(x̃t)

]
≤ Ex̃1∼q1,...,x̃T∼qT

[
T∑
t=1

st−1(x̃t)

]
≤ 2
√

(T + 2)ξT . (A.21)

Combining this result with Equation A.16, we obtain:

T∑
t=1

DKL(p̂t||`) ≤ 4LπβT (δ)
√

(T + 2)ξT ∈ O(βT (δ)
√
TξT ) . (A.22)

Lastly, from the definition of βt(δ), we have:

βT (δ) := b+
√

2λ−1 log(|I + λ−1KDT
|1/2/δ) , (A.23)

where:
log(|I + λ−1KDT

|1/2) = I(zNT
,hNT

) ≤ ξNT
= ξMT , (A.24)

for h ∼ GP(m, k). Therefore, the cumulative sum of divergences is such that:

T∑
t=1

DKL(p̂t||`) ∈ O(
√
T (b
√
ξT +

√
ξT ξMT )) . (A.25)

which concludes the proof.
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B Bayesian regret bounds for BORE as Thompson sampling

Although in our main results we considered BORE using an optimal classifier according to a least-
squares loss, we may instead consider that, in practice, the trained classifier might be sub-optimal due
to training via gradient descent. In particular, in the case of stochastic gradient descent, Mandt et al.
[6] showed that parameters learnt this way can be seen as approximate samples of a Bayesian posterior
distribution. This is, therefore, the case of Thompson (or posterior) sampling [7]. If we consider
that the posterior over the model’s function space is Gaussian, e.g., as in the case of infinitely-wide
deep neural networks [8, 9], we may instead analyse the original BORE as a GP-based Thompson
sampling algorithm. We can then apply theoretical results from Russo and Van Roy [7] to use general
GP-UCB approximation guarantees [1, 10] to bound BORE’S Bayesian regret. Note, however, that
this is a different type of analysis compared to the one presented in this paper, which considered a
frequentist setting where the objective function is fixed, but unknown.

C Analysis with a non-constant quantile approximation

Our main theoretical results so far relied upon the quantile τ being fixed throughout all iterations
t ∈ {1, . . . T}, though in practice we have to approximate the quantile based on the empirical
observations distribution up to time t ≥ 1. In this section, we discuss the plausibility of the theoretical
results under this practical scenario.

The main impact of a time-varying quantile τt, and the corresponding classifier πt(x) := p(y ≤ τt|x),
in theoretical results is in the UCB approximation error (Theorem 1). This result depends on the
observation noise νt,i := zt,i − πt(xi) as perceived by a GP model with observations zt,i := I[yi ≤
τt], i ∈ {1, . . . , t}, to be sub-Gaussian when conditioned on the history. Hence, a few challenges
originate from there. Firstly, the past observations in the vector zt := [zt,i]

t
i=1 are changing across

iterations, due to the update in τt. Secondly, the latent function πt is stochastic, as the quantile τt
depends on the current set of observations yt. Lastly, it is not very clear how to define a filtration
for the resulting stochastic process such that the GP noise νt,i is sub-Gaussian. Nevertheless, as the
number of observations increases, τ converges to a fixed value, making our asymptotic results valid.

D Experiment details

This section presents details of our experiments setup. We used PyTorch [11] for our implementation
of batch BORE and BORE++, which we plan to make publicly available in the future.

D.1 Theory assessment

For this experiment, we generated a random classifier as an element of the RKHSH defined by the
kernel k as:

π∗ :=

F∑
i=1

αik(·,x∗i ) ∈ H , (D.1)

where {x∗i }Fi=1 and the weights {αi}Fi=1 were i.i.d. sampled from a unit uniform distribution U(0, 1),
with F := 5. The norm of π∗ is given by:

‖π∗‖k =
√

αT
FKFαF , (D.2)

where K := [x∗i ,x
∗
j ]
F
i,j=1 ∈ RF×F and αF := [α1, . . . , αF ]T ∈ RF . To ensure π∗(x) ≤ 1, we

normalised the weights according to the classifier norm, i.e., α := 1
‖π∗‖α, so that ‖π∗‖ = 1, and

consequently π∗(x) ≤ k(x,x)‖π∗‖ = ‖π∗‖ = 1, for all x ∈ X . The kernel was set as the squared
exponential (RBF) with a length-scale of 0.1.

Given a threshold τ ∈ R, the objective function corresponding to π∗ satisfies:

f(x) := τ − Φ−1ε (π∗(x)), ∀x ∈ X . (D.3)

For this experiment, we set τ := 0. Each trial had a different objective function generated for
it. An example of classifier and objective function pair is presented in Figure 1b (main paper).

5



Parameter Setting
λ 0.025
δ 0.1
τ 0

Table D.1: Settings for BORE++ in the theory assessment experiment.

Parameter Setting
λ 0.01
δ 0.1
σ2
ε 0.01

Table D.2: Settings for GP-UCB in the theory assessment experiment.

Observations were composed as function evaluations corrupted by zero-mean Gaussian noise with
variance σ2

ε := 0.01.

The search space was configured as a finite set X := {xi}NXi=1 ⊂ [0, 1] by sampling NX points from
a unit uniform distribution. The number of points in the search space was set as NX := 100. As the
search space is finite, we also know γ := p(y ≤ τ) =

∫
X π(x)p(x) dx = 1

NX

∑
x∈X π

∗(x).

Regarding algorithm hyper-parameters, although any upper bound b ≥ ‖π∗‖ would work for setting
up βt, BORE++ was configured with the RKHS norm π∗ as the first term in the setting for βt (see
Theorem 1). To configure GP-UCB according to its theoretical settings [3, Thm. 1], we computed the
RKHS norm of the resulting f in the RKHS. We can compute the norm of f as an element ofH by
solving the following constrained optimisation problem:

‖f‖k = min
h∈H
‖h‖k, s.t. h(x) = f(x), ∀x ∈ X . (D.4)

As the search space is finite, the solution to this problem is available in closed form as:

‖f‖k =

√
fTXK

−1
X fX , (D.5)

where fX := [f(x)]x∈X ∈ RNX , and KX := [k(x,x′)]x,x′∈X . We set δ := 0.1. For both BORE++
and GP-UCB, the information gain was recomputed at each iteration. Lastly, the regularisation
factor λ was set as λ := σ2

ε for GP-UCB and as λ := 0.025 for BORE++, which was found by grid
search. In summary, for this experiment, the settings for BORE++ can be found in Table D.1 and, for
GP-UCB, in Table D.2.

D.2 Global optimisation benchmarks

For each problem, all methods used 10 initial points uniformly sampled from the search space. As
performance indicator, we measured the simple regret:

r∗t := min
i≤t

ri = min
i≤t

f(xi)− f(x∗) , t ≥ 1 , (D.6)

as the global minimum of each of the considered benchmark functions is known. All objective
function evaluations were provided free of noise to the algorithms.

Batch BORE was run with a percentile γ := 0.25, which was applied to estimate the empirical
quantile τ at every iteration t ∈ {1, . . . , T}. The method’s classifier model was composed of a
multilayer perceptron neural network model with 2 hidden layers of 32 units each, which was trained
to minimise the binary cross-entropy loss. The activation function was set as the rectified linear
unit (ReLU) with exception for the Hartmann 3D and the Six-hump Camel problem, which were
run with an exponential linear unit (ELU), instead. Training for the neural networks was performed
via stochastic gradient descent, whose settings are presented in Table D.3. SVGD was run applying
Adadelta to configure its steps according to the settings in Table D.4. The SVGD kernel was set as
the squared exponential (RBF) using the median trick to adjust its lengthscale [12].

LP-EI [13] was run using L-BFGS [14] to optimise its acquisition function. The optimisation settings
were kept as the default for GPyOpt [15].
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Parameter Setting
Optimiser Adam
Batch size 64

Steps 100*

Table D.3: Stochastic gradient descent training settings for batch BORE. (*) For the Six-hump Camel
problem, we applied 200 steps.

Parameter Setting
Step size 0.001

Decay rate 0.9
Number of steps 1000∗

Table D.4: SVGD settings for batch BORE. (*) For the Hartmann 3D problem, we used 500 steps.

The q-EI method [16] was run using the BoTorch implementation [17]. The acquisition function was
optimised via multi-start optimisation with L-BFGS [14] using 10 random restarts. Monte Carlo
integration for q-EI used 256 samples.

D.3 Comparisons on real-data benchmarks

We here present experiments comparing the sequential version of BORE++ against BORE and other
baselines, including traditional BO methods, such as GP-UCB and GP-EI [18], the Tree-structured
Parzen Estimator (TPE) [19], and random search, on real-data benchmarks. In particular, we assessed
the algorithms on some of the same benchmarks present in the original BORE paper [20].

D.3.1 Algorithm settings

All versions of BORE were set with γ := 0.25. The original BORE algorithm used a 2-layer, 32-unit
fully connected neural network as a classifier. The network was trained via stochastic gradient descent
using Adam [21]. As in the other experiments in this paper, we followed the same scheme that
keeps the number of gradient steps per epoch fixed [see 20, Appendix J.3], set in our case as 100,
and a mini-batch of size 64. The probabilistic least-squares version of BORE and BORE++ were
configured with a GP classifier using the rational quadratic kernel [22, Ch. 4] with output scaling
and independent length scales per input dimension. All GP-based algorithms used the same type of
kernel. GP hyper-parameters were estimated by maximising the GP’s marginal likelihood at each
iteration using BoTorch’s hyper-parameter estimation methods, which apply L-BFGS by default [17].
BORE++ was set with a fixed value for its parameter βt := 3, the regularisation factor was set as
λ := 0.025. Acquisition function optimisation was run for 500 to 1000 iterations via L-BFGS with
multiple restarts using SciPy’s toolkit [23]. Lastly, for the experiment with the MNIST dataset, we
also used the Tree-structured Parzen Estimator (TPE) by Bergstra et al. [19] set with default settings
from the HyperOpt package. All algorithms were run for a given number of independent trials and
results are presented with their 95% confidence intervals2

D.3.2 Benchmarks

Neural network hyper-parameter tuning. We first considered two of the neural network (NN)
tuning problems found in Tiao et al. [20], where a two-layer feed-forward NN is trained for regression.
The NN is trained for 100 epochs with the ADAM optimizer [21], and the objective is the validation
mean-squared error (MSE). The hyper-parameters are the initial learning rate, learning rate schedule,
batch size, along with the layer-specific widths, activations, and dropout rates. In particular, we
considered Parkinson’s telemonitoring [24] and the CT slice localisation [25] datasets, available
at UCI’s machine learning repository [26], and utilize HPOBench [27], which tabulates, for each
dataset, the MSEs resulting from all possible (62,208) configurations. The datasets and code are
publicly available3. Each algorithm was run for 500 iterations across 10 independent trials.

2Confidence intervals are calculated via linear interpolation when the number of trials is small.
3Tabular benchmarks: https://github.com/automl/nas_benchmarks
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(a) 3D (b) 4D (c) 5D

Figure E.1: BORE vs. BORE++ in the batch setting tested on the Rosenbrock function at varying
search space dimensionalities. The plots compare the cumulative regret of each algorithm averaged
over 10 runs. Shaded areas correspond to the 95% confidence interval.

Racing line optimisation. We compare the different versions of BORE against a random search
baseline in the UC Berkeley racing line optimisation benchmark [28] using the code provided by
Jain and Morari [29]. The task consists of finding the optimal racing line across a given track by
optimising the positions of a set of 10 waypoints on the Cartesian plane along the track’s centre line
which would reduce the lap time for a given car, resulting in a 20-dimensional problem. For this
track, the car model is based on UC Berkeley’s 1:10 scale miniature racing car open source model4.
Each algorithm was run for 50 iterations across 5 independent trials.

Neural architecture search. Lastly, we compare all algorithms on a neural network architecture
search problem. The task consists of optimising hyper-parameters which control the training pro-
cess (initial learning rate, batch size, dropout, exponential decay factor for learning rate) and the
architecture (number of layers and units per layer) of a feed forward neural network on the MNIST
hand-written digits classification task [30]. The objective is to minimise the NN classification error.
To allow for a wide range of hyper-parameter evaluations, this task uses a random forest surrogate
trained with data obtained by training the actual NNs on MNIST [31]. For this experiment, each
method was run for 200 iterations across 10 independent trials.

E Dimensionality effect on batch BORE vs. batch BORE++ performance

We compared batch BORE against the batch BORE++ algorithm on a synthetic optimisation problem
with the Rosenbrock function. The dimensionality of the search space was varied. The cumulative
regret curves for each algorithm are presented in Figure E.1.

Both algorithms were configured with a Bayesian logistic regression classifier applying random
Fourier features [32] as feature maps based on the squared-exponential kernel. The number of
features was set as 300, and the classifier was trained via expectation maximisation. Observations
were corrupted by additive Gaussian noise with zero mean and a small noise variance σ2

ε = 10−4, and
each model was set accordingly. To demonstrate the practicality of the method, the UCB parameter
for BORE++ was fixed at βt := 3 across all iterations t ≥ 1, instead of applying the theoretical setup.
SVGD was configured as its second-order version [33] applying L-BFGS to adjust its steps [14].

As the results show in Figure E.1, batch BORE++ has a clear advantage over batch BORE in low
dimensions. However, the performance gains become less obvious at higher dimensionalities and
eventually deteriorate. One of the factors explaining this behaviour is that, as the dimensionality
increases, uncertainty estimates become less useful. Distances between data points largely increase
and affect the posterior variance estimates provided by translation-invariant kernels, such as the
squared-exponential kernel our feature maps were based on. Other classification models may lead to
different behaviours, and their investigation is left for future work.

4Open source race car: https://github.com/MPC-Berkeley/barc/tree/devel-ugo
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