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Abstract

The choice of activation functions and their motivation is a long-standing issue
within the neural network community. Neuronal representations within artificial
neural networks are commonly understood as logits, representing the log-odds
score of presence of features within the stimulus. We derive logit-space operators
equivalent to probabilistic Boolean logic-gates AND, OR, and XNOR for inde-
pendent probabilities. Such theories are important to formalize more complex
dendritic operations in real neurons, and these operations can be used as activation
functions within a neural network, introducing probabilistic Boolean-logic as the
core operation of the neural network. Since these functions involve taking multiple
exponents and logarithms, they are computationally expensive and not well suited
to be directly used within neural networks. Consequently, we construct efficient
approximations named ANDAIL (the AND operator Approximate for Independent
Logits), ORAIL, and XNORAIL, which utilize only comparison and addition opera-
tions, have well-behaved gradients, and can be deployed as activation functions in
neural networks. Like MaxOut, ANDAIL and ORAIL are generalizations of ReLU
to two-dimensions. While our primary aim is to formalize dendritic computa-
tions within a logit-space probabilistic-Boolean framework, we deploy these new
activation functions, both in isolation and in conjunction to demonstrate their effec-
tiveness on a variety of tasks including tabular classification, image classification,
transfer learning, abstract reasoning, and compositional zero-shot learning.

1 Introduction

Non-linear activation functions are essential in artificial neural networks (ANNs) to form higher-order
representations, since otherwise the network would be degeneratively equivalent to a single linear
layer. Most activation functions represent a simple non-linearity despite evidence of much more
complex non-linear integration and computations in dendrites (Hentschel et al., 2004; London &
Häusser, 2005; Payeur et al., 2019). For example, Gidon et al. (2020) recently demonstrated that a
single biological neuron can compute the XOR of its inputs, a property long known to be lacking
from artificial neurons (Minsky & Papert, 1969). While simple activation functions work in ANNs
in the sense that more complex operations can be formed from the combination of several layers
of neurons, understanding the function and impact of advanced dendritic operations in networks is
important. In this work, we add some of this behaviour to neural activations, corresponding to shifting

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



some of the network’s complexity from its global structure to the neural level. There is far more
complexity in biological neurons than in the abstractions that we consider here, but we make a step in
the direction of using more complex neurons in ANNs. We also develop a theoretical underpinning
for higher-order activation functions (e.g. like MaxOut, Goodfellow et al., 2013) in a probabilistic
framework. We hypothesize that such architectures will be more parameter-efficient in situations
where their assumptions hold.

Neuronal representations within ANNs are commonly understood as logits, representing the log-odds
score of presence (versus absence) of features within the stimulus. From a Bayesian perspective,
a ReLU-like operation corresponds to the removal of all evidence for the lack of a feature. Under
the logit interpretation of ANN potentiations, this seems unreasonable. This can be seen in some
of the ways we interact with neural networks: we must apply batch-norm before activations and
not after them; when doing transfer learning from an embedding space we must use pre-activation
potentiations instead of activations. Can ANNs do better if we design an architecture which treats
potentiations as logits?

We thus derive logit-space operators equivalent to probabilistic Boolean logic-gates AND, OR,
and XNOR for independent probabilities. Networks constructed in this way can be interpreted as
performing logical operations using point-estimates of probabilities, in a similar manner to a
Bayesian network. This brings operations from the symbolism framework of AI (which is more
similar to deliberative thinking, or System 2 of Kahneman, 2011) into the connectionist framework
of ANNs (which is more like instinctive, System 1, thinking). We also construct computationally
feasible approximations to these functions with well-behaved gradients. These new activation
functions, which are generalizations of ReLU to two-dimensions, are then applied on benchmark
datasets to demonstrate their effectiveness on a diverse range of tasks including image classification,
transfer learning, abstract reasoning, and compositional zero-shot learning. The new principled
approach we present introduces new ways to redistribute computation from the network into the
neuronal mechanisms, and build more parameter-efficient models. We demonstrate the effectiveness
of activation functions based on these ideas, and expect future work to build on this.

2 Background

Early artificial neural networks featured either logistic-sigmoid or tanh as their activation function,
motivated by the idea that each layer of the network is building another layer of abstraction of the
stimulus space from the last layer. Each neuron in a layer identifies whether certain properties or
features are present within the stimulus, and the pre-activation (potentiation) value of the neuron
indicates a score or logit for the presence of that feature. The sigmoid function, σ(x) = 1/(1+e−x),
was hence a natural choice of activation function, since as with logistic regression, this will convert
the logits of features into probabilities. There is evidence that this interpretation has merit. Previous
work has been done to identify which features neurons are tuned to. Examples include LSTM
neurons tracking quotation marks, line length, and brackets (Karpathy et al., 2015) and sentiment
(Radford et al., 2017); projecting features back to the input space to view them (Olah et al., 2017);
and interpretable combinations of neural activities (Olah et al., 2020).

Sigmoidal activation functions are no longer commonly used within machine learning between
layers of representations, though sigmoid is still widely used for gating operations which scale the
magnitude of other features in an attention-like manner. The primary disadvantage of the sigmoid
activation function is its vanishing gradient — as the potentiation rises, activity converges to a plateau,
and hence the gradient goes to zero. This prevents feedback information propagating back through
the network from the loss function to the early layers of the network, which consequently prevents it
from learning to complete the task.

The Rectified Linear Unit activation function (Fukushima, 1980; Jarrett et al., 2009; Nair & Hinton,
2010), ReLU(x) = max(0, x), does not have this problem, since in its non-zero regime it has a
gradient of 1. Another advantage of ReLU is it has very low computational demands. Since it
is both effective and efficient, it has proven to be a highly popular choice of activation function.
The chief drawback to ReLU is that it has no sensitivity to changes across half of its input domain,
which prevents updates on stimuli which trigger its “off” state and can even lead to neuronal death1.
Variants of ReLU have emerged, aiming to smooth out its transition between domains and provide

1Though this problem is very rare when using BatchNorm to stabilize feature distributions.
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a gradient in its inactive regime. These include ELU (Clevert et al., 2016), CELU (Barron, 2017),
SELU (Klambauer et al., 2017), GELU (Hendrycks & Gimpel, 2020), SiLU (Elfwing et al., 2018;
Ramachandran et al., 2017), and Mish (Misra, 2019). However, all these activation functions still
bear the general shape of ReLU and truncate negative logits.

Fuzzy logic operators are generalizations of Boolean logic operations to continuous variables, using
rules similar to applying logical operators in probability space. Prior work has explored networks
of fuzzy logic operations, including some which use an activation function constituting a learnable
interpolation between fuzzy logic operators (Godfrey & Gashler, 2017). The activation functions we
introduce here are motivated similarly to fuzzy logic operators, but designed to operate in logit space
instead of in probability space, which better reflects the behaviour and space of pre-activation units.

Bayesian neural networks (BNNs) are probabilistic models which can represent the uncertainty in
their model parameters, and hence uncertainty in their outputs. This differs from standard ANNs
which use only a single point-estimate of each model parameter, and hence also in their neural
activations. By making their priors explicit and modelling their uncertainty, Bayesian networks can be
better calibrated and less vulnerable to overfitting than ANNs. However, BNNs are more challenging
to train, and cannot reasonably be scaled up to the deep architectures which are possible with standard
ANNs and necessary in order to learn a sufficiently complex model to solve highly complex tasks.

In this work we contribute to the theoretical underpinning of neural activation functions by developing
activation functions based on the principle that neurons encode logits — scores that represent the
presence of features in the log-odds space. In §3 we derive and define these functions in detail for
different logical operators, and then consider their performance on numerous task types including
parity (§ 4.1), image classification (§ 4.3 and § 4.4), transfer learning (§ 4.5), abstract reasoning
(Appendix §A.18), soft-rule guided classification as exemplified by the Bach chorale dataset (§4.2),
and compositional zero-shot learning (Appendix §A.19). These tasks were selected to (1) survey the
performance of the new activations on existing benchmark tasks, and (2) evaluate their performance on
tasks which we suspect in particular may require logical reasoning and hence benefit from activation
functions which apply these logical operations to logits.

3 Derivation

Manipulation of probabilities in logit-space is known to be more efficient for many calculations.
For instance, the log-odds form of Bayes’ Rule (Appendix Eq. 9) states that the posterior logit
equals the prior logit plus the log of the likelihood ratio for the new evidence (the log of the Bayes
factor). Thus, working in logit-space allows us to perform Bayesian updates on many sources of
evidence simultaneously, merely by summing together the log-likelihood ratios for the evidence (see
Appendix §A.3). A weighted sum may be used if the amount of credence given to the sources differs
— and this is precisely the operation performed by a linear layer in a neural network.

When considering sets of probabilities, a natural operation is to measure the joint probability of two
events both occurring— the AND operation. Suppose our input space is x ∈ [0, 1]2, and the goal is
to output y > 0 if xi = 1∀ i, and y < 0 otherwise, using model with a weight vector w and bias term
b, such that y = wTx + b. This can be trivially solved with the weight matrix w = [1, 1] and bias
term b = −1.5. However, since this is only a linear separator, the solution can not generalize to the
case y > 0 iff xi > 0 ∀ i. Similarly, let us consider how the OR function is solved with a linear layer.
Our goal is to output y > 0 if ∃xi = 1, and y < 0 otherwise. The binary case can be trivially solved
with the weight matrix w = [1, 1] and bias term b = −0.5. The difference between the solution for
OR and the solution for AND is only an offset to our bias term. In each case, if the input space is
expanded beyond binary to R2, the output can be violated by changing only one of the arguments.

3.1 AND

Suppose we are given x and y as the logits for the presence (vs absence) of two events, X and Y .
These logits have equivalent probability values, which can be obtained using the sigmoid function,
σ(u) = (1 + e−u)−1. Let us assume that the events X and Y are independent of each other. In this
case, the probability of both events occurring (the joint probability) is P(X,Y ) = P(X ∧ Y ) =
P(X) P(Y ) = σ(x)σ(y). However, we wish to remain in logit-space, and must determine the logit
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of the joint probability, logit(P(X,Y ). This is given by

ANDIL := logit(P(X ∧ Y )x⊥⊥y) = log

(
p

1− p

)
, where p = σ(x)σ(y),

= log

(
σ(x)σ(y)

1− σ(x)σ(y)

)
, (1)

which we coin as ANDIL, the AND operator for independent logits (IL). This 2d function is illustrated
as a contour plot (Fig. 1, left panel). Across the plane, the order of magnitude of the output is the
same as at least one of the two inputs, scaling approximately linearly.

The approximately linear behaviour of the function is suitable for use as an activation function
(no vanishing gradient), however taking exponents and logs scales poorly from a computational
perspective. Hence, we developed a computationally efficient approximation as follows. Observe
that we can loosely approximate ANDIL with the minimum function (Fig. 1, right panel). This is
equivalent to assuming the probability of both X and Y being true equals the probability of the least
likely of X and Y being true — a naïve approximation which holds well in three quadrants of the
plane, but overestimates the probability when both X and Y are unlikely. In this quadrant, when both
X and Y are both unlikely, a better approximation for ANDIL is the sum of their logits.

We thus propose ANDAIL, a linear-approximate AND function for independent logits (AIL, i.e.
approximate IL).

ANDAIL(x, y) :=

{
x+ y, x < 0, y < 0

min(x, y), otherwise
(2)

As shown in Fig. 1 (left, middle), we observe that their output values and shape are very similar.
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Figure 1: Heatmap comparing the outputs for the exact logit-space probabilistic-and function for
independent logits, ANDIL(x, y); our constructed approximation, ANDAIL(x, y); and max(x, y).

3.2 OR

Similarly, we can construct the logit-space OR function, for independent logits. For a pair of logits x
and y, the probability that either of the corresponding events is true is given by p = 1−σ(−x)σ(−y).
This can be converted into a logit as

ORIL(x, y) := logit(P(X ∨ Y )x⊥⊥y) = log

(
p

1− p

)
, with p = 1− σ(−x)σ(−y) (3)

which can be roughly approximated by the max function. This is equivalent to setting the probability
of either of event X or Y occurring to be equal to the probability of the most likely event. This
underestimates the upper-right quadrant (below), which we can approximate better as the sum of the
input logits, yielding

ORAIL(x, y) :=

{
x+ y, x > 0, y > 0

max(x, y), otherwise
(4)
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Figure 2: Comparison of the exact logit-space probabilistic-or function for independent logits,
ORIL(x, y); our constructed approximation, ORAIL(x, y); and max(x, y).

3.3 XNOR

We also consider the construction of a logit-space XNOR operator. This is the probability that X and
Y occur either together, or not at all, given by

XNORIL(x, y) := logit(P(X⊕̄Y )x⊥⊥y) = log

(
p

1− p

)
, (5)

where p = σ(x)σ(y) + σ(−x)σ(−y). We can approximate this with

XNORAIL(x, y) := sgn(xy) min(|x|, |y|), (6)

which focuses on the logit of the feature most likely to flip the expected parity (see Fig. 3).

We could use other approximations, such as the sign-preserving geometric mean,

SignedGeomean(x, y) := sgn(xy)
√
|xy|, (7)

but this matches XNORIL less closely, and has a divergent gradient along both x = 0 and y = 0.
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Figure 3: Comparison of the exact logit-space probabilistic-xnor function for independent logits,
XNORIL(x, y); our constructed approximation, XNORAIL(x, y); and SignedGeomean(x, y).

3.4 Discussion

By working via probabilities, and assuming inputs encode independent events, we have derived
logit-space equivalents of the Boolean logic functions, AND, OR, and XNOR. Since these are
computationally demanding to compute repeatedly within a neural network, we have constructed
approximations of them: ANDAIL, ORAIL, and XNORAIL. Like ReLU, these involve only com-
parison, addition, and multiplication operations which are cheap to perform. In fact, ANDAIL and
ORAIL are a generalization of ReLU to an extra dimension, since ORAIL(x, y = 0) = max(x, 0).

The majority of activation functions are one-dimensional, f : R→ R. In contrast to this, our proposed
activation functions are all two-dimensional, f : R2 → R. They must be applied to pairs of features
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from the embedding space, and will reduce the dimensionality of the input space by a factor of 2. This
behaviour is the same as seen in MaxOut networks (Goodfellow et al., 2013) which use max as their
activation function; MaxOut(x, y; k) := max(x, y). Similar to MaxOut, our activation functions
could be generalized to higher dimensional inputs, f : Rk → R, by considering the behaviour of the
logit-space AND, OR, XNOR operations with regard to more inputs. For simplicity, we restrict this
work to consider only k=2, but note these activation functions also generalize to higher dimensions.

3.5 Ensembling

By using multiple logit-Boolean activation functions simultaneously alongside each other, we permit
the network multiple options of how to relate features together. When combining the activation
functions, we considered two strategies (illustrated in Appendix §A.6).

In the partition (p) strategy, we split the nc dimensional pre-activation embedding equally into m
partitions, apply different activation functions on each partition, and concatenate the results together.
Using AIL activation functions under this strategy, the output dimension will always be half that of
the input, as it is for each AIL activation function individually. In the duplication (d) strategy, we
apply m different activation functions in parallel to the same nc elements. The output is consequently
larger, with dimension mnc. If desired, we can counteract the 2→ 1 reduction of AIL activation
functions by using two of them together under this strategy. A negative weight in a network is
equivalent to the logit-NOT operator. Hence with sufficient width and depth, a multi-layer network
using only the ORIL activation function should be able to replicate any probabilistic logic circuit.

Utilizing ANDAIL, ORAIL and XNORAIL simultaneously allows our networks to access logit-space
equivalents of 12 of the 16 Boolean logical operations with only a single sign inversion (in either
one of the inputs or the output). Including the bias term and skip connections, the network has easy
access to logit-space equivalents of all 16 Boolean logical operations.

We hypothesised that training a network with all three of our activation functions in an ensemble in
this manner could yield better results since the network would not need to expend layers having to
combine ORIL operations together to yield other Boolean operations.

3.6 Normalization

Our AIL activation functions are close approximations to exact AND, OR, and XNOR operations in
logit-space. However, when deploying non-linearities within a neural network, it is important that
the activation functions have a gain of 1 in order to improve stability during training (Klambauer
et al., 2017), a property the AIL activations do not possess. We constructed normalized variants of
the exact and approximate logit operators, dubbed NIL and NAIL respectively, by subtracting the
expected mean and dividing by the expected standard deviation, assuming the operands are sampled
independently from the standard normal distribution, N (0, 1). For more details, see Appendix §A.7.

4 Experiments

We evaluated the performance of our AIL activations, both individually and together in an ensemble,
on a range of benchmark tasks. Since ANDAIL and ORAIL are equivalent when the sign of operands
and outputs can be freely chosen, we only show results for ORAIL. We compared against three
primary baselines: (1) ReLU, (2) max(x, y) = MaxOut([x, y]; k= 2), and (3) the concatenation
of max(x, y) and min(x, y), denoted {Max,Min (d)}. The {Max,Min (d)} ensemble is equivalent
to GroupSort with a group size of 2 (Chernodub & Nowicki, 2017; Anil et al., 2019), sometimes
referred to as the MaxMin operator; it is comparable to the concatenation of ORAIL and ANDAIL

under our duplication strategy.

Source code for our experiments can be found at https://github.com/DalhousieAI/
logical_activation_experiments. Our python package which provides an implementa-
tion of these the activation functions is available at https://github.com/DalhousieAI/
pytorch-logit-logic, which is also available as PyPI package pytorch-logit-logic.
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4.1 Parity

In a simple initial experiment, we constructed a synthetic dataset whose labels could be derived
directly by stacking the logical operation XNOR. Each sample had four input logits, and target value
equal to the parity of the number of positive inputs. A very small model using XNOR with two
hidden layers (of 4, then 2 neurons) should be capable of perfect classification accuracy on this
dataset with a sparse weight matrix by learning to nest pairwise binary relationships. We trained such
an MLP with either ReLU or XNORAIL activations.

Figure 4: Visualization of weight
matrices learnt by two-layer MLPs
on a binary classification task, where
the target output is the parity of the
inputs. Line widths indicate weight
magnitudes (orange: +ve, blue: -ve).
MLP with ReLU: 60% accuracy;
XNORAIL: 100% accuracy.

The MLP with XNORAIL activation learned a sparse weight
matrix able to perfectly classify any input combination, shown
in Fig. 4. In comparison, with ReLU the network was only
able to produce 60% classification accuracy. The accuracy
with ReLU was improved by increasing the MLP width/depth,
but this did not result in a sparse weight matrix. This exper-
iment demonstrates that XNORAIL can be utilized by a net-
work to find the simplest relationship between inputs that satis-
fies the objective. For additional results, see Appendix §A.11.

4.2 MLP on Bach Chorales and Logit Independence

The Bach Chorale dataset (Boulanger-Lewandowski et al.,
2012) consists of 382 chorales composed by JS Bach, each
∼12 measures long, totalling ∼83 000 notes. Represented as
discrete sequences of tokens, it has served as a benchmark
for music processing for decades, from heuristic methods to
HMMs, RNNs, and CNNs (Mozer, 1990; Hild et al., 1991;
Allan & Williams, 2005; Liang, 2016; Hadjeres et al., 2017;
Huang et al., 2019). The chorales are comprised of 4 voices
(melodic lines) whose behaviour is guided by soft musical
rules depending on the prior movement of that and other voices,
e.g. “two voices a fifth apart ought not to move in parallel
with one another”. We tasked 2-layer MLPs with determining
whether a short four-part musical excerpt is taken from a Bach
chorale. Negative examples were created by stochastically
corrupting chorale excerpts (see Appendix §A.13). We found
{OR,AND,XNORAIL (d)} had highest accuracy, but the re-
sults were not statistically significant (p<0.1 between best and worst, two-tailed Student’s t-test, 10
random inits; see Appendix §A.10).

Additionally, we investigated the independence between logits in the trained pre-activation embed-
dings. We expect that an MLP which is optimally engaging its neurons would maintain independence
between features in order to maximize information. We measured correlations between adjacent
pre-activations (paired operands for the logical activation functions), and also between non-adjacent
pairs of pre-activations. Our results indicate the network learns features which are independent when
they are not passed to the same 2D activation, and anti-correlated features when they are. For more
details, see Appendix §A.14.

4.3 CNN and MLP on MNIST

We trained 2-layer MLP and 6-layer CNN models on MNIST with ADAM (Kingma & Ba, 2015),
1-cycle schedule (Smith & Topin, 2017; Smith, 2018), and using hyperparameters tuned through a
random search against a validation set comprised of the last 10k images of the training partition.

The MLP used two hidden layers, the widths of which were varied together to evaluate the perfor-
mance for a range of model sizes. The CNN used six layers of 3x3 convolution layers, with 2x2 max
pooling (stride 2) after every other conv layer, followed by flattening and three MLP layers. The layer
widths were scaled up to explore a range of model sizes (see Appendix §A.15 for more details).

For the MLP, XNORAIL performed best along with SignedGeomean (p<0.1, two-tailed Student’s
t-test), ahead of all other activations (p<0.01 for each; Fig. 5 left panel) when considering the best

7



105 106 107
Number of parameters

98.0

98.2

98.4

98.6

98.8

Te
st
 a
cc
ur
ac
y 
(%

)

MNIST, MLP (2 hidden layers)

ReLU
SiLU
Max
SignedGeomean
XNORAIL

ORAIL

OR, XNORAIL (d)
OR, AND, XNORAIL (d)

104 105 106 107

Number of parameters

99.2

99.3

99.4

99.5

99.6

Te
st

 a
cc

ur
ac

y 
(%

)

MNIST, CNN (6 layer)

Figure 5: We trained CNN on MNIST, MLP on flattened-MNIST, using ADAM (1-cycle, 10 ep),
hyperparams determined by random search. Mean (bars: std dev) of n=40 weight inits.

performance across all widths (see Appendix §A.10 for methodology). However when the width
is reduced below 2× 105 there is a transition and XNOR-shaped activations perform worst. We
hypothesize this may be because smaller widths embeddings are over-saturated and have individual
units corresponding to multiple features, whilst XNOR activations may require single-feature units to
perform best.

With the CNN, five activation configurations ({OR,AND,XNORAIL (p)}, {OR,XNORAIL (d/p)},
Max, and SiLU) performed best (p<0.05 for other activations, two-tailed Student’s t-test; Fig. 5, right
panel; Appendix §A.10). CNNs which used ORAIL or Max (alone or in an ensemble) maintained
high performance with an order of magnitude fewer parameters (3× 104) than others (3× 105

params).

4.4 ResNet50 on CIFAR-10/100

We explored the impact of our activation functions on deep networks by deploying them in a pre-
activation ResNet50 model (He et al., 2016a,b). We exchanged all ReLU activations in the network to
a candidate activation while maintaining the size of the pass-through embedding. We experimented
with changing the width of the network, scaling up the embedding space and all hidden layers by
a common factor, w. The network was trained on CIFAR-10/-100 for 100 epochs using ADAM
(Kingma & Ba, 2015), 1-cycle (Smith, 2018; Smith & Topin, 2017). See Appendix §A.16 for further
details.

For both CIFAR-10 and -100, SiLU, ORAIL, and Max outperform ReLU across a wide range of width
values (see Fig. 6). These three activation functions hold up their performance best as the number
of parameters is reduced. Since SiLU was discovered by a search of 1→1 activation functions for
this type of architecture and task (Ramachandran et al., 2017), we expected it to perform well in
this setting. Yet, we find ORAIL and Max perform better than ReLU and comparable with SiLU
generally. Meanwhile, other AIL activations perform similarly to ReLU when the width is thin, and
slightly worse than ReLU when the width is wide. When used on its own and not part of an ensemble,
the XNORAIL activation function performed poorly (off the bottom of the chart), indicating it is not
suited for this task.

4.5 Transfer learning

We considered transfer learning on several image classification datasets. We used a ResNet18
model (He et al., 2016a) pretrained on ImageNet-1k. The weights were frozen (not fine-tuned)
and used to generate embeddings of samples from other image datasets. We trained a two-layer
MLP to classify images from these embeddings using various activation functions. For a compre-
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Figure 6: ResNet50 on CIFAR-10/100, varying the activation function used through the network. The
width was varied to explore a range of network sizes (see text). Trained for 100 ep. with ADAM,
using hyperparams as determined by random search on CIFAR-100 with width factor w = 2. Mean
(bars: std dev) of n=4 weight inits.

hensive set of baselines, we compared against every activation function built into PyTorch 1.10
(see Appendix § A.17). To make the number of parameters similar, we used a width of 512 for
activation functions with 1→1 mapping (e.g. ReLU), a width of 650 for activation functions with
a 2→ 1 mapping (e.g. Max, ORAIL), and a width of 438 for {OR,AND,XNORAIL (d)}. See
Appendix §A.17 for more details.

Our results are shown in Table 1. We found that all our (N)AIL activation functions outperformed
ReLU on every transfer task. Normalization had little impact on the performance of OR∗IL, but a large
impact on XNOR∗IL. The best overall performance was attained by the exact XNORNIL, closely
followed by our approximate XNORNAIL and ensembles containing either of these. Surprisingly, our
approximation OR∗AIL outperformed the exact form OR∗IL. The proposed activation functions were
beaten only by PReLU, on Stanford Cars. On Caltech101, all MLPs were beaten by a linear layer,
suggesting our MLPs were overfitting for that dataset. For further discussion, see Appendix §A.17.

4.6 Additional results

For results on tabular data, abstract reasoning and compositional zero-shot learning tasks, please see
Appendix §A.12, Appendix §A.18 and Appendix §A.19, respectively.

5 Conclusion

In this work, we motivated and introduced novel activation functions analogous to Boolean operators
in logit-space. We designed the AIL functions, fast approximates to the true logit-space probabilistic
Boolean operations, and demonstrated their effectiveness on a wide range of tasks.

Although our activation functions assume independence (which is generally approximately true
for pre-activation features learnt with 1D activations), we found the network learnt to induce anti-
correlations between features which were paired together by our activations (Appendix §A.14). This
suggests exact independence of the features is not essential to the performance of our proposed
activations.

We found XNOR∗AIL was highly effective for shallow MLPs. Meanwhile, ORAIL was highly
effective for representation learning in the setting of a deep ResNet architecture trained on images. In
scenarios which involve manipulating high-level features extracted by an embedding network, we
find that using XNOR∗IL or an ensemble of AIL activation functions together works best, and that
the duplication ensembling strategy outperforms partitioning. In this work we restricted ourselves to
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Table 1: Transfer learning from a frozen ResNet-18 architecture pretrained on ImageNet-1k to other
computer vision datasets. Mean (std. error) of n = 5 random initializations of the MLP (same
pretrained encoder). Bold: best. Underlined: top two. Italic: no sig. diff. from best (two-sided
Student’s t-test, p>0.05). Background: linear color scale from ReLU baseline (white) to best (black).

Test Accuracy (%)

Activation function Cal101 CIFAR10 CIFAR100 Flowers StfCars STL-10 SVHN

Linear layer only 88.35±0.15 78.56±0.09 57.39±0.09 92.32±0.20 33.51±0.06 94.68±0.02 46.60±0.14

ReLU 86.58±0.17 81.63±0.05 58.04±0.11 90.71±0.26 30.97±0.26 94.62±0.06 53.26±0.08

PReLU 87.83±0.21 81.03±0.13 58.90±0.18 93.17±0.19 39.84±0.18 94.54±0.05 53.47±0.08

SELU 87.74±0.09 79.93±0.13 58.24±0.06 92.27±0.13 37.51±0.17 94.53±0.07 50.94±0.12

GELU 87.10±0.15 81.39±0.09 58.51±0.13 91.51±0.15 33.43±0.15 94.62±0.06 53.43±0.23

Mish 87.11±0.12 81.09±0.11 58.37±0.10 91.61±0.15 33.75±0.14 94.61±0.05 53.05±0.12

Tanh 87.48±0.06 80.56±0.07 57.35±0.08 90.32±0.20 29.51±0.12 94.63±0.07 51.86±0.05

Max 86.96±0.20 81.76±0.14 58.60±0.12 90.98±0.18 33.37±0.15 94.70±0.06 53.53±0.16

Max,Min (d) 87.23±0.13 82.31±0.10 59.05±0.10 91.68±0.18 34.91±0.12 94.64±0.04 53.91±0.13

SignedGeomean 87.03±0.23 51.45±16.92 11.80±10.80 91.34±0.34 26.37±6.46 94.68±0.06 37.16±7.18

XNORIL 85.01±0.17 79.62±0.09 57.14±0.07 84.76±0.43 1.34±0.11 94.51±0.03 51.99±0.16

ORIL 87.11±0.08 79.75±0.05 58.07±0.11 91.12±0.36 33.12±0.12 94.60±0.03 51.21±0.17

XNORNIL 87.25±0.22 82.88±0.08 60.78±0.08 93.26±0.26 39.47±0.20 94.83±0.06 55.34±0.19

ORNIL 87.19±0.16 79.61±0.05 58.44±0.10 91.65±0.29 35.82±0.04 94.58±0.03 50.95±0.15

OR,ANDNIL (d) 86.82±0.18 80.09±0.09 58.60±0.07 91.44±0.20 37.03±0.11 94.65±0.05 52.49±0.09

OR,XNORNIL (d) 87.82±0.19 82.67±0.05 60.60±0.11 92.93±0.12 39.22±0.17 94.63±0.06 54.87±0.09

OR,AND,XNORNIL (d) 87.41±0.27 82.84±0.06 60.38±0.10 92.98±0.17 39.42±0.18 94.71±0.03 55.11±0.12

XNORAIL 86.97±0.18 81.83±0.06 58.46±0.10 90.93±0.15 32.56±0.10 94.71±0.06 53.75±0.14

ORAIL 87.45±0.14 81.88±0.07 59.10±0.09 92.00±0.15 36.01±0.12 94.69±0.04 53.68±0.14

XNORNAIL 87.61±0.23 82.38±0.07 59.77±0.13 93.07±0.20 39.77±0.04 94.81±0.03 53.91±0.05

ORNAIL 87.19±0.16 81.79±0.09 59.40±0.09 92.12±0.12 37.32±0.17 94.65±0.04 53.82±0.21

OR,ANDNAIL (d) 87.62±0.11 82.28±0.10 59.71±0.05 92.10±0.20 37.70±0.12 94.61±0.08 53.86±0.10

OR,XNORNAIL (d) 87.85±0.22 82.52±0.11 60.02±0.10 93.12±0.13 39.64±0.09 94.75±0.03 54.13±0.05

OR,AND,XNORNAIL (d) 87.78±0.14 82.67±0.06 60.01±0.21 93.12±0.21 39.65±0.14 94.78±0.03 54.58±0.12

only considering using a single activation function (or ensemble) throughout the network, however
our results together indicate stronger results may be found by using OR∗AIL for feature extraction
and either XNOR∗IL or ensemble {OR,XNOR∗IL (d)} for later higher-order reasoning layers.

Our work shows there is more to learn about the importance of more complex activation functions,
both for ANN applications and for non-linear dendritic integration in biological neuronal networks.
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