
Supplementary Material

A Theory and Algorithm

A.1 Geodesic Autoencoder Algorithm

Using the definitions from Sec. 3, we present the algorithm to train the geodesic autoencoder.

Algorithm 2 Geodesic Autoencoder (GAE)
Input: Dataset X of size n, graph kernel Kϵ, maximum scale K, noise scale ξ, batch size N ,
maximum iteration nmax, initialized encoder ϕ and decoder ϕ−1.
Output: Trained encoder ϕ and decoder ϕ−1.
for i=1 to nmax do

Sample batch {x1, . . . , xN} ⊆ X of size N
Q← diag(

∑
j(Kϵ)ij)

Mϵ ← Q−1KϵQ
−1

D← diag(
∑

j(Mϵ)ij)

Pϵ ← D−1Mϵ ▷ N ×N diffusion matrix
Gα ← 2−Kα pairwise_distances((Pϵ)1:, . . . , (Pϵ)N :)
for k=1 to K do

Gα ← Gα + 2−(K−k)α pairwise_distance((P2k

ϵ)1:, . . . , (P
2k

ϵ)N :)
end for
x̃1, . . . , x̃N ← x1 + ξz1, . . . , xN + ξzN , where {z1, . . . , zN} ∼ N (0, 1)
L←MSE

(
pairwise_distances(ϕ(x̃1), . . . , ϕ(x̃N)), Gα

)
Lr ←

∑
i ∥ϕ−1 ◦ ϕ(x̃i)− x∥2

Update ϕ, ϕ−1 with gradient descent w.r.t. L(ϕ), Lr(ϕ, ϕ
−1)

end for

A.2 Proof of Thm.2

Theorem 2. Assuming X is sampled from a closed Riemannian manifoldM with geodesic dM,
then for a sufficiently large K,N and small ϵ > 0, we have Gα(xi, xj) ≃ d2αM(xi, xj), for all
α ∈ (0, 1/2).

Proof. We adapt the convergence proof from [46], it can be summarized in two parts. First, the
equivalence of the distances defined by P t/ϵ

ϵ and the heat operator Ht. This relies on the convergence
results P t/ϵ

ϵ → Ht as ϵ→ 0 from Coifman and Lafon [9]. Second, the approximation of the operator
Pϵ based on a finite set of points. Throughout the proof we use the same notation δx for the delta
Dirac function, and δxi

for a row vector with i-th element 1, and 0 otherwise.

For a family of operator (At)t∈R we define

Dα,A(x, y) :=
∑
k≥0

2−kα||A2−k(x, ·)−A2−k(y, ·)||1,

and equivalently Dα,A(x, y) =
∑

2−kα||A2−k(δx − δy)||1, where Aδx :=
∫
A(u, ·)δx(u)du.

This definition is the same as Def. 1, but for an arbitrary operator. Our final goal is to show
that Gα(xi, xj) ≃ Dα,Ht

(xi, xj), and then conclude with Thm. 1 which gives the equivalence
Dα,Ht(xi, xj) ≃ d2αM(xi, xj).

We first want to show that, for a sufficiently small ϵ > 0, we have D
α,P

t/ϵ
ϵ

(x, y) ≃ Dα,Ht
, where

P is the anisotropic operator defined in Sec. 2. From Coifman and Lafon [9], we have ∥P t/ϵ
ϵ −

Ht∥L2(M) → 0 as ϵ→ 0, and also ∥P t/ϵ
ϵ −Ht∥L1(M) → 0.

1

Now let Γt := P
t/ϵ
ϵ −Ht, and for γ > 0 choose ϵ > 0 such that ∥Γt(δx−δy)∥1 < γ∥δx−δy∥1 = 2γ

for x ̸= y, we have

Dα,Γt(x, y) =
∑
k≥0

2−kα||Γ2−k(δx − δy)||1 ≤ 2γ
∑
k≥0

2−kα =
2γ

1− 2−α
.

Thus, for all t > 0, and all γ > 0 there exists ϵ > 0 such that Dα,Γt(x, y) < γ. From the reverse
triangle inequality, we have

|D
α,P

t/ϵ
ϵ

(x, y)−Dα,Ht
| ≤ Dα,Γt

(x, y),

using Dα,Γt
(x, y) < γ, we obtain

Dα,Ht(x, y)− γ ≤ Dα,P
t/ϵ
ϵ

(x, y) ≤ Dα,Ht(x, y) + γ.

According to [59] we can lower bound the heat kernel, and thus the distance Dα,Ht
(x, y) > C for

some C > 0. For γ < C/2, and a sufficiently small ϵ > 0, we have

(1/2)Dα,Ht(x, y) ≤ Dα,P
t/ϵ
ϵ

(x, y) ≤ (3/2)Dα,Ht(x, y).

This proves our first claim, that D
α,P

t/ϵ
ϵ

(x, y) ≃ Dα,Ht
for small ϵ > 0.

Next, we consider the approximation of the operator P t/ϵ
ϵ with a finite set of points. Now we define

GK,ϵ,α(xi, xj) :=

K∑
k=0

2−kα||(δxi
− δxj

)P2−k/ϵ
ϵ ||1,

if ϵ = 2−K , then the first term of Gα(xi, xj) is equal to GK,ϵ,α(xi, xj). Since we will let K →∞,
we ignore the second term in Gα(xi, xj), as it converges to zero. Similar to Coifman and Lafon
[9] (Sec. 5), we have P→ P as n→∞, using Monte-Carlo integration (approximation of integral
with summation by the law of large numbers). By the strong law of large numbers, the convergence
is with probability one. For a finite number of samples, we have a high probability bound on the
convergence, see for example [8, 39]. Now we let N := min(K,n), and therefore

lim
N→∞

GK,ϵ,α(xi, xj) = D
α,P

t/ϵ
ϵ

(xi, xj).

Hence, if we take ϵ := 2−K , we have for sufficiently large n and K (implying small ϵ > 0),
Gα(xi, xj) ≃ Dα,Ht ≃ d2αM(xi, xj) from Thm. 1.

A.3 Proof of Thm.3

Theorem 3. We consider a time-varying vector field f(x, t) defining the trajectories dXt =
f(Xt, t)dt with density ρt, and a dissimilarity between distributions such that D(µ, ν) = 0 iff
µ = ν. Given these assumptions, there exist a sufficiently large λ > 0 such that

W2(µ, ν)
2 = inf

Xt

E

[∫ 1

0

∥f(Xt, t)∥22dt
]
+ λD(ρ1, ν) s.t. X0 ∼ µ.

Moreover, if Xt defined on the embedded space Z , then W2 is equivalent to the Wasserstein with
geodesic distance W2(µ, ν) ≃Wd2α

M
(µ, ν).

Proof. We recall that

W2(µ, ν)
2 = inf

Xt

E
[∫ 1

0

∥f(Xt, t)∥22dt
]

s.t. dXt = f(Xt, t)dt, X0 ∼ µ, X1 ∼ ν,

is equivalent to

W2(µ, ν)
2 = inf

(ρt,v)

∫ 1

0

∫
Rk

∥v(x, t)∥2ρt(dx)dt,

with the three constraints

a) ∂tρt +∇ · (ρtv) = 0 b) ρ0 = µ, c) ρ1 = ν.

2

Tong et al. [44] (Thm. 4.1), showed that, for large λ > 0 and ρt satisfying a), this minimization
problem is equivalent to

W2(µ, ν)
2 = inf

(ρt,v)

∫ 1

0

∫
Rk

∥v(x, t)∥2ρt(dx)dt+ λKL(ρ1 ||ν),

where KL is the Kullback–Leibler divergence, we note that their proof is valid for any dissimilarity
D(ρ1 ||ν) respecting the identity of indiscernibles. Using the path formulation, by writing the integral
as an expectation and taking the infimum over all absolutely continuous path, we have

W2(µ, ν)
2 = inf

Xt

E

[∫ 1

0

∥f(Xt, t)∥22dt
]
+ λD(ρ1, ν) s.t. dXt = f(Xt, t)dt, X0 ∼ µ.

Assuming the encoder ϕ achieves a loss of zero, then from Corr. 1 for α ∈ (0, 1/2), we have
∥ϕ(xi) − ϕ(xj)∥2 ≃ d2αM(xi, xj) for all xi, xj ∈ X ⊆ M, and sufficiently large n and K. That is,
there exist c, C > 0 such that c dM(xi, xj) ≤ ∥ϕ(xi)− ϕ(xj)∥2 ≤ CdM(xi, xj) for all xi, xj ∈ X.
Then, for all π ∈ Π(µ, ν), we have

cp
∫
X×X

d2αM(x, y)pπ(dx, dy) ≤
∫
X×X

∥ϕ(x)− ϕ(y)∥p2π(dx, dy) ≤ Cp

∫
X×X

d2αM(x, y)pπ(dx, dy),

and taking the infimum with respect to π ∈ Π(µ, ν) yields the desired result W2(µ, ν) ≃Wd2α
M
(µ, ν).

A.4 Schrödinger bridge

Let D(µ, ν) the space of probability distributions on C := C([0, 1],Rk), with initial and final
distribution µ and ν, and N the Wiener measure on C, then the Schrödinger bridge (SB) problem is
to find the time-evolving distribution ρt such that

minKL(ρt ||N) subject to ρt ∈ D(µ, ν),

where KL is the Kullback–Leibler divergence. It also admits a static formulation, i.e. minimizing
with respect to π ∈ Π(µ, ν). Using the measure Ny

x over a Brownian bridge with initial and
final condition x and y, and ρyx defined similarly for ρ ∈ D(µ, ν), we can write KL(ρt ||N) =
KL(π ||πN) +KL(ρyx ||Ny

x), where πN is the joint distribution between the initial and final states
under the Wiener measure N . By choosing ρyx = Ny

x , the static formulation of the Schrödinger
bridge is

minKL(π ||πN) subject to π ∈ Π(µ, ν).

When the Wiener measure has variance σ2, the static Schrödinger bridge is equivalent to minimizing

inf
π∈Π(µ,ν)

∫
Rk×Rk

(1/2)||x− y||22π(dx, dy) + σ2H(π),

where H is the entropy (see [33] and references therein). That is an optimal transport problem
with entropic regularization, the same formulation as the Sinkhorn divergence [54], which can be
solved with Sinkhorn’s algorithm [58]. We compare our method with Diffusion Schrödinger Bridge
(DSB) [10], which solve the SB problem with an approximation of the iterative proportional fitting
algorithm.

B Experiment details

For all experiments, we used the Runge-Kutta RK4 ODE solver, for the density loss we used h = 0.01,
and 5 nearest neighbors. The ODE network consists of three layers, and we concatenate two extra
dimensions to the input as well as the time index. The encoder network is three layers with ReLU
activation functions in between layers. For each epoch (local or global), we sampled 20 batches
of a given sample size without replacement. For both networks, we optimize with AdamW [57]
with default parameters. In practice, we did not use the energy loss, as our trajectories were already
smooth, and it requires more careful parametrization (see Sec. C). For all experiments, we used
TrajectoryNet with 1000 iterations and whiten. We used the authors’ implementation of DSB with
the basic model and default parameters.

3

Petal For diffusion geodesic, we experiment with an RBF kernel with scale 0.1 and α-decay kernel
(knn=5), both with maximum time scale 25. The encoder consists of two linear layers of size 8 and
32, trained for 1000 iterations. We used LeakyReLU in between layers of the ODE network, with
hidden layers size 16, 32, 16, and initial scales σt = 0.1. We trained for 40 local epoch with sample
size 60. We used λd = 35 to weight the density loss and λe = 0.001. For the hold-out experiments,
we trained for 30 local and 15 global epoch with λd = 1.

The diffusion parameters are generally small while training, for example when trained on
the entire dataset σt ∈ {0.18, 0.15,−0.03, 0.11, 0.08}, and for the hold-out time three σt ∈
{0.08, 0.02, 0.16, 0.03, 0.08}.

Dyngen The diffusion geodesic was evaluated with an RBF kernel with scale 0.5, and maximum
time scale 25. The encoder has two linear layers of size 8 and 32, trained for 1000 iterations. We used
CELU in between layers of the ODE network, with hidden layers size 16, 32, 16, and initial scales
σt = 0.2. We trained for 50 global epochs of size 60, with λd = 5. For the hold-out experiments, we
used λd = 5, and for t = 5 we trained on 5 local and 10 global epochs. For t = 3, since we have to
hold-out the steps (2, 3) and (3, 4), we only trained using 50 global epochs.

Similar to the petal dataset, the diffusion parameters is empirically low, on the entire dataset it is
σt ∈ {0.18, 0.20, 0.23, 0.18, 0.16}, and for the hold-out three σt ∈ {0.02, 0.08, 0.24, 0.22, 0.24}.

EB data The EB data are publicly available4. For the genes trajectories we used the full geodesic
autoencoder because we want to decode in PCA space, and then project back into gene space. The
encoder consists of three layers of size 200, 100, 100, and the decoder is 100, 100, 200, both with
ReLU activation between layers. We trained for 1000 epochs with sample size of 100 per time,
with the α-decay kernel (5 nearest neighbors, and max scale of 26). This kernel is more expensive
to compute since it relies on the approximation of the knn, but it circumvents the need to find a
good scale as with the RBF kernel. The ODE network is three hidden layers of size 64, with CELU
activation in between layers. We trained for 20 local and 10 global epochs with sample size of 400
per time. We used the density loss with weight λd = 20.

AML The AML dataset is publicly available5. We first embed the data in 50 dimensions PCA
space. We use an encoder of size 50, 8, 8 with ReLU activations in between layers, trained for 1000
iterations with the RBF kernel (scale 0.5). For the trajectories we used an ODE network with three
hidden layers of size 16, 32, 16, with LeakyReLU in between layers, trained without noise for 50
local epochs with λd = 20.

C Additional Results

Energy loss In Fig. 6, we present the trajectories using the same parametrization as detailed in
Sec. B with the energy loss (λe = 1). This loss requires much more memory since for each function
evaluation we need to save the norm of the derivative. It should encourage smooth trajectory, but the
accuracy of the trajectories is very sensitive to this loss. On Dyngen (left), it learns a straight line, and
thus cannot bifurcate. On the petal, it initially learns a straight trajectory (middle, one epoch), and as
training continues, it collapses in the center (right, ten epochs). Unless otherwise stated, we did not
add it to our model since our trajectories were smooth. However, with careful parametrization, one
could learn more accurate trajectories trajectories (see Fig. 7).

Ablation and hold-out To evaluate the prediction accuracy, we train by holding-out one timepoint,
and we compute the distance between the held-out sample (ground truth) and the prediction. We use
the W1, the MMD with a Gaussian kernel, and the MMD with identity map (L2 norm between the
sample means). For the Petal and Dyngen datasets, we compute the Gaussian MMD by taking the
average for the scales 0.1 and 0.5. For the EB data, we set the scale to 1500.

In Fig. 8, we present an ablation study for the density loss and the geodesic embedding. The
parametrization was found for the model with density loss and embedding, both seem important to
learn accurate trajectories. In Fig. 9, we present the trajectories when we trained by holding one

4https://data.mendeley.com/datasets/v6n743h5ng/1
5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161676

4

https://data.mendeley.com/datasets/v6n743h5ng/1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161676

Figure 6: Trajectories with energy loss, and λe = 1.

Figure 7: Trajectories with energy loss, and λe = 0.01.

timepoint out both with the embedding and density loss. In Fig. 10, we reproduce the same ablation
on Dyngen data. Here, the density loss is important for the trajectories to stay on the manifold, and
the embedding appears to help with the bifurcation. To complement this figure, in Tab. 6, we present
the average of the KNN distance computed on the top 5%. On Dyngen, the trajectories with hold-out
timepoints are presented in Fig. 11. Holding out the timepoint t = 3 seems to be the hardest to learn.
In Tab. 3, we show the W1 and MMD between the predicted values and ground truth, for MIOFlow,
TrajectoryNet, and DSB. For the W1, MIOFlow is always more accurate. In Tab 4, we compare the
prediction accuracy on the EB data, depending on using the GAE or not. For the GAE, we consider
the choice of two kernels when computing the distance G; the Gaussian kernel for various bandwidth
parameters, and the α-decay kernel for different K-nearest neighbors. Using the GAE improves the
interpolation accuracy for all metrics. We embed the data in 200 PCA, and train the autoencoder with
layers 200, 100, 100, 50 for 1000 epochs. We trained the Neural ODE for 80 epochs with λd = 20,
σt = 0.2, linear layers of size 16, 32, 16, 50 with CELU activation in between layers. We train by
holding out timepoint t for the GAE and the neural ODE. For the MMD with the Gaussian kernel, we
set the scale to 1500.

Table 3: Leave-one-out (t)W1 and MMD with (G)aussian or (M)ean kernel between the predicted
and ground truth point on the Petal and Dyngen datasets of MIOFlow, TrajectoryNet, and DSB.
Lower is better.

t = 3 t = 4 t = 5

W1 MMD(G) MMD(M) W1 MMD(G) MMD(M) W1 MMD(G) MMD(M)

Petal

MIOFlow(ours) 0.170 0.051 0.002 0.200 0.052 0.015 0.218 0.055 0.009
TrajectoryNet 0.379 0.568 0.001 0.347 0.341 0.003 0.264 0.096 0.004
DSB 0.310 0.386 <0.001 0.260 0.087 0.029 0.441 0.159 0.081
Baseline 0.231 0.176 0.001 0.241 0.133 0.001 0.250 0.128 0.001

Dyngen

MIOFlow(ours) 0.509 0.181 0.022 1.787 0.324 3.071 1.450 0.491 1.719
TrajectoryNet 1.797 1.125 1.588 2.953 1.450 5.790 2.185 1.037 1.913
DSB 0.767 0.260 0.070 2.699 0.583 6.521 2.823 1.083 5.546
Baseline 1.828 0.958 2.435 2.198 1.131 3.368 2.221 1.133 3.139

Nearest neighbor distance To assist in evaluating how well the generated points land on the known
manifold (ground truth points), we employ 1-NN distance from the generated points to the ground

5

Figure 8: Petal dataset with and without the density loss (rows) or the geodesic autoencoder (columns).

Figure 9: Trajectories for different hold-out time t on the petal dataset.

truth points. Table 5 shows the 1-NN distance for several methods and datasets. Of note is the
aggregate column. Where aggregate is specified as mean, we compute the mean 1-NN distance from
the predicted point to the 1-NN at the same time index. Additionally, to help reduce sensitivity due to
outliers, we computed these distances and report only the mean of the worst (highest 1-NN distance)
quartile, where aggregate is specified as quartile.

Neural SDE Additionally, we employed a Neural SDE from the PyTorch implementation of
differentiable SDE Solvers [56, 55], and compared its results to MIOFlow (Fig. 12 & 13). We trained
with a fixed diffusion function, but due to extensive training time (approximately two hours for 20
epochs for each dataset) we were unable to perform extensive hyperparameter optimization.

DSB on petal In Fig. 14, we show prediction of the DSB algorithm for different ranges of noise
scale γ. With too little noise, the prediction appear to collapse on a subset of the data, while the larger
scales are inaccurate for this dataset.

D Software Versions

In Tab. 7, we present the GPU used during this work, and the following software version were
used: cudatoolkit==11.1.1, graphtools==1.5.2, numpy==1.19.5, phate==1.0.7
pytorch==1.10.2, pot==0.7.0, scikit-learn==0.24.2, scipy==1.5.3,
scprep==1.1.0, torchdiffeq==0.2.2, torchsde==0.2.5

6

Figure 10: Dyngen dataset with and without the density loss (rows) or the geodesic autoencoder
(columns).

Figure 11: Trajectories for different hold-out time t on the Dyngen dataset

Table 4: Leave-one-out (t)W1 and MMD with (G)aussian and (M)ean kernel between the predicted
and ground truth point on the EB datasets for MIOFlow with the Gaussian, α-decay kernel, or without
GAE. Lower is better.

t = 2 t = 3

GAE W1 MMD(G) MMD(M) W1 MMD(G) MMD(M)

α-decay
knn = 10 25.774 0.072 119.386 32.129 0.135 206.144
knn = 20 25.697 0.064 104.579 32.729 0.143 228.890
knn = 30 25.744 0.061 99.747 32.227 0.135 213.465

Gaussian
ϵ = 0.05 26.873 0.064 115.905 32.844 0.132 213.900
ϵ = 0.1 26.107 0.064 109.653 32.776 0.123 203.617
ϵ = 0.5 26.318 0.059 101.969 32.963 0.138 223.679

No GAE 29.243 0.063 126.608 35.709 0.119 246.609

Baseline 33.415 0.103 227.279 35.319 0.095 213.492

7

Table 5: Average 1-NN distance of predicted points from a given method to ground truth points at the
same time label across two datasets. Rows designated mean are the average 1-NN distance, while
those designated quartile are the average 1-NN distance for the worst quartile. Lower is better.

MIOFlow(ours) TrajectoryNet DSB aggregate

Petal 0.033 1.823 0.286 mean

Dyngen 0.586 2.562 1.638 mean

Petal 0.096 2.769 0.618 quartile

Dyngen 1.163 4.277 3.474 quartile

Table 6: On the Dyngen dataset, average distance of the 10-NN for predicted points between ground
truth at the same time or any. The average is computed on the highest 5% observations. Lower is
better.

GAE time any

α-decay
knn= 5 19.922 19.249
knn= 10 19.987 19.097
knn= 15 18.579 16.905

Gaussian
ϵ = 0.05 16.245 14.972
ϵ = 0.1 16.245 15.491
ϵ = 0.5 15.427 14.101

No GAE Euclidean 21.589 20.486

Figure 12: Comparison of Neural SDE (a) to MIOFlow (b) on the petal dataset.

Figure 13: Comparison of Neural SDE (a) to MIOFlow (b) on the dyngen dataset.

8

Figure 14: Comparison of DSB for different values of the noise scale γ.

Table 7: GPU specifications of High Performance Cluster. Results were generated over a swath of
GPU generations and models.

Count CPU Type CPUs/Node Memory/Node (GiB) GPU Type GPUs/Node vRAM/GPU (GB) Node Features

1 6240 36 370 a100 4 40 cascadelake, avx2, avx512, 6240, doubleprecision, common, bigtmp, a100

6 5222 8 181 rtx5000 4 16 cascadelake, avx2, avx512, 5222, doubleprecision, common, bigtmp, rtx5000

4 5222 8 181 rtx3090 4 24 cascadelake, avx2, avx512, 5222, doubleprecision, common, bigtmp, rtx3090

8 E5-2637_v4 8 119 gtx1080ti 4 11 broadwell, avx2, E5-2637_v4, singleprecision, common, gtx1080ti

2 E5-2660_v3 20 119 k80 4 12 haswell, avx2, E5-2660_v3, doubleprecision, common, k80

9

Supplement References
[54] Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In Advances in Neural

Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[55] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural SDEs as Infinite-
Dimensional GANs. International Conference on Machine Learning, 2021.

[56] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients for
stochastic differential equations. International Conference on Artificial Intelligence and Statistics, 2020.

[57] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2018.

[58] Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. The
annals of mathematical statistics, 35(2):876–879, 1964.

[59] Feng-Yu Wang. Sharp explicit lower bounds of heat kernels. The Annals of Probability, 25(4):1995–2006,
1997.

10

