
A Appendix

A.1 Statistical Analysis

Lemma 1. Given I indices, and one index is chosen at each round equally randomly. The expected
number of rounds of choosing all indices at least once is
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which is the same as
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Proof. We denote the expected number of rounds to choose exactly i indices at least once as E(i).
Then we have E(1) = 1, because, after the first round, one index is chosen. After the first round, the
expected number of rounds to choose a new index is I

I−1 , because one of the remaining I − 1 out of
the total I indices needs to be chosen. That is, E(2) = E(1) + I
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The lemma is proved.

It shows that the expected number of rounds to choose all indices at least once is I log(I) when
I →∞. This proof can not be generalized to the case for choosing all indices at least m times for
m ≥ 2. Therefore, we provide alternative proof for it [34, Example 5.17].

Alternative proof of Lemma 1. This proof considers picking the indices as Poisson processes. As-
sume that the Poisson process to choose one index has a rate λ = 1. Since the index is chosen
equally randomly, choosing the jth index also follows a Poisson process with a rate 1/I for any j
[34, Proposition 5.2]. We let Xj be the time to choose the first index j, and

X = max
1≤j≤I

Xj (7)

is the time all indices are chosen at least once. Since all Xj are independent with rate 1/I , we have

P{X < t} =P{ max
1≤j≤I

Xj < t} = P{Xj < t, for j = 1, . . . , I}

=(1− e−t/I)I .

Therefore, we have

E[X] =

∫ ∞

0

P{x > t}dt =
∫ ∞

0

(
1− (1− e−t/I)I

)
dt

We let N be the number of rounds to choose all indices at least one, and Ti be the ith interarrival
time of the Poisson process for choosing one index. Then we have

X =

N∑
i=1

Ti,

and Ti are independent. Thus we have

E[X|N ] = NE[Ti] = N,
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and which gives

E[X] = E{E[X|N ]} = E[N ].

Thus we have

E[N ] =

∫ ∞

0

(
1− (1− e−t/I)I

)
dt = I

∫ ∞

0

(
1− (1− e−t)I

)
dt.

The lemma is proved.

Next, we will present the lemma for choosing each index at least m times.

Lemma 2. Given I indices, and one index is chosen at each round equally randomly. The expected
number of rounds of choosing all indices at least m times is

I
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0
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1− (1− Sm(t)e−t)I

)
dt,

where

Sm(y) := 1 + y +
y2
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Proof. We consider picking the indices as Poisson processes again. Assume that the Poisson process
to choose one index has a rate λ = 1. Since the index is chosen equally randomly, choosing the jth
index also follows a Poisson process with a rate of 1/I for any j. We let Xj be the time to choose
index j for the mth time, and

X = max
1≤j≤I

Xj (9)

is the time all indices are chosen at least m times. Since all Xj are independent with rate 1/I , we
have

P{X < t} =P{ max
1≤j≤I

Xj < t} = P{Xj < t, for j = 1, . . . , I}

=(1− Sm(t/I)e−t/I)I .

Therefore, we have

E[X] =

∫ ∞

0

P{x > t}dt.

We let N be the number of rounds to choose all indices at least m times, and Ti be the ith interarrival
time of the Poisson process for choosing one index. Then we have

X =

N∑
i=1

Ti,

and Ti are independent. Thus we have

E[X|N ] = NE[Ti] = N,

and which gives

E[X] = E{E[X|N ]} = E[N ].

Thus we have

E[N ] =

∫ ∞

0

(
1− (1− Sm(t/I)e−t/I)I

)
dt = I

∫ ∞

0

(
1− (1− Sm(t)e−t)I

)
dt.

The lemma is proved.

It shows that the expected number of rounds to choose all indices at least once is I log(I) + I(m−
1) log log I when I →∞ [35].
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A.2 Formal Definition of Selective Aggregation Scheme

Formally speaking, letM ⊂ N be the set of selected clients from the client pool from which the
server pulls model parameters at round j. Let θ[i,k] be the kth parameter of layer i of the global
model and θm,[i,k] be the kth parameter of layer i of client m. We denoteMk ⊂ M as the set of
clients updating the kth parameter. The model parameters are aggregated as follows:

θ[i,k] =
1∑

m∈Mk
pm

∑
m∈Mk

pmθm,[i,k], (10)

The client weight pm is assigned based on factors like the client model capacity, the number of data
points a client has, etc. Throughout the paper, unless otherwise stated, the weight of all clients is
assumed to be the same, i.e, pm = 1/N .

A.3 Ablation Study: Impact of Different Weighing Schemes

[12] reported that weighting clients is important to improving model accuracy. Therefore, we did
an ablation study and evaluated three client weighting schemes: (1) model size-based weighting
scheme: client weight is proportional to the number of kernels in the model; (2) model update-based
weighting scheme: client weight is proportional to the number of updates; and (3) hybrid weighting
scheme: client weight is proportional to both (1) model size and (2) model update.

Table 5 lists the results. As shown, the performance of the three weighting schemes is not significantly
better than the non-weighting scheme. Therefore, we used the non-weighting scheme in FedRolex.

Table 5: Impact of weighting schemes on model accuracy under high data heterogeneity.

Weighting Scheme Local Model Accuracy Global Model Accuracy

CIFAR-10

Non-Weighting 95.95 (±0.81) 69.44 (±1.50)
Model Size-based 95.98 (±0.67) 69.09 (±1.42)

Model Update-based 96.01 (±0.71) 68.83 (±0.89)
Hybrid 96.05 (±0.96) 68.78 (±0.89)

CIFAR-100

Non-Weighting 81.58 (±0.59) 56.57 (±0.15)
Model Size-based 81.23 (±1.56) 56.99 (±0.27)

Model Update-based 81.23 (±1.07) 56.63 (±0.36)
Hybrid 81.49 (±1.07) 56.71 (±0.20)

A.4 Ablation Study: Impact of Overlapping Kernels

We also studied the impact of overlapping kernels between rounds using ResNet-18 and CIFAR-
10/CIFAR-100 as an example. Specifically, we extracted sub-models using a rolling window that

(i) (ii)

Figure 6: Impact of inter-round kernel overlap on global model accuracy under low and high data
heterogeneity for (i) CIFAR-10 and (ii) CIFAR-100.
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advances and loops over all the kernels of each convolution layer in the global model in strides. Let
the degree of overlap between each stride of the rolling window be r ∈ [0, 1]. In each iteration, each
convolution layer in the global model is advanced by 1 + ⌊βn (1− r)Ki⌋ where ⌊ · ⌋ is the floor
function. In FedRolex, r = 1, i.e., the kernels are advanced by 1 from one iteration to the next
iteration.

Figure 6 shows the impact of different r on global model accuracy. As shown, the value of r does
have some influence on the global model accuracy, but the impact is non-linear and inconsistent.

A.5 Ablation Study: Impact of Client Participation Rate

In our main paper, we followed prior arts [14, 24, 15, 36, 9] and used a 10% client participation rate.
To examine the effect of client participation rate, we conducted experiments with both lower (5%)
and higher (20%) client participation rates using CIFAR-10 as an example for FedRolex, HeteroFL
and Federated Dropout.

The results are summarized in Table 6. As shown, FedRolex consistently outperforms both Federated
Dropout and HeteroFL across 5%, 10% and 20% client participation rates.

Table 6: Performance of FedRolex, HeteroFL, and Federated Dropout under different client participa-
tion rates.

Client Participation Rate
5% 10% 20%

CIFAR-10
HeteroFL 48.43 (+/- 1.78) 63.90 (+/-2.74) 65.07 (+/- 2.17)
Federated Dropout 42.06 (+/- 1.29) 46.64 (+/-3.05) 55.20 (+/- 4.64)
FedRolex 57.90 (+/- 2.72) 69.44 (+/-1.50) 71.85 ( +/- 1.22)

A.6 Communication and Computation Costs of FedRolex

To calculate the communication cost, we use the average size of the models sent by all the participating
clients per round as the metric. To calculate the computation overhead, we calculate the FLOPs and
numbers of parameters in the models of all the participating clients per round and take the average
as the metric. To put these metrics in context, we also calculate the upper and lower bounds of the
communication cost and computation overhead (i.e., all the clients were using the same largest model
and smallest model, respectively).

Table 7 lists the results. As shown, compared to the upper bound, FedRolex significantly reduces
the communication cost and computation overhead while being able to achieve comparable model
accuracy. Compared to the lower bound, although FedRolex has higher communication cost and
computation overhead, the model accuracy achieved is much higher than the lower bound. These
results indicate that FedRolex is able to achieve comparable high model accuracy as the upper bound
with much less communication cost and computation overhead.

Table 7: Computation and communication costs of FedRolex compared to upper and lower bounds
represented by homogeneous settings with largest and smallest models respectively.

Homogeneous (largest) FedRolex Homogeneous (smallest)
Average Number of Parameters per Client (Million) 11.1722 2.9781232 0.04451
Average FLOPs per Client (Million) 557.656 149.048384 2.41318
Average Model Size per Client (MB) 42.62 11.36 0.17

A.7 Experimental Setup Details

Experimental Setup Details for Table 3. The experimental setup for PT-based methods is listed in
Table 8. The experimental setup for model-homogeneous baselines was slightly different from the
PT-based methods and hence is listed separately in Table 9.

Experimental Setup Details for Figure 3. The experimental setup details are tabulated in Tables 10
and 11.

Experimental Setup Details for Figure 4. The experimental setup details are tabulated in Table 12.
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Table 8: Experimental setup details of PT-based methods in Table 3 on CIFAR-10, CIFAR-100 and
Stack Overflow.

CIFAR-10 CIFAR-100 Stack Overflow
Local Epoch 1 1 1
Cohort SIze 10 10 200
Batch Size 10 24 24
Initial Learning Rate 2.00E-04 1.00E-04 2.00E-04

Decay Schedule High Data Heterogeneity 800, 1500 1000, 1500 600, 800Low Data Heterogeneity 800, 1250 1000, 1500
Decay Factor 0.1 0.1 0.1

Communication Rounds High Data Heterogeneity 2500 3500 1200Low Data Heterogeneity 2000 3500
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 9: Experimental setup details of model-homogeneous baselines in Table 3 on CIFAR-10 and
CIFAR-100 and Stack Overflow.

CIFAR-10 CIFAR-100 Stack Overflow
Local Epoch 1 1 1
Cohort Size 10 10 200
Batch Size 10 24 24
Initial Learning Rate 2.00E-04 1.00E-04 2.00E-04

Decay Schedule High Data Heterogeneity 500, 1000 1000, 1500 300Low Data Heterogeneity 500, 1000 1000, 1500
Decay Factor 0.1 0.1 0.1

Communication Rounds∼ High Data Heterogeneity 1250 3500 1000Low Data Heterogeneity 1500 3500
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 10: Experimental setup for results shown in Figure 3. ρ between 0.0 and 0.5 in 0.1 increments.

Dataset ρ 0.0 0.1 0.2 0.3 0.4

CIFAR-10

High
Heterogeneity

Decay
Schedule 500, 1000 500, 1000 500, 1000 700, 1200 700, 1200

Communication
Rounds 1250 1250 1250 1500 1500

Low
Heterogeneity

Decay
Schedule 500, 1000 500, 1000 500, 1000 700, 1200 700, 1200

Communication
Rounds 1250 1250 1250 1500 1500

CIFAR-100

High
Heterogeneity

Decay
Schedule 1000, 1500 1000, 1500 1000, 1500 1000, 1500 1000, 1500

Communication
Rounds 2000 2000 2000 2000 2000

Low
Heterogeneity

Decay
Schedule 1000, 1500 1000, 1500 1000, 1500 1000, 1500 1000, 1500

Communication
Rounds 2000 2000 2000 2000 2000

Stack Overflow

High
Heterogeneity

Decay
Schedule 800 800 800 800 800

Communication
Rounds 1500 1500 1500 1500 1500

Low
Heterogeneity

Decay
Schedule 800 800 800 800 800

Communication
Rounds 1500 1500 1500 1500 1500

A.8 Algorithm Pseudocodes

The pseudocodes for HeteroFL and Federated Dropout are given in Algorithms 2 and 3 respectively.
Their differences from FedRolex are marked using blue color.
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Table 11: Experimental setup for results shown in Figure 3. ρ between 0.5 and 1.0 in 0.1 increments.

ρ 0.6 0.7 0.8 0.9 1.0Dataset

CIFAR-10

High
Heterogeneity

Decay
Schedule 700, 1200 700, 1200 500, 1000 500, 1000 500, 1000

Communication
Rounds 1500 1500 1250 1250 1250

Low
Heterogeneity

Decay
Schedule 700, 1200 700, 1200 500, 1000 500, 1000 500, 1000

Communication
Rounds 1500 1500 1250 1250 1250

CIFAR-100

High
Heterogeneity

Decay
Schedule 1000, 1500 1000, 1500 1000, 1500 1000, 1500 1000, 1500

Communication
Rounds 2000 2000 2000 2000 2000

Low
Heterogeneity

Decay
Schedule 1000, 1500 1000, 1500 1000, 1500 1000, 1500 1000, 1500

Communication
Rounds 2000 2000 2000 2000 2000

Stack Overflow

High
Heterogeneity

Decay
Schedule 800 800 800 800 800

Communication
Rounds 1500 1500 1500 1500 1500

Low
Heterogeneity

Decay
Schedule 800 800 800 800 800

Communication
Rounds 1500 1500 1500 1500 1500

Table 12: Experimental setup for results shown in Figure 4

Dataset γ 2 4 8 16

CIFAR-10

High
Heterogeneity

Decay
Schedule 800, 1200 800, 1200 800, 1200 800, 1200

Communication
Rounds 1500 1500 1500 1500

Low
Heterogeneity

Decay
Schedule 800, 1200 800, 1200 800, 1200 800, 1200

Communication
Rounds 1500 1500 1500 1500

CIFAR-100

High
Heterogeneity

Decay
Schedule 800, 1200 800, 1200 800, 1200 800, 1200

Communication
Rounds 1500 1500 1500 1500

Low
Heterogeneity

Decay
Schedule 800, 1200 800, 1200 800, 1200 800, 1200

Communication
Rounds 1500 1500 1500 1500

Stack Overflow

High
Heterogeneity

Decay
Schedule 800 800 800 800

Communication
Rounds 1500 1500 1500 1500

Low
Heterogeneity

Decay
Schedule 800 800 800 800

Communication
Rounds 1500 1500 1500 1500

1×
6%

1/2×

10%

1/4×

11%

1/8×

18%

1/16×

55%

Model Capacity Annual Household Income
1/16× < $75, 000
1/8× $75, 000− $100, 000
1/4× $100, 000− $150, 000
1/2× $150, 000− $200, 000
1× > $200, 000

Figure 7: Mapping between real-world annual household income and model capacity.
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Table 13: Experimental setup for Table 4 for CIFAR-10, CIFAR-100 and Stack Overflow.

CIFAR-10 CIFAR-100 Stack Overflow

Local Epoch 1 1 1
Cohort SIze 10 10 200
Batch Size 10 24 24
Initial Learning Rate 2.00E-04 1.00E-04 2.00E-04

Decay Schedule High Heterogeneity 800, 1500 1000, 1500 600, 800Low Heterogeneity 800, 1250 1000, 1500
Decay Factor 0.1 0.1 0.1

Communication Rounds High Heterogeneity 2500 3500 1200Low Heterogeneity 2000 3500
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Algorithm 2: HeteroFL
1 Initialization ; θ(0), N

Input :Dn βn ∀n ∈ N ,
Output :θJ

2 Server Executes
3 for j ← 0 to J − 1 do
4 Sample subsetM from N
5 Broadcast θ(j)m,[i ; 0,1, ... ⌊βnKi⌋−1]∀i and m ∈M
6 for each client m ∈M do
7 clientStep(θ(j)m , Dm)
8 end
9 Aggregate θ

(j+1)
[i,k] according to Equation (10)

10 end
11 Subroutine clientStep(θ(j)n , Dn)
12 mn ←− len(Dn)
13 for k ← 0 to mn do
14 θn ←− θn − η∇l(θn; dn,k)
15 end
16 return θn

Algorithm 3: Federated Dropout
1 Initialization ; θ(0), N

Input :Dn βn ∀n ∈ N ,
Output :θJ

2 Server Executes
3 for j ← 0 to J − 1 do
4 Sample subsetM from N
5 Broadcast θ(j)m,[i ; k1,...,k⌊βnKi⌋]

∀i and m ∈M
6 for each client m ∈M do
7 clientStep(θ(j)m , Dm)
8 end
9 Aggregate θ

(j+1)
[i,k] according to Equation (10)

10 end
11 Subroutine clientStep(θ(j)n , Dn)
12 mn ←− len(Dn)
13 for k ← 0 to mn do
14 θn ←− θn − η∇l(θn; dn,k)
15 end
16 return θn
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