
A Proof of Theorem 3.1

Hyperparameters for the algorithm We define

Ed = 3d
e

e− 1
ln{3 + 3 (2B/ε)

2}+ 1 (9)

nrollout =
2H2(1+2B)2 log

(
2(Ed+1)

δ

)
ε2target

(10)

N = (Ed + 1)nrolloutHA (11)

neval =
50H2(1+B2)(d+1) log(2(d+1)N

δ)
ε2target

(12)

εeval =

√√√√ log
(

2(d+1)N
δ

)
2neval

(13)

ε̄eval =
√

1 +B2
√
d+ 1εeval (14)

εtol = 4ε̄eval (15)

εroll = H(1 + 2B)

√
log(2(Ed + 1)/δ)

2nrollout
(16)

As we will see, Ed is the upper bound on the number of parameters observed before global consistency
holds, neval is the number of samples taken to estimate each TD vector, nrollout is the number of
rollouts executed for each parameter, N is the maximum number of state-action pairs which will be
seen by DELPHI , εeval is the error between the estimated TD vector and the true TD vector, and
εroll is the error of replacing the expected total rewards with the average over several rollouts.

A.1 Part 1: Concentration Inequalities

Recall that we write
∆s,a = r(s, a)⊕

(
EP (s,a)[φ(s

′)]− φ(s)
)

for the true TD vector for state-action (s, a). We write ∆̂s,a for any estimated TD vector resulting
from Line 11, and ∆̃s,a for any doubly-estimated TD vector resulting from Line 16.

Lemma 3.2 (Concentration of ∆̂s,a (Line 11)). For any s, a ∈ S ×A that is observed throughout
the execution DELPHI , with neval samples in Line 11, we have that with probability ≥ 1 − δ,∥∥∥∆̂s,a −∆s,a

∥∥∥
∞
≤ εeval and thus that ⟨1⊕ θ, ∆̂s,a −∆s,a⟩ ≤ ε̄eval.

Proof. Pick a single s, a, and omit the dependence on s, a for cleanliness. Starting with the reward
concentration: at every step we collect neval iid samples from R(si, ai). By Hoeffding, since rewards
are bounded in [0, 1], the empirical average satisfies∣∣∣∣ 1n∑ ri − E[r]

∣∣∣∣ w.p. 1−δ/((d+1)N)

≤

√
log(2(d+ 1)N/δ)

2neval
.

Onto the transition probabilities. Since the features are such that ∥φ∥2 ≤ 1, we also have that
∥φ∥∞ ≤ 1. Thus, each coordinate of the feature map is bounded by 1. By Hoeffding, for each
coordinate i of the vector, we have that

| 1
n

n∑
j=1

φ
(j)
i − Eφ(j)

i |
w.p. 1−δ/((d+1)N)

≤

√
log(2(d+ 1)/δ)

2neval

Thus, with a union bound over these events for each coordinate i and the event for the reward
concentration, we have that w.p. ≥ 1− δ/N

∥∥∥∆̂−∆
∥∥∥
∞
≤

√√√√ log
(

2(d+1)N
δ

)
2neval

= εeval.

13

Finally, by a union bound over all N state-action pairs observed by DELPHI , we have that for every
s, a encountered:

∥∥∥∆̂s,a −∆s,a

∥∥∥
∞
≤

√√√√ log
(

2(d+1)N
δ

)
2neval

= εeval with probability ≥ 1− δ.

We further find that:
∥∥∥∆̂−∆

∥∥∥
2
≤
√
d+ 1εeval (since ∆ and ∆̂ are (d + 1)-dimensional). By

Cauchy-Schwartz this gives, ∀θ ∈ Ballℓ2(B):

|⟨1⊕θ, ∆̂−∆⟩| ≤ ∥1⊕ θ∥2
∥∥∥∆̂−∆

∥∥∥
2
=

√
1 + ∥θ∥22

∥∥∥∆̂−∆
∥∥∥
2
=
√
1 +B2

√
d+ 1εeval = ε̄eval

Lemma 3.3 (∆̃s,a concentrates even more (Line 16)). Similarly, for all s, a where we call the oracle,

with probability 1 − δ, we have
∥∥∥∆̃s,a −∆s,a

∥∥∥
∞
≤ εeval/(2

√
Ed), and thus, ∀θ ∈ Ballℓ2(B),

|⟨1⊕ θ, ∆̃s,a −∆s,a⟩| ≤ ε̄eval/(2
√
Ed).

Proof. Follows from the same proof as Lemma 3.2, just replace neval by 4Edneval.

A.2 Part 2: Optimism

Lemma 3.4 (θ◦ not eliminated). With probability ≥ 1− δ, θ◦ ∈ Θt for all iterations t ∈ [Ed + 1].

Proof. Let ∆̃t be the TD vector which is added to Θt at time t ∈ [Ed]. Note that, by Lemma 3.3, for
any given t, we have

|⟨1⊕ θ◦, ∆̃t −∆t⟩| ≤ ε̄eval/(2
√
Ed), (17)

for all t, w.p. ≥ 1− δ. The parameter set is defined as

Θt = {θ : |⟨1⊕ θ, ∆̃i⟩| ≤
ε̄eval

2
√
Ed

∀i ∈ [t]}.

Note that, for θ◦, this is equivalent to requiring

|⟨1⊕ θ◦, ∆̃t −∆t⟩| ≤
ε̄eval

2
√
Ed

,

since ⟨1⊕ θ◦,∆t⟩ = 0 for all ∆t (recall Equation 5). This holds by Eq. (17).

Lemma 3.5 (Optimism). Under the event of Lemma 3.4, we have vt(s0) ≥ v◦(s0), ∀t ∈ [Ed].

Proof (of Lemma 3.5). Under the event of Lemma 3.4, θ◦ is never eliminated from Θt. Thus, by the
optimistic update rule, we have θt+1 = argmaxθ∈Θt

θ⊤φ(s0), and since θ◦ ∈ Θt, then

θ⊤t+1φ(s0) = vθt+1
(s0) ≥ (θ◦)⊤φ(s0) = vθ◦(s0) = v◦(s0)

.

A.3 Part 3: Iteration Complexity

To bound the iteration complexity of our algorithm, we will need to introduce the notion of Eluder
dimension. We use a simplified form introduced by [LKFS21], although the first definition is due to
[RVR13].
Definition A.1 (Eluder dimension [LKFS21]). Let F be a real-valued function class on domain X .
Fix a reference function f⋆ ∈ F , and a scale ε. The Eluder dimension of F at a scale ε, w.r.t. f⋆, is
the length τ ∈ N of the longest sequence of points ((x1, f1), . . . (xτ , fτ)) such that

∀i ∈ [τ] : |fi(xi)− f⋆(xi)| > ε, and
∑
j<i

(fi(xj)− f⋆(xj))
2 ≤ ε2. (18)

An Eluder sequence of length τ (with respect to f⋆) is any sequence (xi, fi)
τ
i=1 which satisfies Eq

(18) for each i.

14

In other words, the Eluder dimension is the length of the longest sequence of points such that, for
each i, we can find a new function fi which is large with respect to f⋆ on xi but correctly fits f⋆ on
historical data x1, . . . , xj , for j < i. We will use the folllowing bound for the Eluder dimension of
linear functions with d-dimensional parameters.

Lemma A.2 ([RVR13]). For any f⋆, the Eluder dimension of the function classF = {fθ(x) = θ⊤x},
assuming that ∥θ∥2 ≤ B and ∥x∥2 ≤ γ, is

dimE(F , ε) ≤ 3d
e

e− 1
ln{3 + 3 (2B/ε)

2}+ 1 = O(d ln(B/ε)).

This gives us enough to prove our iteration bound – we will show that the sequence of linear
parameters chosen by our algorithm together with each new TD vector obtained from the oracle
forms an Eluder sequence with respect to θ⋆

Lemma 3.6 (Iteration Complexity). With probability ≥ 1 − 2δ, the iteration complexity of the
algorithm is at most the Eluder dimension at scale ε̄eval, i.e. Ed = O(d ln(B/ε̄eval)).

Proof (of Lemma 3.6). Assume the events of Lemma 3.2 and Lemma 3.3, which happen together
with probability ≥ 1 − 2δ. Our function class is F = {fθ(x) = ⟨1 ⊕ θ, x⟩}. This is a subset
of all linear functions on d + 1 dimensions, so by Lemma A.2,7 it has Eluder dimension at least
O((d + 1) ln(B/ε)) = O(d ln(B/ε)). We pick f⋆ = fθ◦ . We will show that ∀i, the sequence
(∆̃i, fθi) forms an Eluder sequence with respect to f⋆, from which it will follow that its length is
bounded by Ed. We do this by induction. The base case is obvious. By the constraint set definition
(Line 17), we have |fθi(∆̃j)| = |⟨1⊕ θi, ∆̃j⟩| ≤ ε̄eval

2
√
Ed
∀j < i. Assuming the event of Lemma 3.4,

we also have |fθ◦(∆̃j)| ≤ ε̄eval
2
√
Ed

, since θ◦ ∈ Θi−1. Thus

|fθi(∆̃j)− fθ◦(∆̃j)| ≤ 2
ε̄eval

2
√
Ed

∀i =⇒
∑
j<i

(fθi(∆̃j)− fθ◦(∆̃j))
2 ≤ ε̄2eval

i− 1

Ed
≤ ε̄2eval,

where in the last inequality we have used i − 1 ≤ Ed by the induction hypothesis. Thus, the
second condition of the Eluder dimension is satisfied. For the first condition, we want to show that
|fθi(∆̃i)−fθ◦(∆̃i)| > ε̄eval. Note that, by Lemma 3.4, we have |fθ◦(∆̃i)| ≤ ε̄eval/(2

√
Ed) ≤ ε̄eval.

Recall from Line 13 that
∣∣∣⟨∆̂i, 1⊕ θi⟩

∣∣∣ = |fθi(∆̂i)| > εtol. Using concentration and linearity, we

have |fθi(∆̂i)| − |fθi(∆̃i)| ≤ 2ε̄eval. Thus, |fθi(∆̃i)| ≥ εtol − 2ε̄eval = 2ε̄eval since εtol = 4ε̄eval.
Putting this together gives

|fθi(∆̃i)− fθ◦(∆̃i)| ≥ fθi(∆̃i)− fθ◦(∆̃i) ≥ 2ε̄eval − ε̄eval = ε̄eval.

And we are done.

A.4 Part 4: Consistency, and Putting Everything Together

Lemma 3.7 (Consistency =⇒ accurate prediction). If m rollouts have occured without any
inconsistencies (i.e., the if statement of Line 13 never gets triggered), then vπθ (s0) > vθ(s0) −
5Hε̄eval − εroll with probability ≥ 1− 3δ.

Proof (of Lemma 3.7). Assume the event of Lemmas 3.2 and Lemmas 3.3, which together happen
with probability ≥ 1− 2δ. The third event which we assume will be introduced shortly.

For cleanliness, let us write θ for the final parameter which observes m rollouts without consistency
break. Observe the following calculation:

7(and using that F ⊆ F ′ =⇒ dimE(F , ε) ≤ dimE(F ′, ε))

15

vπθ (s0) = Eπθ
[
∑
j∈[H]

rSj ,Aj
]

= E

〈∑
j∈[H]

rSj ,Aj

⊕ φ(sH+1), 1⊕ θ

〉 (φ(sH+1) = 0)

= E

⟨φ(s0), θ⟩+ ∑
j∈[H]

⟨rSj ,Aj
⊕ (φ(Sj+1)− φ(Sj)), 1⊕ θ⟩

 (telescoping sum)

= ⟨φ(s0), θ⟩+ E

∑
j∈[H]

⟨rSj ,Aj
⊕
(
PSj ,Aj

φ(·)− φ(Sj)
)
, 1⊕ θ⟩

 ,

Now observe that after nrollout number of rollouts, we have nrollout un-
biased estimates of the expected trajectories. Thus we can approximate
E
[∑

j∈[H]⟨rSj ,Aj ⊕
(
PSj ,Ajφ(·)− φ(Sj)

)
, 1⊕ θ⟩

]
≈ 1

nrollout

∑nrollout
i=1 E[rSi

j ,A
i
j
] ⊕(

PSi
j ,A

i
j
φ(·)− φ(Si

j)
)

, where Si
j and Ai

j are the states and actions in horizon
j ∈ [H] of rollout i ∈ [nrollout]. More precisely, using Hoeffding’s and that
⟨E[rSi

j ,A
i
j
]⊕
(
PSi

j ,A
i
j
φ(·)− φ(Sj)

)
], 1⊕ θ⟩ ≤ 1 + 2B, we can get∣∣∣∣∣∣ 1

nrollout

∑
i∈[m]

∑
j∈[H]

⟨∆i
j , 1⊕ θ⟩

−
E

∑
j∈[H]

⟨∆i
j , 1⊕ θ⟩

∣∣∣∣∣∣ ≤ H(1+2B)

√
log(2(Ed + 1)/δ)

2m
:= εroll,

w.p. ≥ 1 − δ
Ed+1 , where we wrote ∆i

j = E[rSi
j ,A

i
j
] ⊕
(
PSi

j ,A
i
j
φ(·)− φ(Sj)

)
. By a union bound

this happens for all t ∈ [Ed + 1] with probability ≥ 1− δ. Picking up where we left off:

vπθ (s0) ≥ ⟨φ(s0), θ⟩+
1

nrollout

nrollout∑
i=1

∑
j∈[H]

⟨E[rSi
j ,A

i
j
]⊕
(
PSi

j ,A
i
j
φ(·)− φ(Sj)

)
], 1⊕ θ⟩ − εroll

≥ ⟨φ(s0), θ⟩+
1

m

m∑
i=1

∑
j∈[H]

⟨∆̂sij ,a
i
j
, 1⊕ θ⟩ −Hε̄eval − εroll (evaluation error)

≥ vθ(s0)−
1

m

m∑
i=1

∑
j∈[H]

4ε̄eval −Hε̄eval − εroll (consistency holds)

= vθ(s0)− 5Hε̄eval − εroll

and we are done. The second inequality follows from Lemma 3.2, which holds for all steps in all
m trajectories in all Ed + 1 iterations. The third inequality holds since, for every Si

j , there exists a
consistent action, i.e. an action such that |⟨∆̂i

j , 1⊕ θ⟩| ≤ εtol = 4ε̄eval.

A.5 Simulator inaccuracy and misspecification

We start with the case of inaccurate simulators. Recall that we say that a simulator is λ-innacurate if
the samples obtained are of the form (Π(r + λs,a), s

′), for any (s, a) and for some constant λs,a that
satisfies |λs,a| ≤ λ.
Theorem 3.8 (DELPHI with misspecification). Redefine n′

eval = 4neval (Eq. 12) and all subsequent
hyperparameters which depend on n′

eval. Then we have that, for all MDPs that are at most ε̄eval
8
√
Ed

-
misspecified or for all simulators that are at most ε̄eval

4
√
Ed

-innaccurate, the conclusions of Theorem 3.1
continue to hold when running DELPHI with the new hyperparameters.

We can repeat the proof of DELPHI , and in fact the only difference will be in Part 1 of the proof
(Lemmas 3.2 and 3.3) will continue to hold, which also implies that the rest of the proof will continue
to hold.

16

Lemma A.3 (Concentration of ∆̂s,a (Line 11)). For any s, a ∈ S ×A that is observed throughout
the execution DELPHI , with neval samples in Line 11, we have that with probability ≥ 1 − δ,∥∥∥∆̂s,a −∆s,a

∥∥∥
∞
≤ εeval and thus that ⟨1⊕ θ, ∆̂s,a −∆s,a⟩ ≤ ε̄eval.

Lemma A.4 (∆̃s,a concentrates even more (Line 16)). Similarly, for all s, a where we call the oracle,

with probability 1 − δ, we have
∥∥∥∆̃s,a −∆s,a

∥∥∥
∞
≤ εeval/(2

√
Ed), and thus, ∀θ ∈ Ballℓ2(B),

|⟨1⊕ θ, ∆̃s,a −∆s,a⟩| ≤ ε̄eval/(2
√
Ed).

Proof (of Lemmas A.3 and A.4. We repeat the proof of Lemmas 3.2 and 3.3. Note that ∆̂s,a is an
average of i.i.d. random variables with mean ∆′

s,a = (r(s, a) + λs,a)⊕Ps,aφ−φ(s). As before, by
Hoeffdings, we have |⟨1⊕ θ, ∆̂−∆′⟩| ≤ ε̄eval/2, where the factor of 1/2 is due to the definition of
n′
eval. This gives that

|⟨1⊕θ, ∆̂−∆⟩| ≤ |⟨1⊕θ, ∆̂−∆′⟩|+|⟨1⊕θ,∆′−∆⟩| ≤ ε̄eval/2+λ ≤ ε̄eval/2+ε̄eval/4
√

Ed ≤ ε̄eval

The proof of the second part follows similarly, since we have

|⟨1⊕ θ, ∆̃−∆⟩| ≤ |⟨1⊕ θ, ∆̃−∆′⟩|+ |⟨1⊕ θ,∆′ −∆⟩| ≤ ε̄eval/4
√
Ed + λ ≤ ε̄eval/2

√
Ed

Next we handle the value misspecification case. Recall that the MDP is η-misspecified for the expert
policy π◦ and the features φ if there exists θ◦ such that sups |v◦(s) − ⟨φ(s), θ◦⟩| ≤ η. Here, we
use a reduction argument to show that an η-misspecified MDP can be reduced to a 2η-innacurate
simulator of a realizable MDP. Namely, using the same reduction as Appendix D of [WAJAYJS21],
we can construct an alternative MDPM′ such thatM′ is realizable but is a 2η-inaccurate simulator
ofM. The result then follows from the first part of the proof.

17

B Proof of Section 4

B.1 The MDP construction

Theorems 4.1 and 4.3 use the same MDP construction, which is inspired by the recent and remarkable
lower bound of [WSG21] (itself an extension of the lower bound of [WAS21]). We give an overview
of the MDP and its features, and describe the changes from the original construction of [WSG21].
The state space consists of a hypercube in p dimensions, S = {±1}p, for some p ∈ N, and assume
for simplicity that p is divisible by 4. More specifically, the state space at stage h also contains the
history of vectors encountered so far (s1, . . . , sh), which is uniquely defined as the transitions are
deterministic. The dimension p will end up being p ≈

√
d for the value-based lower bound and p ≈ d

for the policy-based lower bound. We write ρ(·, ·) for the Hamming distance on S, recalling that
is a bilinear function of its arguments, i.e. ρ(s1, s2) = 1

2 (p − ⟨s1, s2⟩). The action set is A = [p],
and each action a ∈ [p] will correspond to flipping the ath bit of the current state. Each trajectory of
horizon H has K phases (K ∈ N), and each phase consists of p steps (thus, H = Kp). We write
s0, s1, . . . , sk, . . . sK for the states reached at the end of each phase, and when we need to we will
use sk,i for a state at step i of phase k. The start state is s0 = 1⃗, the all-ones vector.

There is a special “goal state” s⋆, and reward is given only if a) at the end of any phase, ρ(sk, s⋆) ≤
p/4, or b) the learner reaches horizon H , i.e. the end of phase K. The reward function decays
geometrically, and is defined according to the sequence of states s0, . . . sk obtained at the end of
each phase. Letting g(s1, s2) := 1− ρ(s1, s2)/p denote one minus the proportion of bits where two
states differ, the reward function for reaching a p/4-neighbourhood of s⋆ at stage k (condition a) just
described) is deterministic and has value

rw⋆((si)
k
i=1) =

(
k∏

i=1

g(si−1, si)

)
g(si, s

⋆) (19)

The reward function at stage H (condition b) above) is always given and has the same expectation as
Eq. (19), but will be a Bernoulli random variable.

Modulo some exceptions (to be described shortly), the transition function is deterministic and is
defined via P(τ(s, a)|s, a) = 1, where τ(s, a) = (s1, . . . ,−sa, . . . sp) corresponds to the new vector
obtained from flipping the bit at index a ∈ [p]. The exceptions to these transition dynamics are if
1) a state within a p/4-neighbourhood of s⋆ is reached, or 2) a move is repeated. In the first case,
the MDP transitions to a game-over state ⊥ (after which nothing else is possible and no reward is
given). In the second case, if the move is repeated within the first p/4 steps of a phase then the MDP
similarly transitions to ⊥, and if the move is repeated in the second 3p/4 turns then the current state
becomes frozen until the end of the current phase (i.e. no further bit flips are allowed). This implies
that each bit can only be flipped once in each phase, and further that g(si−1, si) ≤ 3/4 for each
“legal” trajectory in the MDP (thus, the reward decays geometrically, cf. Equation (19)).

So far, the main modification in our construction from that of [WSG21] is the reward function. Their
g function is chosen to be 2nd order in ρ(s1, s2), while ours is linea in ρ. We now introduce the
definition of the expert policy: we simply choose it to be the one which will flip the earliest index
such that sk,i differs from s⋆ and such that its index has not yet been played in the round. If no such
index exists, or if sk,i = s⋆, the expert policy will simply freeze the current round by repeating the
earliest index that has already been played. (Note that there is always a repeated index in this case,
and that repeating an index will lead to freezing instead of termination, since at the start of any phase
k the trajectory must satisfy ρ(sk, s

⋆) > p/4, otherwise the trajectory would have terminated). It
will turn out that the expert’s trajectory from the start state will be identical to that of the optimal
policy (and, thus, will be equally difficult to compete with, in the sense of Eq. (2)). While our expert
policy might seem optimal, this need not be the case for arbitrary states since it might sometimes
be more advantageous for a state in phase k which can no longer reach the p/4-neighbourhood of
s⋆ to simply aim at minimizing the inevitable factor of g(sk−1, sk) that it will incur. The following
lemma (proved in Appendix B.2) gives an expression for the value function corresponding to our
expert policy, and shows that the value function satisfies Assumption 2.2.

18

Lemma B.1. Let sk,i be a state in round i of phase k. Note that, from sk,i, the state sk+1 that π◦

will reach at the end of the current phase is deterministic. The value function of π◦ is

v◦(sk,i) =

 ∏
k′∈[k]

g(sk′−1, sk′)

 g(sk, sk+1)g(sk+1, s
⋆),

and furthermore this is linear with features φv of dimension d = Θ(p2).

The next lemma gives an expression showing that this same expert policy is linear in a different set of
features φπ , and thus that the expert policy satisfies Assumption 4.2.
Lemma B.2. There exists a feature map φπ and parameter θπ of dimension d = Θ(p) such that

π◦(sk,i) = argmaxa{⟨φπ(s, a), θπ⟩}

This lemma is also proved in Appendix B.2.

The essence of our lower bound is that each oracle call will reveal one bit of the secret state s⋆, and
thus without Ω̃(p) calls and learner will need exponentially-many exploratory samples to solve this
MDP. Thus, for the value-based lower bound, an agent with a d-dimensional feature map must be
given an MDP which has a p = Θ(

√
d)-dimensional state space. However, for the policy-based lower

bound, we can give the agent a p = Θ(d)-dimensional MDP.

Information-theoretic lower bound Information-theoretically, a learning algorithm can solve this
MDP only if they recover the secret state s⋆. We let MDP(p,K) denote an instance of the above
MDP with dimension p and parameters K. Following the approach of [WSG21], we prove the
sample complexity hardness by reducing each MDP(p,K) to an instance of an abstract game called
CUBEGAME(p,K). Details on CUBEGAME, and the proof of the following theorem, are deferred to
Appendix B.3. The main result is the following:
Theorem B.3. Any learner which solves MDP(p,K) can be used to solve CUBEGAME(p,K). Un-
less the number of oracle calls is Ω(p

log p), any learner which is 0.01-optimal on CUBEGAME(p,K),
with a sample complexity of N , will need

N ≥ 2Ω(p∧K).

Combined with the fact that a learner provided with d-dimensional features is given an MDP with
parameter p ≈

√
d, this gives the result of Theorem 4.1.

B.2 Proofs of Lemma B.1, B.2

We need some more notation in order to linearize the value function. Let sk,i ̸= ⊥ be a state in
step i of phase k. We define the variable ctflip

k,i = ρ(sk,0, sk,i), which simply measures the number
of components flipped so far in round k of step i, and fixk,i ∈ {0, 1}p which is a vector with 1 at a
component j if said component is currently frozen (i.e. if it has been played or if the entire state has
been frozen), and 0 otherwise. Similarly, there are two scalars efix

k,i and e¬fix
k,i which simply count the

number of components which disagree with s⋆ that are currently frozen (for efix
k,i) or not frozen (for

e¬fix
k,i). Note that only efix

k,i and e¬fix
k,i depend on s⋆, and in fact we have:

efix
k,i =

1

2
(⟨⃗1,fixk,i⟩ − ⟨fixk,i · sk,i, s⋆⟩) (20)

e¬fix
k,i =

1

2
(⟨⃗1,¬fixk,i⟩ − ⟨¬fixk,i · sk,i, s⋆⟩), (21)

where fixk,i · sk,i denotes component-wise multiplication, i.e. (fixk,i · sk,i)j = (fixk,i)j · (sk,i)j .
Now, we have that:
Lemma B.4 (Value of v◦). Let sk,i be a state in round i of phase k. Let sk+1 denote the state that
π◦ will reach at the end of the current phase when starting from sk,i (and note that this choice is
deterministic given sk,i, and that it may not be in the p/4-neighbourhood of s⋆). Then we have:

v◦(sk,i) =

 ∏
k′∈[k]

g(sk′−1, sk′)

 g(sk, sk+1)g(sk+1, s
⋆),

19

or, overloading notation and letting g(x) = 1− x/p, we have

v◦(sk,i) =

 ∏
k′∈[k]

g(sk′−1, sk′)

 g(ctflip
k,i + e¬fix

k,i)g(e
fix
k,i). (22)

Proof. Identical to [WSG21, Lemma 4.9]

Lemma B.5. The value function v◦ is linear in features φv with dimension d = Θ(p2).

Proof. Starting from Equation 22, we observe that only efix
k,i and e¬fix

k,i depend on s⋆. The first term in
parentheses in simply a scalar which multiplies the features. We thus calculate linear expressions for
x = ctflip

k,i + e¬fix
k,i and y = efix

k,i. Starting with y = efix
k,i, we have:

y =
1

2

(
⟨⃗1,fixk,i⟩ − ⟨fixk,i · sk,i, s⋆⟩

)
= a+ ⟨b, s⋆⟩,

where a = 1
2 ⟨⃗1,fixk,i⟩ and b = − 1

2fixk,i · sk,i. Similarly:

x = ctflip
k,i +

1

2

(
⟨⃗1,¬fixk,i⟩ − ⟨¬fixk,i · sk,i, w⋆⟩

)
= c+ ⟨d, s⋆⟩,

where c = ctflip
k,i +

1
2 (⟨⃗1,¬fixk,i⟩) and d = − 1

2¬fixk,i · sk,i. Thus we have: g(y) = 1 − y/p =

1− (a+ ⟨d, s⋆⟩)/p = (1− a/p)− ⟨b̄, s̄⋆⟩ = a′ + ⟨b̄, s̄⋆⟩, where a′ = (1− a/p), b̄ = −b/√p and
s̄⋆ = s⋆/

√
p. Similarly, g(x) = 1− x/p = 1− (c+ ⟨d, s⋆⟩)/p = c′ − ⟨d̄, s̄⋆⟩, where c′ = 1− c/p

and d̄ = d/
√
p. Putting this together we have that

v◦(sk,i) =

 ∏
k′∈[k]

g(sk′−1, sk′)

 g(x)g(y)

=

 ∏
k′∈[k]

g(sk′−1, sk′)

 (a′ + ⟨b̄, s̄⋆⟩)(c′ + ⟨d̄, s̄⋆⟩)

=

 ∏
k′∈[k]

g(sk′−1, sk′)

(a′c′ + c′⟨b̄, s̄⋆⟩+ a′⟨d̄, s̄⋆⟩+ ⟨b̄, s̄⋆⟩⟨d̄, s̄⋆⟩
)

=

 ∏
k′∈[k]

g(sk′−1, sk′)

(a′c′ + ⟨c′b̄+ a′d̄, s̄⋆⟩+ ⟨b̄⊗ d̄, s̄⋆ ⊗ s̄⋆⟩
)
,

where we have use a property of the tensor product that ⟨a1, b1⟩⟨a2, b2⟩ = ⟨a1 ⊗ a2, b1 ⊗ b2⟩, where
a1 ⊗ a2, b1 ⊗ b2 ∈ Rp×p and their inner product is interpreted as the inner product between the
vectorized matrices. Thus, if we take

θv = 1⊕ s̄⋆ ⊕ (s̄⋆ ⊗ s̄⋆) ∈ R1+p+p2

and

φ(sk,i) =

 ∏
k′∈[k]

g(sk′−1, sk′)

(a′c′ ⊕ (c′b̄+ a′d̄
)
⊕
(
b̄⊗ d̄

))
∈ R1+p+p2

,

then we have v◦(sk,i) = ⟨φ(sk,i), θv⟩ as desired. Thus v◦ is linear with features in dimension
1+ p+ p2. Note that the norm of the features and the parameter θv is also bounded by constants.

This completes the proof for v◦-linearity. We next tackle the analogous statement for π◦-linearity.

Lemma B.6. There exists a feature map φπ and parameter θπ of dimension d ≈ p such that

π◦(sk,i) = argmaxa{⟨φπ(s, a), θπ⟩}

20

Proof. Let sk,i be a state of interest. Recall that π◦ will either 1) flip the earliest index which has not
been fixed such that the value of sk,i at that index disagrees with s⋆, or 2) if no such index exists,
freeze the current round by playing a frozen index. First consider a state sk,i such that π◦(sk,i) will
flip an index. Since the index flipped was previously incorrect and will thereafter agree with s⋆ on that
bit, this corresponds to minimizing the distance between s′ and s⋆ amongst all possible s′ which can
be reached in one step from sk,i (i.e. amongst all possible {τ(sk,i, a)}a, recalling that τ(sk,i, a) is our
notation for the transition function of the MDP). Thus, π◦(sk,i) ∈ argmina{ρ(τ(sk,i, a), s⋆)}. This
can be written linearly as argmina{ 12 (p− ⟨τ(sk,i, a), s

⋆⟩)} = argmaxa{ 12 (⟨τ(sk,i, a), s
⋆⟩ − p)} =

argmaxa{ 12 (⟨p ⊕ ⟨τ(sk,i, a), s
⋆⟩, 1 ⊕ s⋆⟩)}. The second case is that π◦ will freeze the round at

the state sk,i. This means that there are no indices which are incorrect that have not been frozen
in this round. Again, this corresponds to minimizing the distance between τ(sk,i, a) and s⋆: all
other choices will either result in a game over (which has 0 value) or will flip an incorrect bit
(which increases the distance). Thus, again we have π◦(sk,i) ∈ argmina{ρ(τ(sk,i, a), s⋆)} =
argmaxa{ 12 (⟨p⊕ ⟨τ(sk,i, a), s

⋆⟩, 1⊕ s⋆⟩)}.
Thus, in either case, we have that π◦ is linear with features φπ(s, a) = p⊕τ(sk,i, a) and θ◦ = 1⊕s⋆.
Since the definition of the argmax is scale-insensitive, we can further normalize to obtain that the
features are bounded in magnitude by a constant.

B.3 CUBEGAME with expert advice, and Proof of Theorem B.3

Following the approach of [WSG21], we give our lower bound by providing a reduction to an abstract
game called CUBEGAME. Any learning algorithm which can solve the MDPs in our construction
can also be used to solve CUBEGAME, and thus it follows that the learner will be subject to the same
lower bound. For our setting, we modify the reward function CUBEGAME and augment the learner
with the ability to query an expert, which will behave identically to the expert policy which we have
defined in our MDPs (that is, it will flip the first bit which is incorrect or give a special actions to
indicate if all of the bits are correct). For the rest of this section, when referring to CUBEGAME we
are referring to our modified version.

In [WSG21] it is shown that any algorithm which outputs a 0.01−optimal answer for the (expert-less)
CUBEGAME will need a query complexity of N ≥ 2Ω(p∧K). In what follows, we will provide
the analogous proof of this for our modified game. Thus, the main result of this section is the
following, which states that if the learner is not given a budget of Ω(p/ log p) expert queries, the
sample complexity remains exponential. A learning algorithm for CUBEGAME will be called a
planner, and a planner which returns a 0.01-optimal answer at the end of CUBEGAME will be called
sound.

Rules of CUBEGAME CUBEGAME is a bandit-like game which is defined by two parameters:
a length K ∈ N+ and a dimension p ∈ N+. The “action space” is W = {±1}p. Recall that
ρ(x, y) = 1

2 (p− x⊤y) is the Hamming distance between two vectors in W . The secret parameter
which solves the game is housed in the set W ⋆ = {w ∈W | p4 ≤ ρ(⃗1, w) ≤ 3p

4 }. The planner can
only input sequences of vectors where each vector is sufficiently far from the previous one. Formally,
for any k ∈ [K], we let W ◦k = {(wi)i∈[k] ∈ W k | ∀i ∈ [k] : ρ(wi−1, wi) ≥ p/4}, with w0 := 1⃗.
The action space is: A = ∪k∈[K]W

◦k, thus the planner can input any sequence of length k ≤ K

satisfying that (wi) ∈W ◦k.

The reward function is defined by

fw⋆

(
(wi)i∈[k]

)
=

∏
i∈[k]

g(ρ(wi−1, wi))

 g(ρ(wk, w
⋆)),

where: g(x) = 1− x

p
,

with base case f(()) = g(ρ(w0, w
⋆)).

While the planner plays, it chooses sequence lengths Lt ∈ [K] and input sequences St = (wt
i)i∈[Lt] ∈

W ◦Lt . If it chooses to stop playing, it chooses an output St = (wt
i)i∈[8] ∈W ◦8 (we distinguish this

21

case by letting Lt = 0 denote that the planner has chosen to terminate). Thus the number of actions
taken is N = min{t ∈ N+ | Lt = 0}.
After any action St, the reward is given if either ρ(wt

Lt
, w⋆) < p/4 or if Lt = K. In both cases the

reward is Ber(fw⋆(St)), a Bernoulli random variable with mean fw⋆(·). Similarly, if the planner
is done (i.e. the input is SN ∈ W ◦8), then the reward given is R = fw⋆((wN

i)i∈[k⋆]), where
k⋆ = min{8,min{k | ρ(wN

k , w⋆) < p/4}}.
The last thing to specify is the oracle. Here, we allow the planner to query the oracle part-way
through a sequence. Namely, if the planner chooses to input a sequence of length Lt < K, then the
oracle can be queried at the end of the sequence, and a second sequence of length L2

t ≤ K − Lt

can be inputted. This can be repeated as many times as desired, given that the total sequence length
remains ≤ K. The oracle will simulate the expert policy from before: upon being called at a vector
wk,i, it will either return the index of the first bit which does not agree with w⋆, or it will return a
special action indicating that all bits are correct.

We are now ready for the main theorem.

Theorem B.7. Any sound planner for CUBEGAME which has less than Ω(p/ log p) oracle queries,
will have a sample complexity

N ≥ 2Ω(p∧K)

The proof comes in 5 lemmas, two of which (Lemmas B.8 and B.10) are analogous to properties
from the expert-less CUBEGAME. The other 3 lemmas are information-theoretic and are specific to
the oracle setting.

First, some properties about the reward function of CUBEGAME.

Lemma B.8 (Properties of fw⋆). For any w⋆ ∈W ⋆, k ∈ N, s = (wk′)k′∈[k] ∈W ◦k, we have

1

4
≤ fw⋆(()) ≤ 3

4

0 < fw⋆(s) ≤
(
3

4

)k+1[ρ(wk,w
⋆)≥p/4]

Proof. The proof is analogous to [WSG21, Lemma 4.2], substituting our first-order g function.

The following parameters will control our sample complexity:

n = min
{
exp(p/8)p−x/20− 5,

(
1
ε − 1

)
/9.9

}
, where (23)

x =
p

16
log p, and (24)

ε =

(
3

4

)K+1

(25)

We will see that N = Ω(n) for any sound planner.

In the original game of [WSG21], the interaction protocol is captured by (Xt, Yt)t∈[N], where

• N = min{t ∈ N+ | Lt = 0} is the interaction length

• Lt ∈ [K] is the input length chosen,

• St is the sequence (wi)i∈[Lt] inputted, satisfying ρ(wi−1, wi) ≥ p
4

• Xt = (Lt, St),

• Ut = 1{ρ(wLt−1, w
⋆) < p/4},

• Vt = 1{ρ(wLt
, w⋆) < p/4}, and

• Zt = 0 unless Vt = 1 or Lt = K, in which case Zt = Ber(fw⋆(St)),

• Yt = (Ut, Vt, Zt).

22

In our case, we need the sequence St to include every bit flip, thus St = (wk,i)k∈[Lt],i∈[p]We also
have two new variables, namely Ot = (ok,i) which is an indicator that the oracle was called at step i
of phrase k and Et = (ek,i) which is the answer returned by the oracle. Thus our new interaction
protocol is defined by Xt = (Lt, St, Ot, Et) and Yt = (Ut, Vt, Zt), where Yt remains unchanged.

The planner A, with n interactions, in the environment defined by w⋆, defines a distribution over the
environment:

PA,n
w⋆ ((Xt, Ot, Et, Yt)t) =

n∏
i=1

p(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1)p(oi|x1:i, o1:i−1, e1:i−1, y1:i−1)p(ei|xi, oi)p(yi|xi).

(26)
Note that p(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1) and p(oi|x1:i, o1:i−1, e1:i−1, y1:i−1) are decisions made
by the planner and p(ei|xi, oi)p(yi|xi) and p(yi|xi) are obtained by querying the environment. We
define the “abstract game (0, w⋆)” to always yield reward 0, and which has the same oracle as
environment w⋆. It’s distribution will be written as PA

(0,w⋆). Let Ew⋆

n be the event that in the first n
steps the planner does not hit on any vector that is close to w⋆:

Ew⋆

n = ∩t∈[n]

{
t > N or (t = N and min

i∈[8]
ρ(wN

i , w⋆) ≥ p
4) or (t < N and ρ(wLt−1, w

⋆) ≥ p
4 and ρ(wLt

, w⋆) ≥ p
4)

}
Lemma B.9 (A first change of measure). For any planner A and any w⋆ ∈W , we have

PA
w⋆(Ew⋆

n) ≥ 9
10P

A
(0,w⋆)(E

w⋆

n)

Proof. It will be shown that

PA
w⋆(Ew⋆

n) ≥ (1− ε)nPA
(0,w⋆)(E

w⋆

n). (27)

Since 1 − ε ≥ 1 − 1
1+9.9n by our definition of n we have that (1 − ε)n ≥ (1 − 1

1+9.9n)
n ≥

limn→∞(1− 1
1+9.9.n)

n > 9/10, and thus Equation (27) implies our result.

LetH be the set of all possible histories (xt, ot, et, yt) of length n, and Eh = Ew⋆

n ∩{H = h}. Note
that Ew⋆

n is the disjoint union of Eh, so it is enough to show that for each h we have:

ρ =
PA
w⋆ [Eh]

PA
(0,w⋆)[Eh]

≥ (1− ε)n,

for each h such that PA
(0,w⋆)(Eh) > 0. So, let h = (xt, ot, et, yt) be such that PA

(0,w⋆)(Eh) > 0. This
implies in particular that yt = (0, 0, 0) ∀t. Now, both PA

w⋆ and PA
(0,w⋆) factorize according to Eq.

(26), giving:

PA
w⋆ [Eh]

PA
(0,w⋆)[Eh]

=
∏
i

p(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1)p(oi|x1:i, o1:i−1, e1:i−1, y1:i−1)p
w⋆

(ei|xi, oi)p
w⋆

(yi|xi)

pA(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1)pA(oi|x1:i, o1:i−1, e1:i−1, y1:i−1)p(0,w
⋆)(ei|xi, oi)p(0,w

⋆)(yi|xi)
.

Since we are conditioning on the same fixed history, the terms involving decisions made by the
planner will cancel, and similarly the variable Ei also behaves the same in both environments (since
the oracle for w⋆ is the same). We are left with:

ρ =
∏
i

pw
⋆

(yi = (0, 0, 0)|xi)

p(0,w⋆)(yi = (0, 0, 0)|xi)

The denominator always has probability 1 in the environment (0, w⋆), and since Ut = Vt = 0 under
the set Ew⋆

n (the planner is never close to w⋆), we have Yt = 0 ⇐⇒ Zt = 0, so it remains to control

ρ =

n∏
i=1

PA
w⋆(Zt = 0|xt).

Again since the planner is never close to w⋆, Zt = 1 only if lt = K, in which case we have
PA
w⋆(Zt = 1|xt) ≥ (3/4)K+1 = ε by definition of the reward fw⋆ obtained from reaching level

K.

23

The next lemma simply bounds the number of vectors in W which are close to any fixed vector.
Lemma B.10 (Hypercube counting). For w̃ ∈ W , let Wclose(w̃) = {w ∈ W | ρ(w, w̃) < p/4}.
Then |Wclose(w̃)| ≤ 2p exp(−p/8)

Proof. Identical to [WSG21, Lemma 4.4].

Recall that Ew⋆

n is the “bad event” for the planner. We study its complement, (Ew⋆

n)c, which satisfies
(Ew⋆

n)c ⊂ {w⋆ ∈ Z}, where

Z := ∪t∈[n∧(N−1)]

(
Wclose(w

t
Lt−1) ∪Wclose(w

t
Lt

)
∪ (∪i∈[8] Wclose(w

N
i)),

i.e. the event that for some t we have ρ(wt
Lt−1, w

⋆) < p/4 or ρ(wt
Lt
, w⋆) < p/4 or that for some

i ∈ [8] we have ρ(wN
i , w⋆) < p/4. We define the “abstract game” (0, 0), where the planner has

access to an oracle but, when queried, rather than giving information about the “true” w⋆, the oracle
will simply return a uniformly random bit in [p].
Lemma B.11 (A second change of measure). For any planner A with an oracle budget of x, we have
that:

PA
0,ŵ(ŵ ∈ Z) = pxPA

0,0(ŵ ∈ Z)

Proof. As before, consider the set of histories H, and let Zh = Z ∩ {H = h}. Writing out the
importance ratio gives:

ρ =
PA
0,w⋆ [Zh]

PA
(0,0)[Zh]

=
∏
i

p(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1)p(oi|x1:i, o1:i−1, e1:i−1, y1:i−1)p
0,w⋆

(ei|xi, oi)p
(0,w⋆)(yi|xi)

p(xi|x1:i−1, o1:i−1, e1:i−1, y1:i−1)p(oi|x1:i, o1:i−1, e1:i−1, y1:i−1)p(0,0)(ei|xi, oi)p(0,0)(yi|xi)

Again, as before, all the terms involving the planner will cancel, since they are conditioned on the
same history and thus the planner will make the same decisions. Similarly, in both games the reward
is deterministically 0 thus the p(0,w

⋆)(yi|xi) = p(0,0)(yi|xi). We are left with

ρ =

n∏
i=1

p(0,w
⋆)(Ei = ei | xi, oi)

p(0,0)(Ei = ei | xi, oi)

Note that the top probability is deterministic (since the true expert is) and is only equal to 1 at most
x times (recalling that x is the total number of oracle calls allowed). We are simply left with the
(inverse of the) probability that the random oracle returns any given answer, which is 1/p. Thus we
end up with ρ = px.

Lemma B.12 (Finding a bad w⋆ for planner A). For any abstract planner A there exists w⋆ ∈W ⋆

such that
PA
w⋆(Ew⋆

n) ≥ (9/10)2

Proof. Note that, by Lemma B.9, it is sufficient to show that PA
0,w⋆((Ew⋆

n)c) ≤ 1
10 . Recall that for

any ŵ ∈W ⋆ we have (Eŵ
n)

c ⊆ {ŵ ∈ Z}, where

Z := ∪t∈[n∧(N−1)]

(
Wclose(w

t
Lt−1) ∪Wclose(w

t
Lt

)
∪ (∪i∈[8] Wclose(w

N
i))

By a union bound and Lemma B.10 we have that |Z| ≤ (2n + 8)2p exp(−p/8). Since W ⋆ =
W \ Wclose(1) \ Wclose(−1), this also gives that |W ⋆| ≥ 2p(1 − 2 exp(−p/8)). We pick w⋆

according to:
w⋆ = argminŵ∈W⋆ PA

0,w⋆(ŵ ∈ Z).

Putting things together and using Lemma B.11 gives:

2p(1− 2 exp(−p/8))PA
0,w⋆(w⋆ ∈ Z) ≤ |W ⋆|PA

0,ŵ(w
⋆ ∈ Z)

≤
∑

ŵ∈W⋆

PA
0,ŵ(ŵ ∈ Z) ≤

∑
ŵ∈W

PA
0,ŵ(ŵ ∈ Z) ≤

∑
ŵ∈W

pxPA
0,0(ŵ ∈ Z)

= px
∑
ŵ∈W

PA
0,0(ŵ ∈ Z) = px

∑
ŵ∈W

EA
0,0 [1[ŵ ∈ Z]] = pxEA

0,0

[∑
ŵ∈W

1[ŵ ∈ Z]

]
= pxEA

0,0[|Z|] ≤ px(2n+ 8)2p exp(−p/8)

24

Rearranging gives that

PA
0,w⋆((Ew⋆

n)c) ≤ PA
0,w⋆(w⋆ ∈ Z) ≤ (2n+ 8)2p exp(−p/8)px

2p(1− 2 exp(−p/8)
≤ 2(n+ 5)px exp(−p/8) ≤ 1

10
,

where the last line followed from our bound on n (Eq. (23)).

We are now ready to prove Theorem B.7. In fact, there is not much left to do.

Proof (of Theorem B.7). Let the planner A be sound and have an expected query cost N̄ , and w⋆ the
vector from the previous lemma. Then by Markov’s inequality we have:

PA
(0,w⋆)[N − 1 ≥ n] ≤ N̄

n

Letting E′ = Ew⋆

n ∩ {N − 1 < n} we have

PA
0,w⋆ [E′] ≥ (9/10)2 − N̄

n

Under event E′, the output of the planner satisfies ρ(wN
i , w⋆) ≥ p/4 for all i ∈ [8], so the reward at

the end of the game is R < (3/4)9. Combined with soundness this gives

1

4
− 0.01 ≤ fw⋆(())− 0.01 ≤ EA

w⋆ [R] ≤ (
3

4
)9 + (1− PA

0,w⋆ [E′])
3

4

≤ (
3

4
)9 + (1− (9/10)2)

3

4
+

N̄

n

3

4
,

which requires N̄ > 0.02n, namely

N > 0.02min
{
exp(p/8)p−x/16− 5,

(
1
ε − 1

)
/7.5

}
Lastly, note that when x ≤ p

16 log p we have

log n = log(exp(p/8))− log(px) =
p

8
− x log p ≥ p

8
− p

16 log p
log p =

p

16
,

thus n = Ω(exp(p/16)) and in particular N = Ω{2p∧K}.

To prove Theorem B.3, the last thing to show is that a learner which solves the MDP can be used to
solve CUBEGAME. This reduction follows exactly as in Section 4.8 of [WSG21]

25

C On π◦ linearity

This section shows that, when π◦ ̸= π⋆, q◦ can be linear with d−dimensional features yet these
features do not realize π◦-linearity.

The MDP is as follows: the states are arranged in a binary tree of length H . The action space is
{ℓ, r}, corresponding to the ℓeft and right actions. Transitions are deterministic. The reward for
every ℓeft action is −1, the reward for every right action is +1. See Figure 1.

s

s0 s1

s00 s01 s10 s11

{
r(s, ℓ) = −1
π◦(s0) = r

{
r(s, r) = +1

π◦(s1) = ℓ

r(s0, ℓ) = −1 r(s0, r) = +1 r(s1, ℓ) = −1
r(s1, r) = +1

Figure 1: q◦-linearity does not imply π◦-linearity

Note that we can identify every state with the action sequence that led to it (with the starting state
corresponding to the empty sequence). The policy π◦ is defined such that, if s = (a0, . . . , ℓ) then
π◦(s) = r and otherwise if s = (a0, . . . , r) then π◦(s) = ℓ. Thus the policy will alternate the action
taken at every step. This defines the q◦ function:

q◦(s, a) =


0, if h = 0 mod 2

−1, if h = 1 mod 2 and a = ℓ

+1, if h = 1 mod 2 and a = r

Note that we can linearize this in one dimension via the features φ◦(s, a) = q◦(s, a) and θ = 1.
However, these features do not linearly-realize π◦: since θ > 1 then the argmax at every odd horizon
will always be the right action (since φ◦(s, r) = 1 and φ◦(s, ℓ) = −1).

Note that π′ = argmaxa{q◦(s, a)}, the greedy policy derived from q◦ is by definition linear with
those features. For the special case where π◦ = π⋆ then the greedy policy π′ lines up with the policy
π◦, so we get linearity for free in that case.

26

