
Appendix

A Notations

In this part, we list the main notations in Table S1 for clear reference.

Table S1: Main notations used in the work.

Symbol Description

In
di

ce
s

S Number of magnifications (branches) (s ∈ {1, . . . , S})
N Number of patients (n ∈ {1, . . . , N})
Nn Number of instances in the n-th bag
NB Number of selected instances in each bag
NBn Number of bags from the same source with Bn

C,D,DB , D̂ Feature dimension of Zn, En, Bn, or Qn/Kn/Vn

In
pu

t

Xn The n-th bag (patient)
xn,i The i-th instance of the n-th bag
Tn Observed survival time of the n-th patient
Tr Time threshold
δn Event indicator of the n-th patient
Yn Risk stratification status of the n-th patient
βΩ, βs Weight coefficients in Curriculum I and II

O
ut

pu
t

ps
n,i Predicted probability of the i-th instance of the n-th bag in the s-th branch

T̂n Estimated survival time of the n-th patient
LI,LII Loss functions for Curriculum I and II
L` Empirical loss
LΩ Structural loss
Lcox Cox loss
Ltcl Two-tier contrastive loss
Ls Sparseness loss

Fe
at

ur
e

m
ap

ĥn Indicator vector of the n-th bag
ms

n,i Salient mask of the i-th instance of the n-th bag in the s-th branch
x̂s
n,i Highlighted map of the i-th instance of the n-th bag in the s-th branch

zn,i Multi-scale instance representation of the i-th instance of the n-th bag
Bn Sparse soft-bag representation of the n-th bag
Bn Merged representation of the discarded instances
Bn Collection of bags (expect Bn) from the same source with Bn

B̂n Representation of Bn
En, Ên,En New representation of the (all, selected, or discarded) instances of the n-th bag
Qn,Kn,Vn Feature spaces in B
Wn Weight matrix in H for the n-th bag
Zn Representation of the n-th bag

N
et

w
or

k
co

m
po

ne
nt

s

A Instance aggregation function
B Soft-bag learning module
C Risk stratification function
D Constrained self-attention module
E Instance encoding function
F Feature extractor
G Feature aggregator
H Indicator function
K Attention function
L Log-bilinear function
S Prognosis inference function

O
th

er
s

ψ, φ Tanh or Softmax activation function
θiFs Parameter of the s-th module in Fs

ωs,ωs Parameters of Cs

WQ/WK/WV ,WS,WL/VL Projection matrices in B,S,L
O = {O+,O−} Distribution of (high-hazard or low-hazard) samples
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B Algorithm

The detailed procedure of the proposed method is summarized in Algorithm 1.

Algorithm 1 Pseudocode of the Proposed Method.

Input: Dataset {Xn,Tn, δn}Nn=1, risk stratification status Yn = {ys
n,i}

Nn
i=1, and the weight coeffi-

cients βΩ and βs.
Output: Prognosis inference T̂n ← S(A{E(xn,i) : xn,i ∈ Xn}), where {Fs}Ss=1 and {Gs}Ss=1
form E while B and D constitute A.
Curriculum I (C-I): Saliency-guided Weakly-supervised Instance Encoding with Cross-scale Tiles.

1: s← 1
2: while s ≤ S do
3: for [n, i] = [1, 1]→ [N,Nn] do
4: if s == 1 then
5: x̂s

n,i ← xs
n,i

6: else
7: ωs−1 ← the weight extracted from Cs−1

8: ms−1
n,i ← ωs−1 � Fs−1(x̂s−1

n,i ) . Generate salient mask
9: x̂s

n,i ←ms−1
n,i ⊗ xs

n,i . Utilize salient regions to highlight the input
10: end if
11: zsn,i ← Gs(Fs(x̂s

n,i)) . Encode instance;
12: ps

n,i ← Cs({zjn,i}sj=1) . Predict risk probability
13: L` ← the empirical loss calculated with {ps

n,i,y
s
n,i}

14: end for
15: LΩ ← the structural loss calculated with {θs−1

Fs ,θs−1
Fs−1}

16: LI ← L` + βΩLΩ . Aggregate the hybrid loss of Curriculum I
17: Update {Fs,Gs,Cs} by gradient descent
18: s← s+ 1
19: end while
20: zn,i ← [z1

n,i, · · · , zSn,i]. . Obtain instance representation
Curriculum II (C-II): Contrastive-enhanced Soft-bag Prognosis Inference.

1: for n = 1→ N do
2: Zn ← [zn,1; zn,2; · · · ; zn,Nn

]T . Initialize bag representation
3: En ← the new bag representation by projecting Zn via a linear layer
4: ĥn ← argmaxhn

S (D (H(En,hn))) . Generate indicator vector
5: Ên ← H(En, ĥn) . Adaptively select representative instances within a bag
6: Bn ← D(Ên) . Obtain sparse soft-bag representation
7: T̂n ← S(Bn) . Prognosis inference
8: Lcox ← the Cox loss calculated with {T̂n,Tn, δn}
9: Bn ← K(H(En,1− ĥn)) . Merge the representation of the discarded instances

10: B̂n ← K(Bn) . Merge the bag representations (expect Bn) from the same source with Bn

11: Ltcl ← the two-tier contrastive learning loss calculated with {Bn, B̂n,Bn}
12: end for
13: Ls ← the sparseness loss calculated with {WQ,WK ,WV }
14: LII ← Lcox + Ltcl + βsLs . Aggregate the hybrid loss of Curriculum II
15: Update {B,D,S} by gradient descent.

C Implementation Details of Competing Methods

We compared our proposed model with the following weakly-supervised methods for cancer prognosis
analysis.

WSISA [1]: The candidate patterns are clustered by the K-Means algorithm based on the phenotype
features of tiles, followed by several DeepConvSurv [2] models to find important clusters. Then,
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these important clusters are aggregated by applying a fully-connected neural network and boosting
Cox’s negative log-partial likelihood, which are used for survival prediction.

DeepGraphSurv [3]: It develops a graph convolutional neural network based survival model, in which
global topological features and local tile features are integrated via the spectral graph convolution
operator.

MesoNet [4]: Tile features are first extracted using ResNet-50 and are further encoded by the auto-
encoder. Subsequently, a 1D convolutional layer is utilized to score each tile, and these tiles associated
with the largest and lowest scores are leveraged to predict overall survival.

DeepAttnMISL [5]: It applies the K-Means algorithm to cluster features, followed by the Siamese
network and global attention pooling operator to further extract and aggregate these features for
survival analysis.

Patch-GCN [6]: It develops a context-aware spatially-resolved graph convolutional network for
survival prediction, which hierarchically aggregates instance-level features to model local and global
topological structures in the tumor microenvironment.

D More Results

1) Figure S1. The KM curves with the p-values of the proposed method and other ablation variants
(in C-I) on three datasets.

2) Figure S2. The KM curves with the p-values of the proposed method and other ablation variants
(in C-II) on three datasets.

3) Figure S3. The ROC curves of the proposed method and other competing methods on three
datasets.

4) Figure S4. The ROC curves of the proposed method and other ablation variants on three datasets.

5) Table S2. To give an intuitive illustration, we randomly selected two subjects from high-risk (left)
and low-risk (right) subgroups for each dataset. The representative tiles were randomly selected from
the highlighted regions for each subject. As shown in Table S2, the tumor tissues of high-risk patients
show lower differentiation and higher aggressiveness than those of low-risk patients.

E Disscussion on Feature Extractor

The feature extractor F1 shares the same architecture with the top-14 layers of ResNet-18, upon
which F2 additionally deepens the network by introducing two identify blocks with the modification
of kernel number (from [128, 128, 512] to [128, 128, 256]). Such modification aims to obtain a
consistent feature dimension (i.e., 256-d) after a global pooling operator (in G) is applied to the
feature maps output by F1 and F2. And F3 deepens the architecture using the same way as F2.

We have tried to fine-tune ResNet-50 (which was well pre-trained on ImageNet) as the feature extractor.
However, it results in a suboptimal performance compared to the above-mentioned architecture. There
are two possible reasons as follows: 1) Curriculum I refers to multiple branches, and ResNet-50 is
relatively deep such that it is prone to overfitting. 2) ResNet-50 contains many dimension reduction
operations (i.e., pooling and striding) and outputs coarser saliency maps, which is not conducive to
fine-grained information extraction.

F Broader Impact

Positive Impacts.
The main positive impacts can be summarized as follows: 1) The proposed model analyzes WSIs with-
out elaborate ROI-level or pixel-level labels, which can reduce the cost and difficulty of annotation; 2)
The proposed model includes two easy-to-hard curriculums, which first conducts a preliminary task
to learn instance representations by considering risk stratification status (degraded from survival time)
as annotation, followed by prognosis inference with survival time as supervision; 3) We design the
first curriculum of saliency-guided weakly-supervised instance encoding with cross-scale tiles, which
uses relatively weak annotations to reduce label noises and leverages low-magnification saliency
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maps to guide the encoding of high-magnification instances for exploring fine-grained information
across multi-magnification WSIs; 4) We develop the second curriculum of contrastive-enhanced
soft-bag prognosis inference, which can adaptively identify and integrate representative instances
within a bag (as the soft-bag) for prognosis inference and leverage the constrained self-attention
strategy to obtain extra sparseness for soft-bag representations, reducing intra-bag redundancy in
both instance and feature levels. Meanwhile, we improve the Cox loss with two-tier contrastive
learning for enhancing intra-bag and inter-bag discrimination; 5) We evaluate the proposed method
on three public cancer datasets and extensive experiments demonstrate that our method outperforms
state-of-the-art methods in cancer prognosis analysis with WSIs.

Negative Impacts and Future Work.
– Heavy computational cost. All instances are enrolled to train the network in the first curriculum,
which suffers from a heavy computation cost. Our future work will focus on more efficient strategies
to encode instances.
– Lack of long-range dependency. The WSI has broad spatial structure of various phenotypes (e.g.,
tumor invasion and tumor-infiltrating lymphocytes) in tissue microenvironment. Consequently, it
is important to learn long-range dependency among these phenotypes, which, however, is ignored
in our work. In the future, we will seek help from transformer to model the dependency for cancer
prognosis analysis with WSIs.
– Limited application. WSI analysis is often hindered by the gigapixel size and the lack of pixel-level
annotations, which are also common challenges for large-size image (e.g., remote sensing/satellite
image) analysis [7]. Therefore, some concepts and key points of the proposed dual-curriculum
contrastive MIL method are potentially appropriate for large-size image analysis, which includes: 1)
easy-to-hard curriculum learning strategy; 2) soft-bag representation learning method to adaptively
identify and aggregate representative instances; 3) specific loss with two-tier contrastive learning
to enhance intra-bag and inter-bag discrimination, etc. In the future, extending these concepts for
remote sensing/satellite image analysis may be an interesting topic.
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Figure S1: The KM curves with the p-values of the proposed method and other ablation variants (in
C-I) on three datasets. C-I, Curriculum I; MM, multi-magnification strategy; SG, saliency-guided
method; HT, hierarchical transfer strategy; PT, pre-trained strategy.
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Figure S2: The KM curves with the p-values of the proposed method and other ablation variants (in
C-II) on three datasets. C-II, Curriculum II; SB, soft-bag learning; CSA, constrained self-attention
module; TCL, two-tier contrastive learning.
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Figure S3: The ROC curves of the proposed method and other competing methods on three datasets.

COAD LIHC BLCA

Figure S4: The ROC curves of the proposed method and other ablation variants on three datasets. C-I,
Curriculum I; MM, multi-magnification strategy; SG, saliency-guided method; HT, hierarchical trans-
fer strategy; PT, pre-trained strategy; C-II, Curriculum II; SB, soft-bag learning; CSA, constrained
self-attention module; TCL, two-tier contrastive learning.

Table S2: Some representative tiles were randomly selected from the highlighted regions.

COAD LIHC BLCA

TCGA-G4-6304 TCGA-DM-A0XF TCGA-DD-A4NN TCGA-2Y-A9GX TCGA-BL-A13I TCGA-FD-A5C0
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