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Abstract

Recently, contrastiveness-based augmentation surges a new climax in the computer
vision domain, where some operations, including rotation, crop, and flip, combined
with dedicated algorithms, dramatically increase the model generalization and
robustness. Following this trend, some pioneering attempts employ the similar idea
to graph data. Nevertheless, unlike images, it is much more difficult to design rea-
sonable augmentations without changing the nature of graphs. Although exciting,
the current graph contrastive learning does not achieve as promising performance
as visual contrastive learning. We conjecture the current performance of graph
contrastive learning might be limited by the violation of the label-invariant aug-
mentation assumption. In light of this, we propose a label-invariant augmentation
for graph-structured data to address this challenge. Different from the node/edge
modification and subgraph extraction, we conduct the augmentation in the repre-
sentation space and generate the augmented samples in the most difficult direction
while keeping the label of augmented data the same as the original samples. In
the semi-supervised scenario, we demonstrate our proposed method outperforms
the classical graph neural network based methods and recent graph contrastive
learning on eight benchmark graph-structured data, followed by several in-depth
experiments to further explore the label-invariant augmentation in several aspects.

1 Introduction

Contrastive augmentation aims to expand training data in both volume and diversity in a self-
supervised fashion to increase model robustness and generalization. Common sense and domain
knowledge are employed to design the contrastive augmentation operations. Denoising auto-
encoder [2, 3] is one of the pioneering studies to apply perturbations to generate contrastive samples
for tablet data, which takes a corrupted input and recovers the original undistorted input. For visual
data, some operations, including rotation, crop, and flip, combined with dedicated algorithms, signifi-
cantly improve the learning performance in diverse tasks [28, 8, 26, 19, 6]. Treating the augmented
and original samples as positive pairs and the augmented samples from different source samples as
negative pairs, contrastive learning aims to learn the augment-invariant representations by increasing
the similarity of positive pairs and the dissimilarity of negative pairs [5]. These positive pairs increase
the model robustness due to the assumption that the augmented operations preserve the nature of
images and make the augmented samples have consistent labels with the original ones. The negative
pairs work as the instance-level discrimination, which is expected to enhance the model generalization,
but might deteriorate the downstream task since the negative pairs contain the augmented samples
from different source samples but with the same category. The recent BYOL [16] and SimSiam [7]
demonstrate the negative effect of the negative pairs and conclude that the current performance of
contrastive learning can be further boosted even without negative pairs.
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Following this trend, some pioneering attempts employ contrastive augmentation to graph data [11].
GraphCL [40] is the first work to address the graph contrastive learning problem with four types of
augmentations, including node dropping, edge perturbation, attribute masking, and subgraph extrac-
tion. Later, JOAO [39] extends GraphCL by automatically selecting one type of graph augmentation
from the above four types plus non-augmentation. GRACE [42] treats the original graph data and
the novel-level augmented data as two views and learns the graph representation by maximizing
the agreement between the two views. Similarly, MVGRL [18] conducts the contrastive multi-view
representation learning on both node and graph levels. Beyond the above studies to augment graphs,
simGRACE [36] perturbs the model parameters for contrastive learning, which can be regarded as an
ensemble of model perturbation or a robust regularization. Although exciting, the above studies point
out that the effectiveness of graph contrastive learning heavily hinges on ad-hoc data augmentations,
which need to be carefully designed or selected per dataset and request more domain knowledge.

Contributions. We conjecture these hand-crafted graph augmentations might change the nature of
the original graph and violate the label-invariant assumption in the downstream tasks. Different from
treating graph contrastive learning in a pre-trained perspective, we aim to incorporate the downstream
classification task into the representation learning, where the label information is fully used for both
decision boundary learning and graph augmentation. Specifically, we propose Graph Label-invariant
Augmentation (GLA), which conducts augmentation in the representation space and augments the
most difficult sample while keeping the label of the augmented sample the same as the original
sample. Our major contributions are summarized as follows:

• We propose a label-invariant augmentation strategy for graph contrastive learning, which
involves labels in the downstream task to guide the contrastive augmentation. It is worthy to
note that we do not generate any graph data. Instead, we directly generate the label-consistent
representations as the augmented graphs during the training phase.

• In the rich representation space, we aim to generate the most difficult sample for the model
and increase the model generalization. We choose a lightweight technique by randomly
generating a set of qualified candidates and selecting the most difficult one, i.e., minimizing
the maximum loss or worst case loss over the augmented candidates.

• We conduct a series of semi-supervised experiments on eight graph benchmark datasets
in a fair setting and compare our label-invariant augmentation with classical graph neural
network based methods and recent graph contrastive methods by running the codes provided
by the original authors. Extensive results demonstrate our label-invariant augmentation can
achieve better performance in general cases without generating real augmented graphs and
any specific domain knowledge. Besides algorithmic performance, we also provide rich and
in-depth experiments to explore label-invariant augmentation in several aspects.

2 Related Work

Here we introduce the related work of graph neural networks and graph contrastive learning for graph
classification. Node classification, although related, is not covered here due to its different setting.

Graph Neural Network. Graph Neural Networks (GNNs) have been employed on various graph
learning tasks and achieved promising performance [23]. To extract the representation of each node,
GNNs pass node embeddings from its connected neighbor nodes and apply feedforward neural
networks to transform the aggregated features. As a pioneer study in GNNs, graph convolutional
network (GCN) firstly aims to generalize the convolution mechanism from image to graph [23, 35, 14].
Based on GCN, instead of simply summing and averaging connected neighboring node’s embedding,
graph attention networks [31, 34, 33, 41, 13] adopt an attention mechanism that builds self-attention
to score each connected neighboring nodes’ embedding to identify the more important nodes and
enhance the effectiveness of message passing. Then in order to break prior GNN’s limitations on
message passing over long distances on large graphs, graph recurrent neural networks [17, 9] apply
the gating mechanism from RNNs to propagation on graph topology. Simultaneously, for dealing
with the noise introduced from more than 3 layers of graph convolution, DeepGCN [25, 24] uses skip
connections and enables GCN to achieve better results with deeper layers. Recently, GAE [22] and
Infomax [30] achieve state-of-the-art performance on several benchmark datasets. GAE extends the
variational auto-encoder to graph neural networks for unsupervised learning, while Infomax learns
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the unsupervised representation on graphs to enlarge mutual information between local (node-level)
and global (graph-level) representations in one graph.

Graph Contrastive Learning. Recently, many studies have been devoted to the graph contrastive
learning area in diverse angles, including graph augmentation, negative sample selection, and view
fusion. GraphCL [40] summarizes four types of graph augmentations to learn the invariant representa-
tion across different augmented views. Built on GraphCL, JOAO [39] proposes a learnable module to
automatically select augmentation for different datasets to alleviate the human labor in combinations
of these augmentations. Differently, MVGRL [18] contrasts node and graph encodings across views
which enriches more negative samples for contrastive learning. Later, InfoGCL [37] diminishes the
mutual information between contrastive parts among views while preserving the task-relevant repre-
sentation. Beyond augmenting graphs, SimGRACE [36] disturbs the model weights and then learns
the invariant high-level representation at the output end to alleviate the design of graph augmentation.

Different from the above methods that separate the pre-train and fine-tuning phases, we aim to employ
the label information in downstream tasks to guide the augmentation process. Specifically, in this
study, we propose a label-invariant augmentation strategy for graph-level representation learning.

3 Methodology

A graph can be represented by G = (V,X,A), where V = {v1, v2, ..., vn} is the set of vertexes,
X ∈ Rn×d denotes the features of each vertex, and A ∈ {0, 1}n×n represents the adjacency matrix.
Given a set of labeled graphs S = {(G1, y1), (G2, y2), ..., (GM , yM )} where M is the number of
labeled graphs, and yi ∈ Y is the corresponding categorical label of graph Gi ∈ G (1≤i≤M ), and
another set of unlabeled graphs T = {GM+1, ..., GN}, where N is the number of all graphs, M<N ,
the semi-supervised graph classification problem can be defined as learning a mapping function from
graphs to categorical labels f : G → Y to predict the labels of T . In this section, we first illustrate
our motivation supported by empirical evidence, then we elaborate on our Graph Label-invariant
Augmentation (GLA) method for semi-supervised graph classification.

3.1 Motivation

Figure 1: Performance gains (%) of GraphCL and JOAOv2
under different augmentation settings on MUTAG [10]
dataset compared to none augmentation setting.

Augmentation plays an important role
in neural network training. It not only
improves the robustness of learned
representation but also introduces
rich data for training. For graph-
structured data, GraphCL [40] pro-
poses four types of augmentations:
node dropping, edge perturbation, at-
tribute masking, and subgraph sam-
pling. However, it is widely noticed
that the effectiveness of graph con-
trastive learning highly depends on
the chosen types of augmentations for
specific graph data [39, 39]. To illus-
trate the difference between various augmentation combinations, we conduct experiments on MU-
TAG [10] in a semi-supervised graph classification task, where the label rate is set to 50%. Figure 1
shows the performance gains (classification accuracy %) of different augmentation combinations
compared to none augmentation. We can see that different augmentation combinations result in
different performances, and JOAOv2 automatically selects data augmentations but cannot guarantee
to outperform GraphCL with all augmentation combinations. Moreover, some augmentation combi-
nations work worse than none augmentation, which demonstrates that some augmentations hurt the
model training. We further fine-tune a model with 100% labeled graphs from MUTAG, and then feed
the augmented graphs (randomly selected from the four augmentation types with an augmentation
ratio of 0.2) to this model, finding that about 80% augmented graphs have the same labels with their
corresponding original graphs. It indicates that most augmentations are reasonable, which is one of
the reasons that GraphCL works well. While on the other hand, there are still about 20% augmented
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Figure 2: Framework of our Graph Label-invariant Augmentation (GLA) for semi-supervised graph
classification. Given an input graph, a Graph Neural Network (GNN) Encoder is employed to
encode the input graph into a graph-level representation (original representation). Then we perturb
the original representation to get multiple augmented representations. A classifier is adopted to
verify whether the augmentations are label-invariant or not. We select the “hardest” augmented
representation, i.e., the one that has the least probability of belonging to the same class as ground-
truth label/original representation for labeled/unlabeled graph, from all augmented representations
that satisfy the label-invariant constraint. On top of GNN Encoder, we build a projection head to
get projections for both original representation and label-invariant augmented representation. We
maximize the agreement between projections via a contrastive loss for all graphs and refine the
classifier via a cross-entropy loss with labeled graphs.

graphs getting different labels from the original ones. Motivated by this, we design a label-invariant
augmentation strategy for graph contrastive learning.

3.2 Label-invariant Augmentation

Framework Overview. Figure 2 illustrates the framework of our proposed Graph Label-invariant
Augmentation (GLA) for semi-supervised graph classification, which mainly consists of four com-
ponents: Graph Neural Network Encoder, Classifier, Label-invariant Augmentation, and Projection
Head. We first use GNN Encoder to get graph-level original representation for the input graph. Then
Label-invariant Augmentation, together with Classifier, is utilized to generate augmented represen-
tation from original representation under a label-invariant constraint. For an unlabeled graph, we
expect that the labels represented by original prediction and augmented prediction are the same. For a
labeled graph, we expect that the label represented by augmented prediction is the same as the ground
truth label. A cross-entropy loss is used to keep refining the classifier with labeled graphs. Finally, a
Projection Head is adopted to generate projections for contrastive loss. We use Θ = {θG, θC , θP } to
denote the trainable parameters set, where θG, θC , and θP denote the parameters of GNN Encoder,
Classifier and Projection Head, respectively. Details of each component are as follows.

Graph Neural Network Encoder. Graph Neural Network Encoder aims to get graph-level repre-
sentations for graph-structured data. It is flexible to adopt various GNNs for this part. We follow
GraphCL [40] and utilize ResGCN [4], which takes Graph Convolutional Network (GCN) [21] as the
backbone, to extract node-level representations from the input graph, and then a global sum pooling
layer is used to obtain its graph-level representation. The computation of the GCN layer with the
parameter θG is described as follows:

G(l+1) = σ(D̃− 1
2 ÃD̃− 1

2G(l)θ
(l)
G ), (1)

where Ã = A+ In is the adjacency matrix A with added self-connections, In ∈ Rn×n is the identity
matrix, D̃ is the degree matrix of Ã, and θ

(l)
G is a layer-specific trainable weight matrix. G(l) denotes

the matrix in the l-th layer, and G(0) = X . We employ σ(·) = ReLU(·) as the activation function.

Then on top of the ResGCN, we use a global sum pooling layer to get graph-level representations
from node-level representations as follows:

H = Pooling(G). (2)

Here we use HO to denote the original representation of the input graph and HA to denote the
augmented representation of the augmented graph. The augmentation method will be described in
the Label-invariant Augmentation part.

4



Classifier. Based on the graph-level representations, we employ fully-connected layers with the
parameter θC for prediction:

C(l+1) = σ(C(l) · θ(l)C ), (3)

where C(l) denotes the embeddings in the l-th layer, and the input layer C(0) = HO or C(0) = HA for
the original representation and augmented representation, respectively. In our experiments, we adopt
a 2-layer multilayer perceptron and obtain predictions CO and CA for original representation HO

and augmented representation HA, and σ(·) = ReLU(·) for the first layer and σ(·) = Softmax(·)
for the second layer as the activation function.

Label-invariant Augmentation. Instead of augmenting graph data by node dropping, edge perturba-
tion, attribute masking, or subgraph sampling as recent graph contrastive learning methods [40, 39],
we conduct the augmentation in the representation space by adding a perturbation to the original
representation HO so that we do not need to generate any graph data. In our experiment, we first
calculate the centroid of original representations for all graphs and get the average value of euclidean
distances between each original representation and the centroid as d, that is:

d =
1

N

N∑
i=1

∥HO
i − 1

N

N∑
j=1

HO
j ∥. (4)

Then the augmented representation HA is calculated by:

HA = HO + ηd∆, (5)

where η scales the magnitude of the perturbation, and ∆ is a random unit vector.

Based on the classifier formulated in Eq. (3), we define label-invariant as follows. For labeled
graphs, label-invariant means the predictions of augmented representations by the classifier are the
same as their corresponding ground-truth labels. For unlabeled graphs, label-invariant denotes that
the predictions of augmented representations and the predictions of original representations by the
classifier are the same.

To achieve the label-invariant augmentation, for each graph, we randomly generate multiple perturba-
tions and select the qualified augmentation candidates that obey the label-invariant property. Among
these qualified candidates, we choose the most difficult one, i.e., the one that has the least probability
of belonging to the same class as ground-truth label/original representation for labeled/unlabeled
graph, to increase the model generalization ability.

Projection Head. We employ fully-connected layers with the parameter θP to get projections for
contrastive learning from graph-level representations, which is shown as:

P (l+1) = σ(P (l) · θ(l)P ). (6)

We adopt a 2-layer multilayer perceptron and get projections PO and PA from original representation
HO and augmented representation HA.

Objective Function. Our objective function consists of contrastive loss and classification loss. For
contrastive loss, we utilize the normalized temperature-scaled cross-entropy loss (NT-Xent) [40] but
only keep the positive-pair part as follows:

LP =
−(PO)⊤PA

∥PO∥∥PA∥
. (7)

Maximizing the agreement between original projection and augmented projection would increase the
robustness of the model.

For classification loss, we adopt cross-entropy, which is defined as:

LC = −
c∑

i=1

(Y O
i logPO

i + Y O
i logPA

i ), (8)

where Y O is the label of the input graph, and c is the number of graph categories. We only calculate
LC for labeled graphs. The improvement of the classifier would help with the label-invariant
augmentation, which in turn benefits the training of the classifier.
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Table 1: Statistics of datasets for semi-supervised graph classification

Datasets Category #Class #Graph Avg. #Node Avg. #Edge

MUTAG Biochemical Molecules 2 188 17.93 19.79
PROTEINS Biochemical Molecules 2 1,113 39.06 72.82
DD Biochemical Molecules 2 1,178 284.32 715.66
NCI1 Biochemical Molecules 2 4,110 29.87 32.30
COLLAB Social Networks 3 5,000 74.49 2,457.78
RDT-B Social Networks 2 2,000 429.63 497.75
RDT-M5K Social Networks 5 4,999 508.52 594.87
GITHUB Social Networks 2 12,725 113.79 234.64

Combining Eq. (7) and (8), our overall objective function can be written as follows:

minΘ LP + αLC , (9)

where α is a trade-off hyperparameter to balance the contrastive loss and classification loss.

Discussion. From the perspective of information usage for model training, our proposed method is the
same as the semi-supervised learning task by recent graph contrastive learning methods [40, 39, 18,
36], which use structure information of all graphs and label information of a subset of all graphs for
model training. From the perspective of training strategy, the previous methods first pre-train a model
via a contrastive loss and then fine-tune the model for downstream tasks. While our proposed method
focuses on semi-supervised classification, we merge the pre-train and fine-tuning phases into one
integrated phase. During our training phase, the augmented samples increase the model robustness
and generalization ability, and the classifier helps to generate better augmented samples, which in
turn benefits classification performance. Theoretically, our method is well supported by MaxUp [15],
where the hardest sample augmentation can be regarded as a gradient-norm regularization.

4 Experiments

In this section, we first describe our semi-supervised settings of experiments and baseline methods
for comparison. Then we show the algorithmic performance of these methods on eight graph
benchmark datasets in a fair setting. Finally, we provide some insightful experiments to demonstrate
the effectiveness of the proposed Graph Label-invariant Augmentation (GLA) method.

4.1 Experiment Settings

Datasets. We select eight public graph classification benchmark datasets from TUDataset [27] for
evaluation, including MUTAG [10], PROTEINS [1], DD [12], NCI1 [32], COLLAB [38], RDT-B [38],
RDT-M5K [38], and GITHUB [29]. Table 1 shows the statistics of these datasets. The first four
datasets include biochemical molecules and proteins, and the last four datasets are about social
networks. The numbers of graphs in these datasets range from 188 to 12,725, the average node
numbers range from 17.93 to 508.52, and the average edge numbers are from 19.79 to 2,457.78,
indicating the diversity of these datasets.

Compared Methods and Implementation. We choose two heuristic self-supervised methods,
GAE [22] and Infomax [30], and four recent graph contrastive learning methods, MVGRL [18],
GraphCL [40], JOAOv2 [39], and SimGRACE [36], for comparison on semi-supervised graph
classification task. GAE performs adjacency matrix reconstruction by using a graph convolutional
network (GCN) [21] encoder and a simple inner product decoder. Infomax is based on global-local
representation consistency enforcement, which maximizes the mutual information between global
and local representation. MVGRL proposes to learn node and graph level representations by node
diffusion and contrasting encodings. GraphCL presents four types of graph augmentations. Based on
GraphCL, JOAOv2 is designed as a unified bi-level optimization framework to automatically select
graph augmentations. SimGRACE perturbs parameters of graph encoder for contrastive learning,
which does not require data augmentations.

For GAE, Infomax, and GraphCL, we adopt the implementations and default hyperparameter settings
provided by the source codes of GraphCL [40]. For other compared methods, we follow the
implementations and hyperparameter settings in their corresponding source codes. The compared
methods are pre-trained first and then fine-tuned for the semi-supervised graph classification task. For
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Table 2: Semi-supervised graph classification results (Accuracy % ± Standard Deviation %) on eight
benchmark datasets. The best and second-best results are highlighted in red and blue, respectively.

Label Methods MUTAG PROTEINS DD NCI1 COLLAB RDT-B RDT-M5K GITHUB Avg. Rank

GAE 83.63 ± 0.81 74.31 ± 0.33 77.33 ± 0.36 77.20 ± 0.22 77.46 ± 0.11 90.75 ± 0.17 54.81 ± 0.18 65.22 ± 0.11 75.09 5.00
Infomax 84.68 ± 1.12 74.84 ± 0.28 77.07 ± 0.45 79.49 ± 0.17 77.30 ± 0.19 90.65 ± 0.17 55.37 ± 0.20 66.45 ± 0.06 75.73 4.25
MVGRL 83.16 ± 0.98 75.56 ± 0.44 77.08 ± 0.56 72.41 ± 0.18 75.28 ± 0.12 88.20 ± 0.16 53.16 ± 0.06 64.71 ± 0.04 73.70 6.12

30% SimGRACE 83.68 ± 0.84 74.38 ± 0.30 76.27 ± 0.38 78.52 ± 0.17 78.66 ± 0.24 90.60 ± 0.17 55.54 ± 0.16 66.81 ± 0.14 75.56 4.50
GraphCL 85.20 ± 0.98 74.12 ± 0.30 78.60 ± 0.37 79.22 ± 0.09 77.90 ± 0.20 90.35 ± 0.18 56.07 ± 0.15 67.63 ± 0.13 76.14 3.38
JOAOv2 85.67 ± 0.91 75.02 ± 0.30 77.16 ± 0.30 78.69 ± 0.18 79.88 ± 0.17 91.65 ± 0.15 55.23 ± 0.14 67.96 ± 0.10 76.41 2.62
GLA (Ours) 86.32 ± 1.25 75.65 ± 0.37 77.49 ± 0.40 79.71 ± 0.13 78.78 ± 0.12 91.05 ± 0.25 55.85 ± 0.22 65.16 ± 0.19 76.25 2.12

GAE 84.12 ± 0.90 74.75 ± 0.38 78.35 ± 0.31 79.56 ± 0.16 80.47 ± 0.14 90.95 ± 0.19 55.69 ± 0.16 67.09 ± 0.13 76.37 5.88
Infomax 87.37 ± 1.11 75.38 ± 0.38 78.26 ± 0.38 80.80 ± 0.13 79.70 ± 0.11 91.50 ± 0.26 56.51 ± 0.18 67.70 ± 0.09 77.15 3.75
MVGRL 85.79 ± 0.23 76.72 ± 0.34 78.60 ± 0.46 74.09 ± 0.10 76.08 ± 0.05 88.55 ± 0.06 54.04 ± 0.06 64.89 ± 0.05 74.84 5.62

50% SimGRACE 86.32 ± 0.88 75.09 ± 0.35 78.39 ± 0.35 79.78 ± 0.24 80.48 ± 0.15 91.45 ± 0.16 56.50 ± 0.20 67.71 ± 0.16 76.97 4.50
GraphCL 87.28 ± 0.71 75.29 ± 0.29 78.73 ± 0.46 80.17 ± 0.19 80.40 ± 0.16 91.45 ± 0.25 56.83 ± 0.19 68.71 ± 0.09 77.36 3.25
JOAOv2 86.78 ± 0.79 75.74 ± 0.29 78.52 ± 0.45 80.10 ± 0.17 81.50 ± 0.18 92.10 ± 0.18 56.51 ± 0.17 68.97 ± 0.11 77.53 2.75
GLA (Ours) 90.00 ± 0.94 76.19 ± 0.28 80.22 ± 0.37 80.66 ± 0.28 80.84 ± 0.12 91.65 ± 0.22 56.63 ± 0.13 66.59 ± 0.14 77.85 2.25

GAE 87.31 ± 0.66 75.47 ± 0.38 79.37 ± 0.36 79.78 ± 0.17 80.78 ± 0.12 91.50 ± 0.19 56.25 ± 0.16 68.42 ± 0.14 77.36 5.62
Infomax 88.33 ± 0.73 75.92 ± 0.38 79.28 ± 0.33 82.85 ± 0.16 81.04 ± 0.12 92.15 ± 0.13 56.63 ± 0.18 68.88 ± 0.14 78.14 3.62
MVGRL 87.95 ± 0.35 77.81 ± 0.35 79.51 ± 0.34 74.43 ± 0.08 76.42 ± 0.08 88.65 ± 0.23 54.40 ± 0.11 65.00 ± 0.08 75.52 5.25

70% SimGRACE 87.37 ± 0.71 76.52 ± 0.36 78.90 ± 0.29 81.80 ± 0.15 81.88 ± 0.23 92.45 ± 0.13 56.58 ± 0.09 68.19 ± 0.15 77.96 4.12
GraphCL 88.33 ± 0.86 76.36 ± 0.25 79.03 ± 0.29 82.50 ± 0.13 81.08 ± 0.17 91.85 ± 0.14 56.91 ± 0.17 69.19 ± 0.08 78.16 3.62
JOAOv2 87.78 ± 0.76 76.46 ± 0.27 79.11 ± 0.38 81.70 ± 0.26 82.16 ± 0.17 92.20 ± 0.19 56.67 ± 0.16 69.96 ± 0.11 78.26 3.25
GLA (Ours) 91.05 ± 0.86 77.45 ± 0.38 80.71 ± 0.29 83.24 ± 0.14 81.54 ± 0.14 91.70 ± 0.17 57.01 ± 0.14 67.11 ± 0.18 78.73 2.50
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Figure 3: Performance gain and label-invariant rates. (a) demonstrates the average performance gains
on eight datasets with more labeled samples produced by GraphCL, JOAOv2, and GLA. (b) shows
the label-invariant rate distributions of different augmentation methods over eight datasets. (c) shows
the label-invariant rates of our GLA over different semi-supervised settings.

our proposed Graph Label-invariant Augmentation (GLA) method,1 we perform contrastive learning
and graph classifier learning synchronously. The implementation details of GLA are as follows. We
implement the networks based on GraphCL [40] by PyTorch, set the magnitude of perturbation η to
1.0, and the weight of classification loss α to 1.0, which is the same with GraphCL. We adopt Adam
optimizer [20] to minimize the objective function in Eq. (9).

Evaluation Protocol. We evaluate the models with 10-fold cross-validation. We randomly shuffle a
dataset and then evenly split it into 10 parts. Each fold corresponds to one part of data as the test
set and another part as the validation set to select the best epoch, where the rest folds are used for
training. We select 30%, 50%, 70% graphs from the training set as labeled graphs for each fold, then
conduct semi-supervised learning. For a fair comparison, we use the same training/validation/test
splits for all compared methods on each dataset, and report the average accuracy across 10 folds.

4.2 Algorithmic Performance

Table 2 shows the prediction results of two self-supervised and five graph contrastive learning
methods under the semi-supervised graph classification setting with 30%, 50%, and 70% label
ratios on eight benchmark datasets, where the best and second-best results are highlighted in red
and blue, respectively, and the last column is the average rank score across all datasets. Although
different algorithms achieve their best performances on different datasets, the contrastiveness-based
methods perform better than the non-contrastiveness-based methods in general, which indicates
the effectiveness of the graph augmentation. Our proposed GLA achieves the best ranking scores
under all 30%, 50%, and 70% label ratios in experiments, the second-best average performance

1Our code is available at https://github.com/brandeis-machine-learning/GLA
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under 30% label ratio, and the best average performance under 50% and 70% label ratios. In our
algorithmic design, we employ the decision boundary learned from the labeled samples to verify the
label-invariant augmentation. It is worthy to note that the quality of the decision boundary depends
on the number of labeled samples. We conjecture that a 30% label ratio is not sufficient enough to
learn a high-quality decision boundary, resulting in our GLA performing slightly worse than JOAOv2
on average. With more labeled samples, our GLA delivers the best average performance over other
competitive methods. Different from other graph contrastive learning methods, our augmentation
method aims to generate label-invariant augmentations, which decreases the possibility of getting
“bad” augmentations, thus resulting in better performance.

Besides the general comparison in Table 2, we dive into details and discover several interesting
findings. Figure 3(a) demonstrates the average performance gains on eight datasets with more labeled
samples produced by GraphCL, JOAOv2, and our GLA, the top three methods in our experiments.
In addition to seeing that the increased performance of all three methods well aligns with more
labeled samples, our GLA receives more performance gains than GraphCL and JOAOv2. By such
comparisons, we can roughly eliminate the effect of more labeled samples and attribute the extra
gains to the label-invariant augmentation. It also verifies our aforementioned conjecture that the
high-quality decision boundary is beneficial to the label-invariant augmentation, further bringing in
the performance boost. Moreover, we further verify our motivation by checking the label-invariant
property of different contrastive methods. While we do not have a ground truth classifier, we use
fine-tuned classifiers in the representation spaces learned by these contrastive methods with a 100%
label ratio as the surrogates of the ground truth classifier. Then we use these classifiers to assess
how many of the augmented representations belong to the same class as their corresponding original
representations. Figure 3(b) presents the distributions of label-invariant rates across eight baseline
datasets for all graph contrastive methods. As our GLA trained under different label ratios would
generate different augmentations, we put the results of GLA’s label-invariant rates under 30%, 50%,
and 70% label ratios together for plotting. We can see that GLA has the highest label-invariant rates
on average compared to other methods. It is also noticed that the label-invariant rates of different
contrastive methods keep the same ranking with the performance in Table 2 (the last column), which
verifies our motivation for designing a label-invariant augmentation strategy. Moreover, we further
demonstrate our GLA’s label-invariant rates along with different label ratios in Figure 3(c), which
accords with our expectation that more labeled samples lead to a high-quality decision boundary and
further promote the label-invariant rate in GLA.

4.3 In-depth Exploration

We further explore GLA in terms of negative pairs, augmentation space, and strategy.

Negative Pairs. The existing graph contrastive learning methods treat the augmented graphs from
different source samples as negative pairs and employ the instance-level discrimination on these
negative pairs. Since these methods separate the pre-train and fine-tuning phases, the negative
pairs contain the augmented samples from different source samples but with the same category
in the downstream tasks. Here we explore the effect of negative pairs on our GLA. Figure 4(a)
shows the performance of our GLA with and without negative pairs on four datasets. We can see
the performance with negative pairs significantly drops compared with our default setting without
negative pairs, which behaves consistently on all four datasets. Different from the existing graph
contrastive methods, our GLA integrates the pre-train and fine-tuning phases, where the negative
pairs designed in a self-supervised fashion are not beneficial to the downstream tasks. This finding is
also in accord with the recent studies [7, 16] in the visual contrastive learning area.

Augmentation Space. Different from the most graph contrastive learning methods that directly
augment raw graphs, our GLA conducts the augmentation in the representation space, as we believe
the raw graphs can be mapped into the representation space, and this space is much easier to augment
than the original graph space. In Eq. (5), we design our representation augmentation with a random
unit vector scaled by the magnitude of the perturbation η. Figure 4(b,c,e,f) show the performance of
our GLA with different values of η on four datasets, where we provide GraphCL and GraphCL+Label-
Invariant as references. GraphCL+Label-Invariant takes the augmented graph from GraphCL and
filters the augmented samples that violate the label-invariant property by the downstream classifier.
Comparing the two references, we can see that the label-invariant property benefits not only our GLA
but also other contrastive methods in most cases. For our GLA, although the η values corresponding
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Figure 4: In-depth exploration of GLA. (a) contrastive loss with/without negative pairs, (d) perfor-
mance of different label-invariant augmentation strategies, (b,c,e,f) performance of magnitude of
perturbation η on different datasets under 50% label ratio.

to the best performance vary on different datasets, the default setting with η = 1 delivers satisfying
performance in general, which outperforms GraphCL+Label-Invariant and indicates the superior of
the representation augmentation over the raw graph augmentation. Augmentation Strategy. In the
representation space, there might exist multiple qualified candidates that obey the label-invariant
property. Our GLA chooses the most difficult augmentation for the model. Here we demonstrate
the performance of different augmentation strategies among qualified candidates, including the most
difficult augmentation, random augmentation, and the easiest augmentation in Figure 4(d), where the
random augmentation can be regarded as GraphCL+Label-Invariant. We can see that the most difficult
augmentation increases the model generalization and indeed brings in significant improvements over
the other two ways. This also provides good support for our representation augmentation, where
we can find the most difficult augmentation in the representation space, but it is difficult to directly
generate the raw graphs that are challenging to the downstream classifier.

5 Conclusion

In this paper, we consider the graph contrastive learning problem. Different from the existing
methods from the pre-train perspective, we propose a novel Graph Label-invariant Augmentation
(GLA) algorithm which integrates the pre-train and fine-tuning phases to conduct the label-invariant
augmentation in the representation space by perturbations. Specifically, GLA first checks whether the
augmented representation obeys the label-invariant property and chooses the most difficult sample
from the qualified samples. By this means, GLA achieves the contrastive augmentation without
generating any raw graphs and also increases the model generalization. Extensive experiments in
the semi-supervised setting on eight benchmark graph datasets demonstrate the effectiveness of our
GLA. Moreover, we also provide extra experiments to verify our motivation and explore the in-depth
factors of GLA in the effect of negative pairs, augmentation space, and strategy. Limitations. The
performance of our method relies on the quality of the decision boundary indicated by the downstream
classifier. Therefore, our method requires graph label information from downstream tasks to help
with model training. Potential Negative Societal Impacts. The problem addressed in this paper is
well-defined and the experiments are based on public datasets. As far as we can see, it does not
involve societal issues.
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