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Abstract

When taking photos under an environment with insufficient light, the exposure
time and the sensor gain usually require to be carefully chosen to obtain images
with satisfying visual quality. For example, the images with high ISO usually
have inescapable noise, while the long-exposure ones may be blurry due to camera
shake or object motion. Existing solutions generally suggest to seek a balance
between noise and blur, and learn denoising or deblurring models under either full-
or self-supervision. However, the real-world training pairs are difficult to collect,
and the self-supervised methods merely rely on blurry or noisy images are limited
in performance. In this work, we tackle this problem by jointly leveraging the
short-exposure noisy image and the long-exposure blurry image for better image
restoration. Such setting is practically feasible due to that short-exposure and long-
exposure images can be either acquired by two individual cameras or synthesized by
a long burst of images. Moreover, the short-exposure images are hardly blurry, and
the long-exposure ones have negligible noise. Their complementarity makes it fea-
sible to learn restoration model in a self-supervised manner. Specifically, the noisy
images can be used as the supervision information for deblurring, while the sharp
areas in the blurry images can be utilized as the auxiliary supervision information
for self-supervised denoising. By learning in a collaborative manner, the deblurring
and denoising tasks in our method can benefit each other. Experiments on synthetic
and real-world images show the effectiveness and practicality of the proposed
method. Codes are available at https://github.com/cszhilu1998/SelfIR.

1 Introduction

It is a common yet challenging task to acquire visually appealing photos with appropriate brightness
under a low light environment. Traditional ways to increase the image brightness include enlarging
the aperture, adopting a higher ISO, and reducing the shutter speed (i.e., lengthening exposure time).
As for smartphone cameras with fixed aperture, brightness can only be adjusted by setting the sensor
gain (i.e., ISO) and exposure time. Nonetheless, they are negatively correlated to maintain the
appropriate brightness level of the image, i.e., the shorter-exposure image generally adopts a higher
ISO, while the longer-exposure image usually has a lower ISO. Moreover, high ISO configuration
introduces inevitable and complex noise due to the limited photon amount and the process of camera
image signal processing (ISP) pipeline, while long-exposure is prone to produce blurry images due to
the camera shake and scene variations. Consequently, photographers have to make a compromise
between noise and blur.
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Recent advances in image restoration make it possible to further improve the visual quality of the
acquired low light images by leveraging deep image denoising or deblurring networks. Taking
supervised denoising as an example, synthetic or real-world noisy-clean image pairs are required to
train the deep networks [9, 18, 47–49, 52, 53]. However, the models trained with synthetic training
pairs are hard to generalize to real noisy images, and the real-world clean reference images are usually
obtained by averaging hundreds of noisy ones [1] or with complicated capturing and processing
procedure [29], making the collection of large scale real-world training datasets laborious, expensive,
and time-consuming. Such problems greatly limit the deployment of models on more devices with
different noise distributions. Alternatively, a surge of self-supervised image denoising methods [11,
13,15–17,26,27,37,39,41,43,55,57] have been developed to avoid the collection of ground-truth (GT)
training images, yet are limited in handling complex real-world image noise. Another possible solution
is to perform motion deblurring on long-exposure images. Early explorations [8, 20, 31, 34, 35, 45]
are mainly given to spatially uniform deblurring caused by camera motion. Recently, the proposal
of non-uniform datasets (e.g., GoPro [25], REDS [24], HIDE [36], RealBlur [32], etc.) has greatly
boosted the research of deblurring in more practical scenes involving both camera shake and object
motion [6, 25, 38, 50, 51].

In this paper, we suggest to improve low light imaging by jointly leveraging the short-exposure
noisy and long-exposure blurry images. First, such setting is practically feasible. For example,
multiple cameras have been equipped in modern smartphones, which can be designed to acquire
short-exposure and long-exposure images, respectively. Moreover, one can also synthesize a pair
of blurry and noisy images from a long burst of images captured by a camera. Second, the noisy
and blurry images convey complementary information, which is beneficial to improve restoration
performance and makes self-supervised image restoration (SelfIR) possible. We note that several
methods [5, 14, 23, 46] have been suggested to combine the blurry image with their noisy counterpart
for better image restoration, yet it remains uninvestigated under the self-supervised regime.

We further present a SelfIR model with blurry and noisy pairs. Even though the blurry and noisy
images are both disturbed, the short-exposure images taken with high ISO are hardly blurry, while
the long-exposure images taken with low ISO are generally near noise-free. Thus, the long-exposure
and short-exposure images can be used to provide some supervision information for each other. On
the one hand, the noisy image can serve as an alternative of sharp image to supervise deblurring with
negligible performance degradation. On the other hand, the static regions in long-exposure images are
noise-free and sharp, which in turn can provide auxiliary supervision information for image denoising.
Taking these two aspects into account, we present a collaborative learning (co-learning) method
termed SelfIR for deblurring and denoising, which is effective in leveraging the complementary
information of long- and short-exposure images and can be learned in a self-supervised manner.

Extensive experiments on synthetic data are conducted to evaluate our SelfIR. Both quantitative
and qualitative results show that SelfIR outperforms the state-of-the-art self-supervised denoising
methods, as well as the supervised denoising and deblurring counterparts. To further verify the
practicality of our SelfIR model, we have also collected a set of 61 real-world blurry and noisy
pairs using smartphones. Since there are no corresponding ground-truth images for calculating
full-reference image quality assessment (IQA) metrics, we evaluate the restoration results using
no-reference IQA metrics. The results show that our method also performs favorably against the
competing methods.

To sum up, the main contributions of this work include:

• We take a step forward in leveraging blurry and noisy image pairs for image restoration.
Going beyond leveraging their complementarity in improving restoration performance, we
show that it can also be utilized for self-supervised learning of the restoration model.

• A self-supervised image restoration model (SelfIR) is proposed, where short-exposure
images serve as supervision for the corresponding deblurring task, while the sharp regions
in long-exposure images provide auxiliary supervision for self-supervised denoising.

• Extensive experiments on both synthetic and real-world image pairs show that our SelfIR
performs favorably against the state-of-the-art self-supervised denoising methods, as well as
the baseline supervised deblurring and denoising methods.
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2 Related Work

In this section, we briefly review burst image denoising and deblurring, as well as self-supervised
image denoising and deblurring methods. In addition, we recommend [7] for a comprehensive
introduction to the relevant mobile computational photography.

Burst Image Denoising and Deblurring. In comparison with a single image, burst images can
provide more information that is beneficial for image restoration. Hasinoff et al. [10] utilize an
FFT-based alignment algorithm and a hybrid 2D/3D Wiener filter to denoise and merge a burst of
underexposed frames for low-light photography. KPN [21] predicts spatially variant kernels for every
burst noisy image to merge them. BPN [44] extends the KPN method with a basis prediction network
and achieves larger denoising kernels under certain computing resource constraints. Aittala et al. [2]
take both noise and blur into account, and restore sharp and noise-free images from burst images in
an order-independent manner.

Self-Supervised Image Denoising and Deblurring. Recently, self-supervised learning has drawn
upsurging attention in low-level vision. DIP [39] utilizes the image prior implicitly captured by
the network structure to repair corrupted images. SelfDeblur [30] respectively models the deep
priors of clear image and blur kernel for self-supervised deblurring. For these methods, the networks
are required to re-train from scratch for each test image, which is less efficient, especially for
mobile or edge devices. Noise2Noise [17] demonstrates that noisy pairs with mutually independent
noise can be used to train a denoising network, opening the door to self-supervised denoising.
Neighbor2Neighbor [11] utilizes a random neighbor sub-sampler to generate the training pairs from
noisy images themselves. In addition, some works [13, 15, 16, 41, 43] elaborately design blind-
spot networks to avoid learning the identity mapping for self-supervised denoising. However, the
self-supervised denoising methods are limited in handling complex image noise. In this work, we
utilize the complementarity of long-exposure blurry and short-exposure noisy images for better
self-supervised image restoration.

3 Proposed Method

In this section, we first show the feasibility of taking noisy images as the supervision of deblurring.
Then, we introduce the sharp area detection method in long-exposure images and auxiliary loss for
self-supervised denoising. Finally, we present the proposed co-learning framework SelfIR.

3.1 Deblurring with Noisy Image

When taking long-exposure photos, the shake of the camera and the motion of objects usually lead to
a blurry image IB, which can be formulated by,

IB = K(I) +NB, (1)

where I is the latent clear image, K denotes the blur process with non-uniform kernels, NB represents
the low-intensity noise. Existing supervised deblurring methods generally utilize a deep neural
network (denoted by DB) to estimate I from IB. For training the parameters of DB, which is denoted
by ΘB, the optimization objective can be defined by,

Θ∗
B = argmin

ΘB
EIB,I [L (DB(IB; ΘB), I)] , (2)

where L denotes the loss functions for supervised learning. However, collecting clear images is
troublesome in real-world scenes. Inspired by Noise2Noise [17], we show that the noisy short-
exposure image can be a substitution of the latent clear image to supervise the task of deblurring.

When taking short-exposure photos under low light environment, the limited photon amount and
inherent defects of camera ISP make the images noisy (denoted by IN ), which can be formulated by,

IN = I+NN , (3)

where NN represents the noise (with much higher intensity than NB). When using the noisy image
IN as the supervision of deblurring, the optimization of ΘB can be expressed as,

Θ∗
B = argmin

ΘB
EIB,IN [L (DB(IB; ΘB), IN )] = argmin

ΘB
EIB

[
EIN |IB [L (DB(IB; ΘB), IN )]

]
. (4)
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Suppose that the loss function L in Eqn. (4) is the ℓ2 loss, we have,

EIN |IB [L (DB(IB; ΘB), IN )] = EIN |IB
[
∥DB(IB; ΘB)− IN ∥22

]
= EI,NN |IB

[
∥DB(IB; ΘB)− (I+NN )∥22

]
= EI|IB

[
∥DB(IB; ΘB)− I∥22

]
−

2EI,NN |IB
[
(DB(IB; ΘB)− I)⊤NN

]
+

ENN |IB
[
∥NN ∥22

]
,

(5)

where ENN |IB
[
∥NN ∥22

]
can be regarded as a constant and be safely discarded from Eqn. (5). Further,

assume that NN is zero-mean, NN and I are independent, we can get,

EI,NN |IB
[
(DB(IB; ΘB)− I)⊤NN

]
= 0. (6)

In this case, the optimal solution Θ∗
B in Eqn. (4) and that in Eqn. (2) are the same. Thus, it is feasible

to utilize noisy short-exposure images instead of clear ones as the supervision of deblurring.

3.2 Denoising with Long-Exposure Image

(a) Blurry image (b) Blurry areas

(d) Approximately sharp areas(c) Blurry areas with ringing artifacts

Figure 1: A blurry image example where the
blur is non-uniform in (a). It includes some
common blurry areas (b), severe blurry areas
with ringing artifacts (c), and some approxi-
mately sharp areas (d).

Self-supervised denoising makes it possible to re-
move the noise without clean image supervision,
but may give rise to obvious performance degrada-
tion, especially when handling complex real-world
noises. Here we propose to alleviate this prob-
lem by introducing some extra supervision from
the long-exposure counterpart. Obviously, taking
the whole long-exposure image as supervision will
bring adverse effects, making the results to be
blurry. Nonetheless, it is worth noting that, the blur
process K in Eqn. (1) is generally non-uniform,
and sometimes not all areas are blurry. As shown
in Fig. 1(d), there exist some approximately sharp
regions in the long-exposure image, which can pro-
vide partial supervision information that benefits
self-supervised denoising.

Therefore, it is crucial to pinpoint the sharp areas in
the long-exposure image. Otherwise, we would pre-
fer to go without sharp areas than accept a shoddy
option, as misjudgments of sharp areas will lead to
worse denoising results. However, without any discriminative clues, it is very likely to misjudge
the sharp areas. Considering that IN is nearly non-blurry due to the short exposure time, it may
be a reference for sharp area detection. To avoid noise interference, we pre-process IN with a self-
supervised denoising model, and take the result ĨN to help detect sharp regions in the corresponding
blurry image IB.

Specifically, we first divide IB and ĨN into N non-overlapping patches. For each patch pair InB and
ĨnN (1 ≤ n ≤ N ), our goal is to obtain a mask mn ∈ {0, 1} that indicates whether InB is a sharp patch.
Since ĨN is nearly non-blurry, when some severe motion blurs exist in InB, the difference between InB
and ĨnN in textures and edges should be evident. Taking the above into account, we adopt a similarity
metric s to detect the areas with severe motion blurs, i.e.,

mn = sgn(max(0, s(InB, Ĩ
n
N )− ϵs)), (7)

where structural similarity (SSIM) [40] is utilized for the similarity metric s , ϵs denotes the threshold,
while max(a, b) and sgn(·) denote the maximum and sign function, respectively.

However, the initial denoising result ĨN may be over-smooth, in other words, Eqn. (7) may fail when
facing some mildly blurred regions in InB. Therefore, we further measure the difference in variance
between InB and ĨnN . When the variance of InB is greater than that of ĨnN , we consider that InB is
potential to be a sharp patch. It should be noted that the difference in variance is not suitable for
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Figure 2: Overview of our proposed SelfIR framework. (a) Training phase of SelfIR. Sub-sampled
blurry image g1(IB) and noisy image g1(IN ) are taken as the inputs. g2(IN ) is used for calculating
the reconstruction loss Lrec (see Eqn. (10)) and regularization loss Lreg (see Eqn. (11)), while g1(IB)
is taken for calculating auxiliary loss (see Eqn. (9)). (b) Example of neighbor sub-sampler. In each
2× 2 cell, two pixels are randomly selected for respectively composing the neighboring sub-images.
(c) Testing phase of SelfIR. The blurry and noisy images can be directly taken for restoration.

detecting some severely blurry areas with ringing artifacts (see Fig. 1(c)). In such blurry regions,
the variance of InB may also be greater than that of ĨnN . When synthesizing blurry images, some
works [24, 42, 56] remove the artifacts by interpolating the frames before averaging the sharp images.
However, the artifacts also exist in real-world blurry images, especially in areas with flickering lights.
Therefore, we still take the ringing artifacts into consideration in this work.

As a result, we jointly use the SSIM and variance measure for judging sharp regions, mn can be
formulated as,

mn = sgn(max(0, s(InB, Ĩ
n
N )− ϵs)) ∗ sgn(max(0, var(InB)− var(̃InN )− ϵv )), (8)

where var(·) and ϵv denote the variance function and the threshold, respectively. ϵs and ϵv are set to
0.99 and 1e-5 when color intensity values of InB and ĨnN are normalized to [0, 1]. Defining the final
output image as Î, the auxiliary loss function for denoising can be denoted as,

Laux (̂I, IB) =
∑N

n=1
mn∥În − InB∥22. (9)

3.3 Co-Learning of Deblurring and Denoising

As illustrated in Secs. 3.1 and 3.2, the noisy images can provide effective supervision information
for deblurring, while the blurry images can also provide auxiliary supervision for self-supervised
denoising. In other words, we can learn to deblur or denoise without additional clear and clean
ground-truths. However, learning them independently will lead to limited performance. As some
works [5, 14, 23, 46] have suggested, better restoration performance can be obtained by incorporating
blurry with noisy images. Thus, it should be further considered to achieve self-supervised image
restoration that takes two disturbed images as input. In this section, we delicately design the self-
supervised model SelfIR that learns from both deblurring and denoising tasks in a collaborative
learning manner.

For training SelfIR, it is required to avoid the trivial solution when taking both blurry and noisy
images as the input. For example, when taking noisy images for supervising deblurring, the model
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may simply output the noisy images instead of learning the deburring results. Fortunately, Neigh-
bor2Neighbor [11] shows the noises in two sub-sampled images (i.e., g1(IN ) and g2(IN ), see
Fig. 2(b)) from noisy image IN are almost independent. Therefore, they can be respectively taken as
the input and target for training the denoising subtask in a self-supervised manner. Simultaneously,
combining the derivation in Eqn. (5), g1(IB) and g2(IN ) can be respectively taken as the input and
target to train the deblurring subtask. Therefore, our SelfIR can take a step forward and deliver both
g1(IB) and g1(IN ) (i.e., {g1(IB, g1(IN )}) into the restoration network D, as shown in Fig. 2(a). The
sub-sampled image g2(IN ) is taken for calculating reconstruction loss Lrec , which can be written as,

Lrec = ∥D(g1(IB), g1(IN ))− g2(IN )∥22. (10)

We also calculate regularization loss Lreg similar to [11],

Lreg = ∥D(g1(IB), g1(IN ))− g2(IN )− (g1(D̂(IB, IN ))− g2(D̂(IB, IN )))∥22, (11)

where D̂ has same parameters with D but has no gradient for back-propagation. Moreover, the sharp
areas in g1(IB) can provide auxiliary supervision for the model learning and the performance can
be further improved. Specifically, we calculate auxiliary loss Laux (D(g1(IB), g1(IN ))), g1(IB))

in Eqn. (9). For obtaining the mask mn , we replace IB and ĨN in Eqn. (8) with g1(IB) and
D̂(g1(IB), g1(IN )), respectively. Finally, the learning objective of parameters ΘD with the co-
learning manner can be formulated as,

Θ∗
D = argmin

ΘD

EIB,IN (Lrec + λregLreg + λauxLaux ), (12)

where λreg and λaux are hyper-parameters for balancing the loss terms.

4 Experiments

In this section, we first describe the dataset configuration and the training / evaluation protocols in
detail. Then, both the quantitative and qualitative results on synthetic and real-world images are given
for comprehensive evaluation.

4.1 Implementation Details

Synthetic Datasets. For synthesizing blurry images, early methods [23, 46] convolve sharp images
with simulated blur kernels, which is quite different from the real-world blur model. Recently, the
GoPro dataset2 [25] offers a more realistic way to synthesize blurry images, which has been widely
adopted for motion deblurring tasks [6, 25, 38, 50, 51]. In the dataset, although slight inherent noise
exists in the sharp video frames that are captured by a high-speed camera (i.e., GoPro Hero4 Black),
it has little effect on model training and evaluation. We directly regard the sharp images as clean
images. The blurry image is generated by averaging consecutive sharp frames, which can better
simulate both camera shake and object motion. Thus, we can get the blurry-clear pairs as IB and I,
respectively. For synthesizing the noisy image IN , we consider three noise distributions: 1) Gaussian
noise with σ ∈ [5/255, 50/255], 2) Poisson noise with λ∈ [5, 50], and 3) sensor noise [4]. Please
refer to the supplementary material for the noise formulations. Experiments are conducted in both
sRGB and raw-RGB spaces. For the sRGB space, we add Gaussian or Poisson noise to the sRGB
sharp images. While for the raw-RGB space, the more complex sensor noise is added to the sharp
raw-RGB images, and the blurry images are also converted back to the raw-RGB space through the
unprocessing [4] pipeline. Finally, there are 2,103 image pairs for training, and we use the remaining
1,111 pairs for testing.

Real-world Datasets. Furthermore, we have also collected 61 real-world blurry and noisy raw-RGB
pairs with Huawei P40 smartphones in the professional camera mode. In particular, the blurry images
are captured with a low ISO and long exposure time, while the corresponding noisy images are
captured with a high ISO and short exposure time in the same scene. Please refer to the supplementary
material for detailed collection process. Due to the limited amount of real-world images, we use 30
pairs to fine-tune the model pre-trained on raw-RGB images with synthetic sensor noise, and take the
remaining 31 pairs for evaluation.

2https://seungjunnah.github.io/Datasets/gopro.html
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Table 1: Quantitative results on synthetic sRGB images.

Method Gaussian σ ∈ [5/255, 50/255]
PSNR↑ / SSIM↑ / LPIPS↓

Poisson λ ∈ [5, 50]
PSNR↑ / SSIM↑ / LPIPS↓

Supervised
Deblurring

BaselineB 28.24 / 0.8561 / 0.191
DeepDeblur [25] 30.04 / 0.9015 / 0.133

Supervised
Denoising

BaselineN 34.91 / 0.9360 / 0.098 33.15 / 0.9225 / 0.126
DnCNN [52] 34.63 / 0.9308 / 0.121 32.45 / 0.9084 / 0.128

Supervised IR BaselineR 36.15 / 0.9534 / 0.070 34.74 / 0.9454 / 0.084

Self-Supervised
Denoising

N2N [17] 34.88 / 0.9354 / 0.100 33.09 / 0.9216 / 0.129
N2V [13] 33.09 / 0.9180 / 0.115 31.81 / 0.8999 / 0.137

Laine19-mu [15] 33.61 / 0.9227 / 0.104 32.29 / 0.9091 / 0.131
Laine19-pme [15] 34.76 / 0.9322 / 0.086 32.77 / 0.9147 / 0.116

DBSN [43] 33.72 / 0.9224 / 0.111 31.46 / 0.8883 / 0.144
R2R [27] 33.74 / 0.9223 / 0.100 30.05 / 0.7649 / 0.230

Neighbor2Neighbor [11] 34.29 / 0.9271 / 0.085 32.68 / 0.9160 / 0.111
Blind2Unblind [41] 34.69 / 0.9353 / 0.107 33.09 / 0.9216 / 0.132

Ours SelfIR 35.74 / 0.9499 / 0.076 34.27 / 0.9404 / 0.092

Training Details. Following [11, 15, 17], we adopt a U-Net [33] architecture as our restoration
network, where two encoders are respectively deployed to the blurry and noisy input images for
better domain-specific feature extraction, and then blurry and noisy features are fused in the decoder
part. Detailed architecture is given in the supplementary material. During training, the batch size
is set to 16 and the patch size is 128× 128. Adam optimizer [12] with β1 = 0.9 and β2 = 0.999 is
used to train the network for 200 epochs. The learning rate is initially set to 3× 10−4 for synthetic
experiments and 1× 10−4 for real-world experiments. And it reduces by half every 50 epochs. For
the hyper-parameters in Eqn. (12), λaux is set to 2, λreg is set to 2 and 4 for experiments in sRGB
space and raw-RGB space, respectively. All experiments are conducted with PyTorch [28] on an
Nvidia GeForce RTX 2080Ti GPU.

Evaluation Configurations. We convert all raw-RGB results to sRGB space through post-processing
pipeline, and the quantitative metrics are computed in the sRGB space. For the results of synthetic
experiments, we take peak signal to noise ratio (PSNR), structural similarity (SSIM) [40] and learned
perceptual image patch similarity (LPIPS) [54] as evaluation metrics. For the results of real-world
experiments, due to the lack of ground-truth images, we utilize no-reference IQA metrics (i.e.,
NIQE [22], NRQM [19], and PI [3]) to evaluate the generated images.

4.2 Experimental Results in sRGB Space

To assess our proposed SelfIR, we build several baseline methods for comparison, including 1) a
supervised deblurring baseline (denoted by BaselineB), 2) a supervised denoising baseline (denoted
by BaselineN ), 3) a supervised image restoration baseline which takes both blurry and noisy images
as input (denoted by BaselineR), and 4) Neighbor2Neighbor [11] since the denoising part of our
co-learning framework is based on it. Note that the network structure is not the focus of this paper,
so we deploy a simple U-Net [33] architecture for our restoration network D and the first three
baseline methods. Besides, we choose two classical supervised methods (i.e., DeepDeblur [25]
and DnCNN [52]) for comparison. Self-supervised denoising methods (e.g., N2N [17], N2V [13],
Laine19 [15], DBSN [43], R2R [27], and Blind2Unblind [41]) are also compared. For DeepDe-
blur [25], we use the officially released model for testing. For other methods, the models are retrained
with our synthetic images for a fair comparison.

The quantitative results of synthetic experiments on Gaussian and Poisson noise are given in
Tab. 1. One can see that our SelfIR outperforms all other methods except the supervised IR model
(BaselineR), which can be seen as the upper limit of the restoration performance with the utilized
U-Net architecture and the blurry-noisy pair input. In comparison to the self-supervised denoising
baseline Neighbor2Neighbor [11], 1.45 dB and 1.59 dB PSNR gains are obtained by our SelfIR
on Gaussian and Poisson noise, respectively. Even compared to the supervised denoising baseline
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Noisy Image BaselineN N2V [13] Laine19-pme [15] DBSN [43] R2R [27]

Blurry Image BaselineB Neighbor2Neighbor [11] Blind2Unblind [41] SelfIR (Ours) BaselineR

Figure 3: Visual comparison on Gaussian noise. The texts in our result are sharper and clearer. The
proposed SelfIR is almost comparable to supervised BaselineR, which can be seen as the upper limit
of the restoration performance with the utilized U-Net architecture and the blurry-noisy pair input.

Noisy Image BaselineN N2V [13] Laine19-pme [15] DBSN [43] R2R [27]

Blurry Image BaselineB Neighbor2Neighbor [11] Blind2Unblind [41] SelfIR (Ours) BaselineR

Figure 4: Visual comparison on Poisson noise. In terms of the visual result, SelfIR combines the
advantages of supervised denoising BaselineN and deblurring BaselineB.

model (BaselineN ), our method also improves the PSNR index by 0.83 dB and 1.12 dB. Due to the
severely ill-posed nature of deblurring, SelfIR brings a PSNR gain by more than 6 dB comparing to
the supervised deblurring baseline model (BaselineB). The results clearly show that the blurry images
can indeed provide beneficial features for denoising, and so do the noisy images for deblurring.

The qualitative results are shown in Figs. 3 and 4. One can see that our results are sharper and clearer
than other denoising or deblurring methods. In terms of visual quality, the proposed SelfIR is almost
comparable to the supervised image restoration model (BaselineR), and combines the advantages
of supervised denoising BaselineN and deblurring BaselineB. More results can be found in the
supplemental material.

4.3 Experimental Results in Raw-RGB Space

Tab. 2 shows the quantitative results of synthetic and real-world experiments on raw-RGB images.
For synthetic experiments with more complex and realistic sensor noise [4], all models are retrained
with our synthetic images. Our SelfIR achieves a 1.69 dB PSNR gain in comparison with Neigh-
bor2Neighbor [11]. For evaluation on real-world images, we directly use the models of N2N [17],
Laine19-pme [15], R2R [27] and all supervised methods, which are pre-trained for sensor noise.
For SelfIR and other self-supervised methods, we fine-tune the pre-trained model on our real-world
training set. The PI [3] metric of SelfIR is improved by 0.55 on real-world testing images through
fine-tuning. And the results on no-reference IQA show that our method is very competitive in
comparison with the competing methods on real-world images. The visual results are given in the
supplemental material.
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Table 2: Quantitative results on synthetic and real-world raw-RGB images.

Method Sensor Noise [4]
PSNR↑ / SSIM↑ / LPIPS↓

Real-World Images
NIQE↓ / NRQM↑ / PI↓

Supervised
Deblurring

BaselineB 28.14 / 0.8547 / 0.162 6.26 / 5.04 / 5.62
DeepDeblur [25] 29.75 / 0.8881 / 0.115 6.76 / 4.78 / 6.00

Supervised
Denoising

BaselineN 34.52 / 0.9461 / 0.053 5.69 / 4.85 / 5.43
DnCNN [52] 33.81 / 0.9325 / 0.076 6.05 / 5.10 / 5.48

Supervised IR BaselineR 36.10 / 0.9574 / 0.035 5.54 / 5.14 / 5.18

Self-Supervised
Denoising

N2N [17] 34.67 / 0.9472 / 0.053 6.10 / 4.93 / 5.59
N2V [13] 31.39 / 0.9227 / 0.076 5.82 / 5.52 / 5.17

Laine19-mu [15] 32.74 / 0.9304 / 0.073 5.87 / 5.67 / 5.10
Laine19-pme [15] 33.28 / 0.9119 / 0.095 7.26 / 6.03 / 5.62

DBSN [43] 33.59 / 0.9389 / 0.060 6.57 / 5.48 / 5.54
R2R [27] 32.21 / 0.8807 / 0.117 5.63 / 5.63 / 4.99

Neighbor2Neighbor [11] 32.82 / 0.9275 / 0.087 6.47 / 5.86 / 5.33
Blind2Unblind [41] 33.30 / 0.9380 / 0.061 5.28 / 5.22 / 5.04

Ours SelfIR 34.51 / 0.9440 / 0.053 5.48 / 5.83 / 4.86

Table 3: Results of deblurring with clear images and noisy images as the supervision.

Supervision
Information

Gaussian σ ∈ [5/255, 50/255]
PSNR↑ / SSIM↑ / LPIPS↓

Poisson λ ∈ [5, 50]
PSNR↑ / SSIM↑ / LPIPS↓

Sensor Noise [4]
PSNR↑ / SSIM↑ / LPIPS↓

Clear Images 28.24 / 0.8561 / 0.191 28.24 / 0.8561 / 0.191 28.14 / 0.8547 / 0.162
Noisy Images 28.29 / 0.8578 / 0.190 28.23 / 0.8563 / 0.191 28.16 / 0.8545 / 0.164

Table 4: Ablation study of auxiliary loss on Gaussian noise.

Neighbor2Neighbor [11]
PSNR↑ / SSIM↑ / LPIPS↓

SelfIR
PSNR↑ / SSIM↑ / LPIPS↓

w/o Laux 34.29 / 0.9271 / 0.085 35.65 / 0.9492 / 0.080
w/ Laux 34.45 / 0.9307 / 0.093 35.74 / 0.9499 / 0.076

5 Ablation Study

5.1 Feasibility of Deblurring with Noisy Images

In order to verify the feasibility of taking noisy images as the supervision of deblurring in Sec. 3.1,
we replace the clear supervision of BaselineB with noisy images of different noise distributions, and
the results are shown in Tab. 3. It can be seen that taking noisy or clear images as the supervision
leads to similar performance on the deblurring task, which confirms that the noisy images can be an
alternative of clear images to supervise the deblurring task.

5.2 Effect of Auxiliary Loss

In order to evaluate the effect of auxiliary loss Laux in Eqn. (9), we add Laux to the loss terms of self-
supervised denoising method Neighbor2Neighbor [11]. As shown in Tab. 4, we obtain 0.16 dB PSNR
gain against the baseline Neighbor2Neighbor [11]. The result indicates that blurry images can provide
some auxiliary supervision information and improve performance for self-supervised denoising.
When removing Laux from our SelfIR, the PSNR dropped by 0.09 dB. Since the long-exposure
image is taken directly as input, the loss term may be less effective, but is still beneficial.
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Table 5: Ablation study on different weights
(λreg values) of regularization loss.

λreg PSNR↑ / SSIM↑ / LPIPS↓

0 35.20 / 0.9473 / 0.097
1 35.64 / 0.9492 / 0.082
2 35.74 / 0.9499 / 0.076
4 35.72 / 0.9496 / 0.075
8 35.73 / 0.9497 / 0.072

Table 6: Ablation study on different weights
(λaux values) of auxiliary loss.

λaux PSNR↑ / SSIM↑ / LPIPS↓

0 35.65 / 0.9492 / 0.080
1 35.73 / 0.9498 / 0.078
2 35.74 / 0.9499 / 0.076
4 35.73 / 0.9499 / 0.076
8 35.67 / 0.9496 / 0.077

5.3 Effect of Different Loss Weights

We conduct ablation studies on different weighting hyper-parameters (i.e., λreg and λreg) for bal-
ancing regularization and auxiliary loss terms. The experiments are conducted on Gaussian noise in
sRGB space. When varying one hyper-parameter, the other one is set to 2 by default. As shown in
Tabs. 5 and 6, it can be seen that the sensitivity to λreg and λreg of SelfIR is acceptable.

6 Conclusion

The complementarity between long-exposure blurry and short-exposure noisy images not only
improves the performance of image restoration, but also makes it possible to learn a restoration model
in a self-supervised manner. Jointly leveraging the long- and short-exposure images, we present a
self-supervised image restoration method named SelfIR. On the one hand, we take the short-exposure
images as the supervision information for deblurring. On the other hand, we utilize the sharp areas in
the long-exposure images as auxiliary supervision information in aid of self-supervised denoising.
SelfIR combines these two aspects by a collaborative learning scheme, and makes the deblurring and
denoising tasks benefit from each other. Experiments on synthetic and real-world images show the
effectiveness and practicality of our proposed method.

7 Limitation, Impact, Etc

This work is still limited in assessing the results on real-world image pairs. Although no-reference
IQA metrics are adopted, these may be too unstable to report the performance consistent with humans
accurately. We will establish a real-world blurry-noisy pair dataset including high-quality GTs to
solve this problem in the future work. As for societal influence, this work is promising to be applied
to terminal devices (e.g., smartphones) for obtaining better images under low-light environments. It
has no foreseeable negative impact. Besides, the images used in this work are from natural or human
scenes. The GoPro dataset used for synthetic experiments is public under CC BY 4.0 license. There
is no personally identifiable information or offensive content in the experimental data.
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