A Proof of Theorem 1

Theorem 1. (1) If the bucket size $\alpha=1$ and consecutive repetitions are not merged, then $\mathbf{d}^{S, T}$ is the most probable sentence of T characters given by the S prediction slots. (2) If $\alpha \neq 1$ or repeating tokens are merged, our algorithm may not be exact.

Proof. [Part (1)] Our NACC is trained by the Connectionist Temporal Classification (CTC) algorithm [11], which merges repeated consecutive tokens and removes $\epsilon \mathrm{S}$ in the output sequence. Since the merging operation establishes dependencies between tokens in the output sequence, our length-control algorithm is inexact.
In this part, we consider a variant of the CTC algorithm that does not merge repeated tokens but only removes $\epsilon \mathrm{s}$; we denote this modified reduction operation by Γ^{\prime}. For example, $\Gamma^{\prime}(a a \epsilon a b b \epsilon)=a a a b b$. Our thus revised algorithm works as follows.
We denote $\widetilde{\mathbf{d}}^{s, l}=\widetilde{\mathrm{d}}_{1}^{s, l} \ldots \widetilde{\mathrm{~d}}_{s}^{s, l}$ as the recursion variable, being the most probable s-token sequence that is reduced to a summary of length l.

The initialization of $\widetilde{\mathbf{d}}^{s, l}$ is the same as the original length-control algorithm ($\$ 3.2$, since the merging operation is not involved here. However, the recursion involves only two cases:

- Case 1: $\mathrm{w}_{s}=\epsilon$. The recursion of this case is also the same (see Eqn. (4):

$$
\begin{equation*}
\widetilde{\mathscr{D}}_{1}^{s, l}=\left\{\widetilde{\mathbf{d}}^{s-1, l} \oplus \epsilon\right\} \tag{8}
\end{equation*}
$$

- Case 2: $\mathrm{w}_{s} \neq \epsilon$. We have a set of candidate sequences:

$$
\begin{equation*}
\widetilde{\mathscr{D}}_{2}^{s, l}=\left\{\widetilde{\mathbf{d}}^{s-1, l^{\prime}} \oplus \mathrm{w}_{s}:\left(u\left(\mathrm{w}_{s}\right)+\sum_{\mathrm{d} \in \widetilde{\mathbf{d}}^{s-1, l^{\prime}}} u(\mathrm{~d})\right)=l, \mathrm{w}_{s} \neq \epsilon, \text { and } l^{\prime}<l\right\} \tag{9}
\end{equation*}
$$

This is analogous to Eqn. (6), where $\alpha=1$ (due to our theorem assumption). Also, the condition $\mathrm{w}_{s} \neq \widetilde{\mathrm{d}}_{s-1}^{s-1, l^{\prime}}$ in Eqn. (6) is dropped here because this algorithm variant does not merge repeated tokens.

Then, the algorithm chooses the most probable candidate sequence as $\widetilde{\mathbf{d}}^{s, l}$, given by

$$
\begin{equation*}
\widetilde{\mathbf{d}}^{s, l}=\underset{\mathbf{d} \in \widetilde{\mathscr{D}}_{1}^{s, l} \cup \widetilde{\mathscr{D}}_{2}^{s, l}}{\operatorname{argmax}} \sum_{\mathrm{s}=1}^{S} v_{s}\left(\mathrm{~d}_{s}\right) \tag{10}
\end{equation*}
$$

Now we will prove that the algorithm is exact: suppose $P_{s, l}:=\sum_{\mathrm{i}=1}^{s} v_{i}\left(\widetilde{\mathrm{~d}}_{i}^{s, l}\right)$ is the log probability of $\widetilde{\mathbf{d}}^{s, l}$, we have

$$
\begin{equation*}
P_{s, l}=\max _{\mathrm{d}_{1} \cdots \mathrm{~d}_{s}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s}\right)\right|=l} \sum_{\mathrm{i}=1}^{s} v_{i}\left(\mathrm{~d}_{i}\right) \tag{11}
\end{equation*}
$$

In other words, $\widetilde{\mathbf{d}}^{s, l}$ is the most probable s-token sequence that is reduced to length l. This is proved by mathematical induction as follows.
Base Cases. For $l=0$, the variable $\widetilde{\mathbf{d}}^{s, 0}$ can only be s-many $\epsilon \mathrm{s}$. The optimality in Eqn. (11) holds trivially.
For $s=1$ but $l>0$, the algorithm chooses $\widetilde{\mathrm{d}}^{1, l}=\underset{\mathrm{d}_{1}: u\left(\mathrm{~d}_{1}\right)=l}{\operatorname{argmax}} v_{1}\left(\mathrm{~d}_{1}\right)$. Therefore, $P_{1, l}=$ $\max _{\mathrm{d}_{1}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1}\right)\right|=l} v_{1}\left(\mathrm{~d}_{1}\right)$, showing that Eqn. (11) is also satisfied with only one term in the summation.

Induction Step. The induction hypothesis assumes $P_{s-1, l^{\prime}}=\max _{\mathrm{d}_{1} \cdots \mathrm{~d}_{s-1}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s-1}\right)\right|=l^{\prime}} \sum_{i=1}^{s-1} v_{i}\left(\mathrm{~d}_{i}\right)$ for every $l^{\prime}<l$. We will show that the algorithm finds the sequence $\widetilde{\mathbf{d}}^{s, l}$ with $P_{s, l}=$ $\max _{\mathrm{d}_{1} \cdots \mathrm{~d}_{s}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s}\right)\right|=l} \sum_{i=1}^{s} v_{i}\left(\mathrm{~d}_{i}\right)$.

Word	$P_{1}(\cdot \mid \mathbf{x})$	$P_{2}(\cdot \mid \mathbf{x})$
I	0.3	0.1
am	0.4	0.6
a	0.2	0.05
ϵ	0.1	0.25

Table 6: A counterexample showing that our algorithm may be inexact if $\alpha \neq 1$ or repeated tokens are merged. Here, we set the vocabulary to be three words plus a blank token ϵ.

According to Eqn. 10 , the variable $\widetilde{\mathbf{d}}^{s, l}$ is the most probable sequence in $\widetilde{\mathscr{D}}_{1}^{s, l} \cup \widetilde{\mathscr{D}}_{2}^{s, l}$. Thus, we have

$$
\begin{align*}
P_{s, l} & =\max _{l^{\prime}, \mathrm{d}_{s}: l^{\prime}+u\left(\mathrm{~d}_{s}\right)=l}\left\{P_{s-1, l^{\prime}}+v_{s}\left(\mathrm{~d}_{\mathrm{s}}\right)\right\} \tag{12}\\
& =\max _{l^{\prime}}\left\{P_{s-1, l^{\prime}}+\max _{\mathrm{d}_{s}: l^{\prime}+u\left(\mathrm{~d}_{s}\right)=l} v_{s}\left(\mathrm{~d}_{\mathrm{s}}\right)\right\} \tag{13}\\
& =\max _{l^{\prime}}\left\{\max _{\mathrm{d}_{1} \cdots \mathrm{~d}_{s-1}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s-1}\right)\right|=l^{\prime}} \sum_{i=1}^{s-1} v_{i}\left(\mathrm{~d}_{i}\right)+\max _{\mathrm{d}_{s}: l^{\prime}+u\left(\mathrm{~d}_{s}\right)=l} v_{s}\left(\mathrm{~d}_{\mathrm{s}}\right)\right\} \tag{14}\\
& =\max _{l^{\prime}}\left\{\begin{array}{c}
\left.\max _{\substack{\mathrm{d}_{1} \cdots \mathrm{~d}_{s}: \\
\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s}\right)\right|=l^{\prime} \\
\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s}\right)\right|=l}} \sum_{i=1}^{s} v_{i}\left(\mathrm{~d}_{i}\right)\right\} \\
\end{array}\right. \tag{15}\\
& =\max _{\mathrm{d}_{1} \cdots \mathrm{~d}_{s}:\left|\Gamma^{\prime}\left(\mathrm{d}_{1} \cdots \mathrm{~d}_{s}\right)\right|=l} \sum_{i=1}^{s} v_{i}\left(\mathrm{~d}_{i}\right) \tag{16}
\end{align*}
$$

Here, (13) separates the max operation over l^{\prime} and d_{s}; (14) is due to the induction hypothesis; (15) holds because the two max terms in (14) are independent given l^{\prime}, and thus the summations can be grouped; and 16 further groups the two max operations with l^{\prime} eliminated. The last two lines are originally proved in [14] and also used in [7].
[Part (2)] We now prove our algorithm may be inexact if $\alpha \neq 1$ or repeated tokens are merged. We show these by counterexamples ${ }^{4}$

Suppose $\alpha \neq 1$ and in particular we assume $\alpha=2$. We further assume repeated tokens are not merged. Consider the example shown in Table 6. The length-control algorithm finds $\widetilde{\mathbf{d}^{1,1}}=\{$ "am" $\}$, and then $\widetilde{\mathbf{d}}^{2,2}=\{$ "am I" $\}$ with the probability of $0.4 \cdot 0.1=0.04$, as the first bucket covers the length range $[1,2]$ and second $[3,4]$. Here, we notice that two words are separated by a white space, which also counts as a character). However, the optimum should be \{"I am"\}, which has a probability of $0.3 \cdot 0.6=0.18$.

Now suppose repeated tokens are merged, and we further assume the length bucket $\alpha=1$ in this counterexample. Again, this can be shown by Table 6; the algorithm finds $\mathbf{d}^{1,1}=\{" \mathrm{I} "\}$ and $\mathbf{d}^{1,2}=\{$ "am" $\}$, based on which we have $\mathbf{d}^{2,3}=\{$ "I a" $\}$ with probability $0.3 \cdot 0.05=0.015$. However, the optimum should be $\{$ "a I" $\}$ with probability $0.2 \cdot 0.1=0.02$.

The above theoretical analysis helps us understand when our algorithm is exact (or inexact). Empirically, our approach works well as an approximate inference algorithm.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]

[^0](b) Did you describe the limitations of your work? [Yes] See Section5,
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Theorem 1
(b) Did you include complete proofs of all theoretical results? [Yes] In Appendix A.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] Footnote 1.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Section 4.1 for the key setups and the codebase (Footnote 1) for full details.
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A] In our preliminary experiments, we found the results are pretty robust.
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] While we conducted a human evaluation of machine learning systems, it was neither crowdsourced nor involving human subjects. Instead, it was researchers studying machine learning systems' outputs (i.e., subjects are machine learning).
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] Our human evaluation of machine learning systems was done by in-lab research assistants; the research activities were part of their job duties paid through regular salary.

[^0]: ${ }^{4}$ To make our counterexample intuitive, we work with probabilities, rather than log-probabilities.

