
A Proof of Theorem 1

Theorem 1. (1) If the bucket size α = 1 and consecutive repetitions are not merged, then dS,T is the
most probable sentence of T characters given by the S prediction slots. (2) If α ̸= 1 or repeating
tokens are merged, our algorithm may not be exact.

Proof. [Part (1)] Our NACC is trained by the Connectionist Temporal Classification (CTC) al-
gorithm [11], which merges repeated consecutive tokens and removes ϵs in the output sequence.
Since the merging operation establishes dependencies between tokens in the output sequence, our
length-control algorithm is inexact.

In this part, we consider a variant of the CTC algorithm that does not merge repeated tokens but only
removes ϵs; we denote this modified reduction operation by Γ′. For example, Γ′(aaϵabbϵ) = aaabb.
Our thus revised algorithm works as follows.

We denote d̃s,l = d̃s,l1 · · · d̃s,ls as the recursion variable, being the most probable s-token sequence
that is reduced to a summary of length l.

The initialization of d̃s,l is the same as the original length-control algorithm (§3.2), since the merging
operation is not involved here. However, the recursion involves only two cases:

• Case 1: ws = ϵ. The recursion of this case is also the same (see Eqn. 4):

D̃s,l
1 =

{
d̃s−1,l ⊕ ϵ

}
(8)

• Case 2: ws ̸= ϵ. We have a set of candidate sequences:

D̃s,l
2 =

{
d̃s−1,l′ ⊕ ws :

(
u(ws) +

∑
d∈d̃s−1,l′

u(d)
)
= l,ws ̸= ϵ, and l′ < l

}
(9)

This is analogous to Eqn. (6), where α = 1 (due to our theorem assumption). Also, the
condition ws ̸= d̃s−1,l′

s−1 in Eqn. (6) is dropped here because this algorithm variant does not
merge repeated tokens.

Then, the algorithm chooses the most probable candidate sequence as d̃s,l, given by

d̃s,l = argmax
d∈D̃s,l

1 ∪D̃s,l
2

S∑
s=1

vs(ds) (10)

Now we will prove that the algorithm is exact: suppose Ps,l :=
∑s

i=1 vi(d̃
s,l
i ) is the log probability

of d̃s,l, we have

Ps,l = max
d1···ds:|Γ′(d1···ds)|=l

s∑
i=1

vi(di) (11)

In other words, d̃s,l is the most probable s-token sequence that is reduced to length l. This is proved
by mathematical induction as follows.

Base Cases. For l = 0, the variable d̃s,0 can only be s-many ϵs. The optimality in Eqn. (11) holds
trivially.

For s = 1 but l > 0, the algorithm chooses d̃1,l = argmax
d1:u(d1)=l

v1(d1). Therefore, P1,l =

max
d1:|Γ′(d1)|=l

v1(d1), showing that Eqn. (11) is also satisfied with only one term in the summation.

Induction Step. The induction hypothesis assumes Ps−1,l′ = max
d1···ds−1:|Γ′(d1···ds−1)|=l′

∑s−1
i=1 vi(di)

for every l′ < l. We will show that the algorithm finds the sequence d̃s,l with Ps,l =
max

d1···ds:|Γ′(d1···ds)|=l

∑s
i=1 vi(di).
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Word P1(·|x) P2(·|x)
I 0.3 0.1

am 0.4 0.6
a 0.2 0.05
ϵ 0.1 0.25

Table 6: A counterexample showing that our algorithm may be inexact if α ̸= 1 or repeated tokens
are merged. Here, we set the vocabulary to be three words plus a blank token ϵ.

According to Eqn. (10), the variable d̃s,l is the most probable sequence in D̃s,l
1 ∪ D̃s,l

2 . Thus, we have

Ps,l = max
l′,ds:l′+u(ds)=l

{Ps−1,l′ + vs(ds)} (12)

= max
l′

{
Ps−1,l′ + max

ds:l′+u(ds)=l
vs(ds)

}
(13)

= max
l′

{
max

d1···ds−1:|Γ′(d1···ds−1)|=l′

s−1∑
i=1

vi(di) + max
ds:l′+u(ds)=l

vs(ds)

}
(14)

= max
l′

 max
d1···ds:

|Γ′(d1···ds−1)|=l′

|Γ′(d1···ds)|=l

s∑
i=1

vi(di)

 (15)

= max
d1···ds:|Γ′(d1···ds)|=l

s∑
i=1

vi(di) (16)

Here, (13) separates the max operation over l′ and ds; (14) is due to the induction hypothesis; (15)
holds because the two max terms in (14) are independent given l′, and thus the summations can be
grouped; and (16) further groups the two max operations with l′ eliminated. The last two lines are
originally proved in [14] and also used in [7].

[Part (2)] We now prove our algorithm may be inexact if α ̸= 1 or repeated tokens are merged. We
show these by counterexamples.4

Suppose α ̸= 1 and in particular we assume α = 2. We further assume repeated tokens are not
merged. Consider the example shown in Table 6. The length-control algorithm finds d̃1,1 = {“am”},
and then d̃2,2 = {“am I”} with the probability of 0.4 · 0.1 = 0.04, as the first bucket covers the
length range [1, 2] and second [3, 4]. Here, we notice that two words are separated by a white space,
which also counts as a character). However, the optimum should be {“I am”}, which has a probability
of 0.3 · 0.6 = 0.18.

Now suppose repeated tokens are merged, and we further assume the length bucket α = 1 in this
counterexample. Again, this can be shown by Table 6: the algorithm finds d1,1 = {“I”} and
d1,2 = {“am”}, based on which we have d2,3 = {“I a”} with probability 0.3 · 0.05 = 0.015.
However, the optimum should be {“a I”} with probability 0.2 · 0.1 = 0.02.

The above theoretical analysis helps us understand when our algorithm is exact (or inexact). Empiri-
cally, our approach works well as an approximate inference algorithm.
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