Appendix

Haris Aziz Computer Science and Engineering UNSW Sydney Sydney NSW 2052, Australia haris.aziz@unsw.edu.au

Mashbat Suzuki Computer Science and Engineering UNSW Sydney Sydney NSW 2052, Australia mashbat.suzuki@unsw.edu.au Alexander Lam Computer Science and Engineering UNSW Sydney Sydney NSW 2052, Australia alexander.lam1@unsw.edu.au

Toby Walsh Computer Science and Engineering UNSW Sydney Sydney NSW 2052, Australia t.walsh@unsw.edu.au

A Proof of Proposition 1

Proposition 1. No deterministic and strategyproof mechanism satisfies Strong Proportionality.

Proof. For n = 2, consider the location profile with 1 agent at 0 and 1 agent at 0.5. Strong Proportionality requires that the facility be placed at 0.25. Now also consider the location profile with 1 agent at 0 and 1 agent at 1. Strong Proportionality requires that the facility be placed at 0.5. However, this means the agent at 0.5 in the first location profile can misreport their location as 1 to have the facility placed at their own location, violating strategyproofness. Thus strategyproofness and Strong Proportionality are incompatible in deterministic mechanisms.

B Proof of Claim 2

Claim 2: $\Pr[Y_{(n+1)} = 1] = 1$ and $\Pr[Y_{(1)} = 0] = 1$.

Proof of Claim 2. We first show that $\Pr[Y_{(n+1)} = 1] = 1$. Suppose the contrary, that there exists $\beta < 1$ such that $\Pr[Y_{(n+1)} \leq \beta] > 0$. Under the location profile $x = (1, \dots, 1)$, if f satisfies Proportionality in expectation we must have $\mathbb{E}[d(x_n, f(x))] = 0$. However, this leads to a contradiction since

$$\mathbb{E}[d(x_n, f(x))] \ge (1 - \beta) \Pr[Y_{(n+1)} \le \beta]$$

> 0,

where the first inequality follows from the fact that if $Y_{(n+1)} \leq \beta$ then $f(x) \leq \beta$, and thus $d(1, f(x)) \geq (1 - \beta)$.

A similar, symmetric argument can be applied to show that $Pr[Y_{(1)} = 0] = 1$ holds.

C Extension of Theorem 3 to the real line \mathbb{R}

In this section we extend the result of Theorem 3 to the real line. We use the following theorem which characterizes strategyproof and anonymous mechanisms on the real line as Phantom mechanisms.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Theorem 7 (Moulin (1980)). A mechanism f on the domain $X = \mathbb{R}$ is strategyproof and anonymous if and only if there exists (n + 1) real numbers $y_1, \dots, y_{n+1} \in \mathbb{R} \cup \{+\infty, -\infty\}$ such that

$$f(x) = \operatorname{med}(x_1, \cdots, x_n, y_1, \cdots, y_{n+1})$$

We also modify our definition of the Random Rank mechanism. Given a profile of locations $x \in \mathbb{R}^n$, we define

$$\operatorname{rank}^{k}(x) := \operatorname{med}(\underbrace{-\infty, \dots, -\infty}_{n-k}, x_{1}, \dots, x_{n}, \underbrace{+\infty, \dots, +\infty}_{k-1}).$$

The Random Rank mechanism on the real line then chooses $k \in \{1, \dots, n\}$ uniformly at random and outputs rank^k(x).

Theorem 4. A mechanism on the domain $X = \mathbb{R}$ is universally anonymous, universally truthful and *Strong Proportional in expectation if and only if it is the Random Rank mechanism.*

Proof. (\implies) By Theorem 7 we know that f is a probability distribution over Phantom mechanisms. For each $i \in \{1, \dots, n+1\}$, denote Y_i as the random variable corresponding to the location of the *i*'th Phantom. Also denote $Y_{(i)}$ as the random variable corresponding to the *i*'th order statistic.

Claim 3: $\Pr[Y_{(n+1)} = +\infty] = 1$ and $\Pr[Y_{(1)} = -\infty] = 1$.

Proof of Claim 3. Suppose on the contrary that there exists $\lambda \in \mathbb{R}$ such that $\Pr[Y_{(n+1)} \leq \lambda] > 0$. Consider a location profile $x = (2\lambda, \dots, 2\lambda)$. If f satisfies Strong Proportionality in expectation then we have $\mathbb{E}[d(x_1, f(x))] = 0$. However, this contradicts the following

$$\mathbb{E}[d(x_1, f(x))] \ge |2\lambda - \lambda| \Pr[Y_{(n+1)} \le \lambda]$$

> 0,

where the inequality follows since if $Y_{(n+1)} \leq \lambda$ then $f(x) \leq \lambda$, and thus $d(x_1, f(x)) \geq |\lambda|$.

A similar, symmetric argument can be used to obtain $\Pr[Y_{(1)} = -\infty] = 1$.

By Claim 3 we see that only n - 1 Phantoms are necessary since

$$f(x) = med(-\infty, Y_{(2)}, \cdots, Y_{(n)}, x_1, \cdots, x_n, +\infty)$$

= med(Y₍₂₎, \dots, Y_(n), x_1, \dots, x_n)

For notational convenience, we relabel the remaining n-1 Phantoms such that

$$f(x) = med(Y_{(1)}, \cdots, Y_{(n-1)}, x_1, \cdots, x_n).$$

Claim 4: $\Pr[Y_{(i)} = +\infty] = \frac{i}{n}$ and $\Pr[Y_{(i)} = -\infty] = \frac{n-i}{n}$ for each $i \in \{1, \dots, n-1\}$.

Proof of Claim 4. Using the arguments presented in Claim 1, we see that Strong Proportionality implies

$$\begin{cases} \Pr[Y_{(i)} \le \alpha] \le \frac{n-i}{n}, \\ \Pr[Y_{(i)} \ge \beta] \le \frac{i}{n}, \end{cases} \quad \text{for any} \quad \alpha < \beta, \quad \alpha, \beta \in \mathbb{R}. \end{cases}$$
(1)

From above we see that indeed $\Pr[Y_{(i)} = +\infty] = \frac{i}{n}$ and $\Pr[Y_{(i)} = -\infty] = \frac{n-i}{n}$.

By Claim 4, we see that $Y_{(i)} \in \{-\infty, +\infty\}$ for each $i \in \{1, \cdots, n-1\}$ and furthermore,

$$\Pr[f(x) = \operatorname{med}(\underbrace{-\infty, \cdots, -\infty}_{n-k}, \underbrace{+\infty, \cdots, +\infty}_{k-1}, x_1, \cdots, x_n)]$$
$$= \Pr[Y_{(n-k)} = -\infty, Y_{(n-k+1)} = +\infty]$$
$$= \Pr[Y_{(n-k)} = -\infty] - \Pr[Y_{(n-k+1)} = -\infty]$$
$$= \frac{n - (n-k)}{n} - \frac{n - (n-k+1)}{n}$$
$$= \frac{1}{n}.$$

The third equality follows from the fact that for any $i \in \{1, \dots, n\}$, we have $\Pr[Y_{(i)} = -\infty, Y_{(i+1)} = +\infty] + \Pr[Y_{(i)} = -\infty, Y_{(i+1)} = -\infty] = \Pr[Y_{(i)} = -\infty]$ and $\Pr[Y_{(i)} = -\infty, Y_{(i+1)} = -\infty] = \Pr[Y_{(i+1)} = -\infty]$.

Hence we see that f is equivalent to running rank^k mechanism for each $k \in \{1 \cdots, n\}$ with probability $\frac{1}{n}$. Thus indeed f is the Random Rank mechanism.

(\Leftarrow) Similar to the case when X = [0, 1], the Random Rank mechanism is universally anonymous and universally truthful when the domain is $X = \mathbb{R}$ as each realization of the mechanism, rank^k, is strategyproof and anonymous by Theorem 7. The proof that Random Rank satisfies Strong Proportionality in expectation is identical that in the proof of Theorem 3.

Remark 1. Note that the Phantoms are random variables on the extended real line $\mathbb{R} \cup \{+\infty, -\infty\}$, and thus a random variable Y may satisfy $\Pr[Y = +\infty] > 0$. This is in contrast to random variables defined on \mathbb{R} in which every random variable Y must satisfy $\lim_{N \to \infty} \Pr[Y \ge N] = 0$.

D I.I.D. Phantom Mechanisms

Definition 1 (I.I.D Phantom Mechanism). A mechanism is an I.I.D Phantom mechanism if it is a Phantom mechanism with $y_1 = 0$, $y_{n+1} = 1$ and the remaining phantoms y_1, \ldots, y_{n-1} are drawn I.I.D according to some distribution D on [0, 1]

The I.I.D Phantom mechanisms are universally truthful, ex-post efficient and universally anonymous, as they only give positive support to instances of deterministic Phantom mechanisms with $y_1 = 0$ and $y_{n+1} = 1$, which by Theorem 2 are strategyproof, efficient and anonymous. If the expected values of the Phantom distribution's order statistics are uniformly spaced on [0, 1], then the mechanism also satisfies Proportionality in expectation.

Theorem 8. An I.I.D Phantom mechanism with distribution D satisfies Proportionality in expectation if and only if the order statistics $D_{(i)}$ have expected value $\mathbb{E}[D_{(i)}] = \frac{i}{n}$ for each $i \in \{1, \dots, n-1\}$.

Proof. (\implies) Fix any $i \in \{1, \dots, n-1\}$. Consider a location profile $x = (\underbrace{0, \dots, 0}_{n-i}, \underbrace{1, \dots, 1}_{i})$

and let S^0 be the set of agents located at 0, thus $|S^0| = n - i$. Denote $D_{(i)}$ as the random variable corresponding to the location of the *i*'th order statistic of the Phantoms. Since our mechanism is a Phantom mechanism the output location of the mechanism is distributed as $D_{(i)}$. Thus for any $i \in S^0$ we have

$$\mathbb{E}[D_{(i)}] = \mathbb{E}[d(0, f(x))]$$
$$= \mathbb{E}[d(x_i, f(x))]$$
$$\leq \frac{n - |S^0|}{n}$$
$$= \frac{i}{n}$$

where the second last equality holds since f satisfies Proportionality in expectation. Similarly let S^1 be the set of agents located at 1, and thus $|S^1| = i$. For $j \in S^1$, by proportionality in expectation we see that

$$\mathbb{E}[d(x_j, f(x))] = \mathbb{E}[d(1, f(x))]$$
$$\leq \frac{n - |S^1|}{n}$$
$$= \frac{n - i}{n}$$

Since $\mathbb{E}[d(1, f(x))] = 1 - \mathbb{E}[D_{(i)}]$, by rearranging above we see that $\mathbb{E}[D_{(i)}] \ge \frac{i}{n}$. Hence indeed $\mathbb{E}[D_{(i)}] = \frac{i}{n}$ for each $i \in \{1, \dots, n-1\}$ as needed to show.

 (\Leftarrow) For any $x \in \{0,1\}^n$, let S^0 be the set of agents located at 0 and S^1 be the set of agents located at 1. Let $|S^0| = k$ and $|S^1| = n - k$, the location of the facility is distributed according

to $D_{(n-k)}$. Hence for any $i \in S^0$, we have $\mathbb{E}[d(x_i, f(x))] = \mathbb{E}[D_{(n-k)}] = \frac{n-|S^0|}{n}$. Similarly for $j \in S^1$, we have $\mathbb{E}[d(x_j, f(x))] = 1 - \mathbb{E}[D_{(n-k)}] = 1 - \frac{n-k}{n} = \frac{n-|S^1|}{n}$ as desired. \Box

By Theorem 8, we know that the Random Phantom mechanism is Proportional in expectation.

E Proof of Theorem 5

Theorem 5. The AverageOrRandomRank-p mechanism satisfies Strong Proportionality in expectation and is strategyproof in expectation if and only if $p \in [0, \frac{1}{2}]$.

Proof. We first show that the mechanism is Strong Proportional in expectation. Consider any location profile $x \in \{\alpha, \beta\}^n$, and let S_{α} denote the set of agents at α and $S_{\beta} = N \setminus S$ denote the set of agents at β . The AverageOrRandomRank-p mechanism places the facility at:

- α with probability $(1-p)\frac{|S_{\alpha}|}{r}$,
- at β with probability $(1-p)\frac{|S_\beta|}{n}$,
- and at $\frac{|S_{\alpha}|\alpha+|S_{\beta}|\beta}{n}$ with probability p.

For all $i \in S_{\alpha}$, we have

$$\mathbb{E}[d(x_i, f_{RR}(x))] = (1-p)\frac{|S_{\beta}|}{n}(\beta-\alpha) + p\left(\frac{|S_{\alpha}|\alpha+|S_{\beta}|\beta}{n}-\alpha\right)$$
$$= \frac{|S_{\beta}|}{n}\beta - \alpha(1-p)\frac{|S_{\beta}|}{n} + p\alpha\frac{|S_{\alpha}|-n}{n}$$
$$= \frac{|S_{\beta}|}{n}(\beta-\alpha) = \frac{n-|S_{\alpha}|}{n}(\beta-\alpha),$$

and for all $j \in S_{\beta}$, we have

$$\mathbb{E}[d(x_j, f_{RR}(x))] = (1-p)\frac{|S_\alpha|}{n}(\beta-\alpha) + p\left(\beta - \frac{|S_\alpha|\alpha + |S_\beta|\beta}{n}\right)$$
$$= -\frac{|S_\alpha|}{n}\alpha + \beta(1-p)\frac{|S_\alpha|}{n} + p\beta\frac{n-|S_\beta|}{n}$$
$$= \frac{|S_\alpha|}{n}(\beta-\alpha) = \frac{n-|S_\beta|}{n}(\beta-\alpha).$$

Hence, AverageOrRandomRank-p satisfies Strong Proportionality in expectation.

We now show that the mechanism is strategyproof in expectation. Suppose an agent at x_i deviates by distance d to attain a better expected distance. Its expected cost is reduced by $\frac{dp}{n}$ from the average location moving closer, but is also increased by $\frac{d(1-p)}{n}$ from its reported location moving away. For strategyproofness we require that $\frac{d(1-p)}{n} \ge \frac{dp}{n}$, which is satisfied for $p \in [0, \frac{1}{2}]$. Furthermore, it is easy to see that if $p > \frac{1}{2}$, an agent can improve its expected distance from the facility by misreporting its location.

F Proof of Theorem 6

Theorem 6. A mechanism is universally anonymous, universally truthful and SPF in expectation if and only if it is the Random Rank mechanism.

Proof. Since SPF implies Strong Proportionality, by Theorem 3 it suffices to prove Random Rank satisfies SPF. Consider any location profile x within range R and subset of agents $S \subseteq N$ within

range r. Denote X_S as the event that Random Rank places the facility at an agent in S. Then for any $i \in S$, we have

$$\mathbb{E}[d(x_i, f(x))] \le R(1 - \Pr[X_S]) + r \Pr[X_S]$$
$$\le R\left(\frac{n - |S|}{n}\right) + r\frac{|S|}{n}$$
$$\le R\left(\frac{n - |S|}{n}\right) + r.$$