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Abstract

The visual world can be parsimoniously characterized in terms of distinct entities
with sparse interactions. Discovering this compositional structure in dynamic
visual scenes has proven challenging for end-to-end computer vision approaches
unless explicit instance-level supervision is provided. Slot-based models leveraging
motion cues have recently shown great promise in learning to represent, segment,
and track objects without direct supervision, but they still fail to scale to complex
real-world multi-object videos. In an effort to bridge this gap, we take inspiration
from human development and hypothesize that information about scene geometry
in the form of depth signals can facilitate object-centric learning. We introduce
SAVi++, an object-centric video model which is trained to predict depth signals
from a slot-based video representation. By further leveraging best practices for
model scaling, we are able to train SAVi++ to segment complex dynamic scenes
recorded with moving cameras, containing both static and moving objects of
diverse appearance on naturalistic backgrounds, without the need for segmentation
supervision. Finally, we demonstrate that by using sparse depth signals obtained
from LiDAR, SAVi++ is able to learn emergent object segmentation and tracking
from videos in the real-world Waymo Open dataset.
Project page: https://slot-attention-video.github.io/savi++/
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Figure 1: Emergent segmentation and tracking in SAVi++.

The natural world consists of distinct
entities—people, dogs, cars, trees, etc.—
and its complexity emerges from the
combined, mostly independent, actions
of the entities. This compositional struc-
ture must be appreciated to predict fu-
ture states of the world and to effect par-
ticular outcomes. People have an in-
trinsic understanding of objects: objects
have spatiotemporal coherence, they in-
teract when in close proximity, and they
∗Equal technical contribution. �Alphabetical order. †Correspondence to: gamaleldin@google.com
Author contributions: GFE, TK initiated and led the project. GFE, AM, SVS, TK developed the main model.
GFE, AM, TK developed real-world driving data and model infrastructure. AM implemented data augmentation.
GFE led ablation study. SVS led target signals analyses and metric design. GFE, AM, SVS, TK ran experiments.
AM, SVS, KG, TK worked on baselines. KG, MCM provided advice at all stages and helped with project
scoping. TK developed visualizations. GFE, MCM, TK worked on figure design. All authors wrote the paper.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://slot-attention-video.github.io/savi++/
mailto:gamaleldin@google.com


possess persistent, latent characteristics that determine their behavior over extended periods of time
[25, 46]. Just as object-centric representations are critical to human understanding, they have the
potential in machine learning to greatly improve sample efficiency, robustness, visual reasoning, and
interpretability of learning algorithms [15, 35]. For example, consider the challenge faced by an
autonomous vehicle operating in diverse surroundings (Figure 1). Generalization across situations
requires learning about recurring entities like cars, traffic lights, and pedestrians, and the rules that
govern interactions among these entities.

In human brains, the ability to organize edges and surfaces into unitary, bounded, and persisting
object representations develops through experience and/or maturation from infancy and without
explicit instruction via a ‘core system of object representation’ [46], i.e., a form of cognitive inductive
bias. In deep learning, such an inductive bias has been proposed in slot-based architectures which
segregate knowledge about individual objects into nonoverlapping but interchangeable pools of
neurons. The resulting representational modularity can facilitate causal reasoning and prediction
for downstream tasks [15, 44].

A grand challenge in computer vision has been to discover the compositional structure of real-world
dynamic visual scenes in an unsupervised fashion. By unsupervised, we mean no segmentation
information is provided that specifies which pixels belong together as part of a single object. Initial
efforts focused on single-frame, synthetic RGB images [13, 14, 36, 50], but extending this work
to video and more complex scenes proved challenging. A key insight to further progress was the
realization that a color-intensity pixel array is not the only source of visual information readily
available, at least not to human perceptual systems. The human perceptual system extracts motion
and depth cues early in the processing stream [9–11, 20, 39]. These cues are correlated with object
identities, and can therefore bootstrap the formation of object-centric representations [45].

The recently introduced Slot Attention for Video (SAVi) model [31] leveraged optical flow (frame-
to-frame motion) as a prediction target to obtain object-centric representations of dynamic scenes
involving complex 3D scanned objects and real-world backgrounds. However, motion prediction
alone is insufficient to learn about the distinction between static objects and the background. Further,
in real-world application domains such as self-driving cars, cameras themselves are subject to
movement, which globally affects frame-to-frame motion as a prediction signal in non-trivial ways.

In the present work, we describe an enhanced slot-based model for video, referred to as SAVi++
(Figure 2), which obtains qualitative improvements in object-centric representations by exploiting
depth signals readily available from RGB-D cameras and LiDAR sensors. SAVi++ is the first slot-
based, end-to-end trained model that successfully segments complex objects in naturalistic, real-world
video sequences without using direct segmentation or tracking supervision.

A summary of our contributions is as follows:

• We introduce SAVi++: an object-centric slot-based video model that makes several key improve-
ments to SAVi [31] by utilizing depth prediction and by adopting best practices for model scaling
in terms of architecture design and data augmentation.

• On the multi-object video (MOVi) benchmark containing synthetic videos of high visual and
dynamic complexity [16], we find that SAVi++ is able to handle videos containing complex shapes
and backgrounds, and a large number of objects per scene. Improving on SAVi, our approach
accommodates both static and dynamic objects and both static and moving cameras.

• Finally, we demonstrate that SAVi++ trained with sparse depth signals obtained from LiDAR
enables emergent object decomposition and tracking in real-world driving videos from the Waymo
Open dataset [47].

2 Related work

Object-centric learning A growing body of research is addressing the problem of end-to-end
learning of object-centric representations from raw perceptual data without direct supervision. Slot-
based neural networks such as IODINE [14], MONet [4], and Slot Attention [36] rely on a factorized
latent space and independent per-object decoders as inductive bias to enable object discovery in a
simple auto-encoding setup. Architectures with stronger inductive biases using fixed object size,
presence, or propagation priors have been explored in works such as SQAIR [33] and SCALOR [23],
but generally these methods have faced challenges scaling to more complex real-world data when
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relying on auto-encoding alone. Our work primarily builds on recent advances in object-centric
generative models for video sequences [24, 31, 50, 52, 59]. Different from our approach, these
methods have so far been unable to scale to complex real-world multi-object video data. An
alternative class of methods using contrastive learning for object discovery [19, 30, 37, 56], most
notably GroupViT [56] and ODIN [19], has recently achieved some success in discovering semantic
groupings in real-world images. However, neither GroupViT nor ODIN model dynamics and typically
fail to separate semantically similar object instances in close proximity. In our work, we follow a
generative approach, but instead of tasking the decoder to generate complex visual RGB pixel data,
we utilize depth information to bootstrap object-centric learning without direct supervision.

Object discovery in driving scenes A range of recent methods [1, 17, 49, 53] use a multi-stage
pipeline of 1) obtaining pseudo ground truth (PGT) segmentation or detection labels via some
heuristic, and 2) training a model in a supervised fashion on PGT labels. While this class of
methods achieves some success in discovering and tracking objects in real-world driving scenes,
it crucially hinges on the quality of the PGT labels, requiring carefully engineered task-specific
heuristics to extract objects. Earlier methods solely use clustering heuristics to extract approximate
segmentation masks directly from motion trajectories for moving objects [3, 40]. In our work, we
instead demonstrate that object segmentation and tracking can emerge in an end-to-end setting on
complex real-world data without relying on PGT label generation.

Cross-modal learning For self-supervised object-centric learning from visual data, a range of
target modalities and training signals have been explored in the literature. By using motion cues from
optical flow as prediction targets, several recent methods [31, 57] were able to overcome limitations
of purely RGB pixel-level generative models, which frequently failed in the presence of complicated
textures [27]. However, this advantage is primarily limited to discovery of moving objects. Utilizing
depth targets from a simulator [2] or from sparse LiDAR [17, 49, 53], has been explored in an effort
to overcome these limitations. Different from prior works utilizing multi-stage pipelines and hand-
crafted heuristics for extraction of pseudo-labels from LiDAR [17, 49, 53], we directly utilize the
(sparse) depth signal as target and demonstrate that this can enable emergent object segmentation and
tracking on real-world driving data without any additional regularizers or pseudo-labeling techniques.

Scaling strategies for vision models It is common practice to scale architectural capacity with
dataset complexity and size, while making use of strong data augmentation when addressing various
supervised computer vision tasks [7, 8, 18, 32]. Nonetheless, self-supervised methods for end-to-
end object discovery have primarily been relying on overly simplistic and low-capacity backbone
architectures [14, 36, 59], likely due to the simplicity of datasets and tasks considered in prior
work. By scaling object-centric methods to larger, visually more complex datasets, we find that
utilizing stronger visual backbone architectures—in combination with data augmentation—can
provide substantial benefits. For simplistic datasets with lower visual complexity (and same number
of examples), we found anecdotal evidence in preliminary experiments for the opposite effect: both
architecture scaling and data augmentation can negatively affect object discovery performance, likely
explaining why prior works have not explored these strategies.

Depth estimation Recent advances in supervised monocular depth estimation (see Ming et al. [38]
for a review) could be combined with our method in future work, for instance using ordinal regression
losses [12], transformer architectures [43], or more complex instance-wise decoder architectures [54].

3 Methods

We begin by providing a brief introduction to Slot Attention for Video (SAVi), which is the starting
point for our exploration. With SAVi++, we introduce several simple yet crucial improvements, which
allow us to bridge the gap to complex real-world data. Our framework is summarized in Figure 2.

3.1 Background

Slot Attention for Video (or SAVi) is a recent state-of-the-art architecture for learning object-centric
representations from video with minimal supervision. We briefly highlight some of its key components
below and refer the reader for complete details to Kipf et al. [31].

SAVi can be viewed as an autoregressive encoder-decoder video model with a structured latent state
composed of K object slots. At a given time-step, an encoder first encodes the observed video frame
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Figure 2: SAVi++ is an object-centric video model based on Slot Attention for Video [31], which
encodes a video into a set of temporally-consistent latent variables (object slots). Input frames and
prediction targets are augmented using random crop augmentations. Augmented frames are passed
through the improved SAVi++ encoder and mapped onto object slots using an attention mecha-
nism [36]. Slots are updated recurrently for each frame and subsequently decoded independently
into a depth map and per-slot alpha masks. SAVi++ is trained using (sparse) depth targets, leading to
emergence of temporally-consistent object segmentation in the decoded alpha masks.

to yield high-level image features that are useful for learning about objects. This is followed by
Slot Attention [36] (the ‘corrector’), which updates the slots using these features and encourages
individual slots to specialize to different parts of the observation. The content of each slot is decoded
separately using a decoder, which additionally outputs a pixel-level alpha mask to indicate how the
decoded values for each slot should be combined. Together, the mask and decoded slots determine
the output of the model at the current time-step from which a loss is computed, e.g., to train the model
to predict frame-to-frame motion (optical flow) for this frame. Slots for the next time-step (for the
corrector to update) are obtained by applying a predictor, which can model interactions between slots
and learn about object dynamics to predict their future state.

In addition to optical flow prediction, SAVi introduces conditioning that helps reduce uncertainty
about the part-whole division into objects by pointing the model to specific locations. Indeed, in
the absence of a specific downstream task, scene decomposition can be ambiguous and providing
additional information as a conditioning signal may help alleviate this. The conditioning takes place
via the slot initializer, which initializes the slots used in the initial video frame. The initialization may
be learned in an unconditional setting (i.e., learn the initial slot states) or obtained by conditioning
the initial state on high-level cues such as bounding boxes of objects of interest in the first video
frame. This direction of attention or input conditioning helped SAVi to succeed in decomposing more
complex visual scenes.

3.2 SAVi++

As SAVi relies on optical flow prediction as its main training signal for object discovery, its application
is primarily limited to settings where all objects in a scene have independent motion. In addition,
SAVi struggled to generalize to scenes with a moving camera, even though the optical flow field
encodes information about (static) scene geometry in this case.

Here, we identify two key directions for improving SAVi and bridging its capabilities to real-world
video data, while preserving its core foundation for learning object representations from video: (1)
exploiting depth as a prediction signal, which is readily available in many real-world settings, and (2)
utilizing model scaling strategies in terms of encoder improvements and data augmentation, which,
despite being commonly used for classic vision problems, are generally underutilized for object-
centric learning. Our improved approach, called SAVi++, successfully segments complex objects in
naturalistic, real-world video sequences without using direct segmentation or tracking supervision.

Exploiting depth information Training object-centric models solely using RGB image or video
frame reconstruction proves challenging in the presence of complex visual textures, frequently leading
to failure modes such as clustering by color or into object-agnostic spatial regions [14, 17]. In SAVi,
optical flow was proposed as a prediction signal to mitigate this issue, while still operating on visual
RGB inputs [31]. However, relying solely on optical flow as a prediction target for learning about
objects has a clear disadvantage: static objects, which make up the vast majority of visual entities we
encounter on a daily basis, are not captured in this signal unless the observer or the entire scene is in
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(c) Dataset details and statistics.

Figure 3: We consider three synthetic Multi-Object Video (MOVi) datasets [16] and the large-scale
real-world driving dataset Waymo Open [47]. All datasets contain complex textures and moving
objects. The MOVi datasets increase in complexity from MOVi-C (moving objects only) over MOVi-
D (+static objects) to MOVi-E (+ moving cameras). Waymo Open contains all these characterisics.

motion. As a consequence, SAVi fails to represent objects that are at rest, and similarly struggles with
scenes observed from a moving camera, as optical flow can prove challenging to model in this case.

Here, we explore depth as a target signal, used in conjunction with flow or even in isolation. Depth
estimation has received little attention in slot-based models, yet does not suffer from the limitation of
optical flow in datasets with static objects and camera movement. We thus hypothesize that depth may
greatly benefit obtaining emergent object decompositions of complex videos. In terms of practical
applicability, we note how depth is a readily-available signal in many real-world settings thanks to the
prevalence of RGB-D cameras and LiDAR in settings like self-driving cars [47]. Even in the absence
of depth sensing capabilities, this signal can be cheaply estimated from multi-camera systems [34].

In our implementation, we represent the depth signal in image space, which we encode using a log
transformation log(1 + d), where d is the distance of a pixel to the camera (see Figure 3a). This
log-transform puts a stronger emphasis on close-by objects and—in early experiments—we found
this form of normalization crucial for reliably training object-centric models using depth targets.
SAVi++ is then trained to minimize the squared difference between the decoder output and this target
signal. In case of multiple available targets, such as depth and flow, we concatenate the target images
along the channel dimension and predict them using an otherwise unchanged model.

For sparse targets such as depth obtained from LiDAR, we ignore any points in the image space for
which no signal is present in the computation of the loss. For LiDAR specifically, we obtain the x, y,
z coordinates of all the LiDAR points in the self-driving car (SDC) world and compute the distance of
each of the points from the LiDAR sensor. We then use the camera and LiDAR calibration parameters
to project the LiDAR point distances from the SDC domain to the camera frame. This projection
represents a very sparse approximation of the ground-truth depth signal (Figure 3b).

Scaling strategies Visual complexity present in real-world videos necessitates a different class
of encoders than those used for simple synthetic datasets. Inspired by successful visual backbone
architectures for set-based supervised object detection models [6, 26], we use a more capable encoder
that utilizes the ResNet34 [18] architecture followed by a transformer encoder [51] (with 4 layers,
unless otherwise mentioned). To avoid computation of batch and/or temporal statistics, we replace the
typical batch normalization in ResNet34 with group normalization [55]. We use a stride 1 convolution
and use no max-pooling in the ResNet root block. This results in an overall backbone stride of 8 (as
opposed 32), which was found to be important for retaining object decomposition capabilities. Please
see the appendix for further architectural details.

Drawing inspiration from training schemes commonly used for real-world vision models [48], we
further apply Inception-style cropping as data augmentation. In particular, we randomly crop a region
of each frame with aspect ratio ∈ [0.75, 1.33] such that enough of the frame is retained after cropping.
The same crop is applied consistently across all frames and the resulting video is resized to the
original resolution. Flow fields and depth maps are adjusted accordingly to keep them accurate and
spatially aligned with the video frame.
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4 Experiments

The goal of our experimental evaluation is twofold: 1) on synthetic video data of varying complexity
we would like to analyze the potential advantages of utilizing a depth signal and model scaling
strategies for learning emergent segmentation and tracking, and 2) we would like to investigate
whether these improvements enable bridging the gap to complex real-world video data.

Section 4.1 covers both qualitative and quantitative comparisons of SAVi++ against baselines on
the synthetic MOVi datasets. In Section 4.2, we perform an ablation study on SAVi++. Finally, in
Section 4.3 we demonstrate and analyze results for a SAVi++ model applied to real-world driving
videos from the Waymo Open [47] dataset.

Datasets As basis for our experiments, we use videos of different scene and camera complexities
(Figure 3c). We use three synthetic Multi-Object Video (MOVi) datasets (Figure 3a) introduced in
Kubric [16], which are created by simulating rigid body dynamics. We narrow our investigation to
MOVi datasets with complex naturalistic backgrounds and 3D-scanned everyday objects (variants
C, D, and E). MOVi-C is generated using a static camera, and all objects (max. 10) are initialized
to move independently. MOVi-D introduces more objects, some of which are dynamic (1-3) and
the majority rests statically in the scene (10-20). Finally, MOVi-E introduces random, linear camera
movement. Each video contains 24 frames sampled at 12 frames per second (fps).

We also train and evaluate SAVi++ in a real-world driving setting using the Waymo Open dataset
(Figure 3b). Waymo Open is comprised of high resolution video data of 1280 × 1920 original
resolution from a multi-camera system collected by Waymo vehicles [47]. The dataset consists of
798 train and 202 validation scenes of 20s video each, sampled at 10 fps. We subsample the dataset
at 5 fps both for training and validation. The dataset also includes LiDAR signals that we use to
compute sparse depth maps as discussed in Section 3.

Training setup For all our experiments, unless stated otherwise, we resize frames to a height of 128
pixels while keeping the aspect ratio fixed, resulting in a 128× 128 resolution for MOVi datasets, and
a resolution of 128× 192 for Waymo Open. We train SAVi++ for 500k steps on Tensor Processing
Unit (TPU) accelerators with a batch size of 64 using Adam [29].

We train on randomly sampled sub-sequences of only 6 frames using 24 slots for MOVi and 11 slots
for Waymo Open. See appendix for further training details and hyperparameters.

4.1 SAVi++ improves object-centric learning on complex synthetic video data

We investigate whether the key changes introduced to SAVi [31], which constitute our improved
SAVi++ model, allow us to overcome limitations of SAVi and address the most challenging synthetic
multi-object video (MOVi) benchmarks introduced in Kubric [16].

Setup We train all models independently on each dataset variant. Both SAVi and SAVi++ are
trained in a conditional setting where we initialize slots using ground-truth bounding box information
in the first frame. We report the same segmentation metrics as in prior work, i.e. Foreground Adjusted
Rand Index (FG-ARI) [21, 42] and Mean Intersection over Union (mIoU). FG-ARI is a permutation-
invariant clustering similarity metric frequently used for evaluating scene decomposition quality. It
compares discovered segmentation masks with ground-truth masks while ignoring any pixels that
belong to the background. It is sensitive to temporal consistency of masks, but insensitive to their
ordering. The mIoU metric is a standard segmentation metric, here adapted for video as in [5].
We note that this implementation is sensitive to the correct ordering of masks, i.e. it also measures
whether models used the conditioning signal (here, first-frame bounding boxes) correctly.

Baselines Besides comparing to SAVi [31], the most representative prior method for the task we
are interested in, we compare against a range of baselines aimed at establishing the difficulty of the
unsupervised, bounding box-conditioned video object segmentation task: 1) a bounding box copy
(BBox copy) baseline, which simply repeats the first-frame boxes throughout the video, 2) a learned
BBox propagation baseline that does not receive visual inputs, to test for easily exploitable biases in
the datasets, 3) k-Means clustering baselines, that cluster the flow and/or depth signal across the video
sequence (initialized using the ground-truth object centers in the first frame), and 4) a label propagation
baseline, that uses visual features to propagate the initial boxes (rendered as rectangular masks) across
the video, based on Contrastive Random Walks (CRW) [22]. See appendix for further details.
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Table 1: MOVi results in terms of mean score ± standard error (5 seeds) from evaluating SAVi++
and baseline models on validation set video sequences of increased length (24 frames). *: we use the
official implementation of CRW [22], which does not report FG-ARI.

mIoU↑ (%) FG-ARI↑ (%)

Model MOVi-C MOVi-D MOVi-E MOVi-C MOVi-D MOVi-E
BBox copy 12.3 42.8 32.9 11.8 68.0 54.7
BBox propagation 22.9± 0.1 26.7± 0.8 24.1± 1.1 9.6± 0.5 24.9± 3.7 18.4± 3.9

K-Means (depth) 7.1± 0.3 6.0± 0.4 5.4± 0.3 26.3± 1.0 30.9± 0.7 32.2± 0.6

K-Means (flow) 10.7± 0.5 7.4± 0.4 6.0± 0.3 26.5± 1.0 30.9± 0.8 33.1± 0.7

K-Means (flow+depth) 10.6± 0.6 6.7± 0.4 5.3± 0.3 26.6± 1.0 35.9± 1.0 34.8± 0.7

CRW [22] 27.8± 0.2 45.3± 0.0 47.5± 0.1 * * *
SAVi [31] 43.1± 0.7 22.7± 7.5 30.7± 4.9 77.6± 0.7 59.6± 6.7 55.3± 5.8

SAVi++ (ours) 45.2± 0.1 48.3± 0.5 47.1± 1.3 81.9± 0.2 86.0± 0.3 84.1± 0.9

Results Quantitative results can be seen in Table 1 and qualitative results on MOVi-E in Figure 4a.
The BBox copy method serves as a trivial baseline which a learning-based approach should outperform.
While the original SAVi model does so on MOVi-C, it clearly fails to model the more complex MOVi-
D and -E datasets. The BBox copy baselines is—perhaps unsurprisingly—strongest on MOVi-D,
where most objects are static. SAVi++ outperforms this baseline on all datasets, indicating that it
learns non-trivial segmentation and tracking capabilities. Indeed, this advantage does not solely come
from fitting certain biases in the datasets, as a learned BBox propagation baseline (using the same
predictor as in SAVi++) that does not receive visual input, fails to generalize to unseen evaluation
videos. It is worth noting that neither of the MOVi tasks can easily be solved by simply clustering the
target signals, as the results for the k-Means baselines demonstrate.

Compared to CRW it can be seen how SAVi++ yields markedly better mIoU on MOVi-C and
D, while performance on MOVi-E is similar. Note that, unlike SAVi++, CRW is merely capable
of propagating pixel-level annotations across frames in a video and does not by itself produce
instance-level object segmentations or corresponding object-representations that could be used for
down-stream tasks. Finally, comparing SAVi++ and SAVi directly, we see that SAVi++ overcomes
the primary limitations of SAVi on the harder MOVi-D and -E datasets, both quantatively (Table 1)
and qualitatively (Figure 4a), while also improving performance on MOVi-C.

Discussion It is evident that a small number of critical changes to SAVi [31], namely utilizing
depth targets, a stronger architecture, and data augmentation, can have dramatic consequences on the
ability of this slot-based model to learn emergent object segmentation and tracking in complex video
sequences. The difference between SAVi++ and SAVi is especially evident for the more complex
datasets in our study (e.g., improving the mIoU score on MOVi-E from 30.7% to 47.1%; see also
Figure 4a). These results demonstrate that SAVi++ is better suited for various data complexities in
terms of object dynamics and camera movement, which are likely to exist in real-world data.

4.2 Ablation study

In this section, we report results of an ablation study to gauge the contribution of the different
components of SAVi++. The three main ingredients of SAVi++ are 1) the use of depth as training
target, 2) the extra capacity added to SAVi by including a transformer encoder, and 3) the use of
data augmentation. Figure 4b shows a systematic ablation of each of those components. Removing
the transformer encoder reduces object segmentation quality, yet the degradation in performance is
relatively limited. While data augmentation only has a mild effect on the simpler MOVi-C dataset, it
makes a substantial difference on the more challenging datasets, MOVi-D and E. Finally, removing
depth targets reduces performance further and is particularly catastrophic on MOVi-E.

In fact, we find that training solely using depth targets without relying on predicting optical flow
as well (see w/o Flow in Figure 4b) still allows the model to accurately segment and track objects,
especially on the more complex MOVi-D and E datasets. This result is particularly strong on MOVi-E
where jointly predicting optical flow presents a difficult task for scenes with camera movement.
Further, training on depth targets was very crucial to obtain good performance on the most complex
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Figure 4: Left: Qualitative results of SAVi++ compared to SAVi [31] on the synthetic MOVi-E dataset
with camera motion. Right: SAVi++ ablation study on MOVi-C, D, and E. Bars reflect validation
set mIoU (mean ± standard error for 5 seeds). We ablate: 1) the transformer encoder (w/o Trans.),
2) data augmentation (w/o Trans. & Aug.), and 3) depth targets (w/o Trans. & Aug. & Depth). We
further report results for training without flow, while only using depth targets (w/o Flow).

Input frame SIMONe SIMONe + depth SAVi++ (unconditional) SAVi++ (conditional)

Figure 5: Qualitative segmentation comparison on the Waymo Open validation set. Naive application
of a SIMONe [24] baseline model to this dataset results in failure, while adapting SIMONe to predict
(sparse) depth maps yields rough (but frequently misaligned) segmentation masks. SAVi++ generally
produces highly accurate segmentation masks, while its unconditional results are promising. Here,
we hide masks that occupy more than 1300 pixels on average per frame to ease interpretability.

synthetic data MOVi-E as demonstrated with the large drop in mIoU when ablating depth and relying
only on optical flow to train the model.

4.3 SAVi++ enables emergent segmentation on real-world driving data

In the previous section, we found that solely using depth as a training target can be sufficient to learn
emergent object segmentation and tracking. This finding provides a strong motivation for scaling
this class of methods to real-world data, where the availability of optical flow relies on approximate
and potentially inaccurate flow estimation methods, whereas depth can be accurately measured using
technologies like LiDAR. To investigate this possibility, we use the Waymo Open dataset [47], which
includes videos obtained from cameras mounted on cars in various traffic environments.

Setup To obtain a depth signal, we project 3D LiDAR points into the camera frame, resulting in
a very sparse depth image for each time step (see Figure 3b for examples). We exclude pixels that
do not have a valid LiDAR point when computing the L2 loss in image space. We train SAVi++
with 11 slots on 6 frames and evaluate the model on sequences of 10 frames. Due to the absence of
ground-truth segmentation labels in Waymo Open, we quantitatively measure performance compared
to ground-truth bounding boxes using three metrics. The Center-of-Mass (CoM) distance measures
the average Euclidean distance between the centroid of the predicted segmentation masks and the
centers of the ground-truth bounding boxes. We report the centroid distance normalized by the
maximum achievable distance in the video frame. Additionally, we separately measure the fraction
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Figure 6: Waymo Open qualitative results of SAVi++ (conditional) over long sequences.

of cases where any sort of segment is predicted when a valid ground-truth box exists, denoted as
bounding box recall (B. Recall). The Bounding Box mIoU (B. mIoU) is analog to mIoU using
predicted and ground-truth bounding boxes. The former are obtained by training a readout MLP to
predict bounding boxes from the slot representations. See appendix for further details.

Baselines We quantitatively compare to the subset of previous baselines that work with (sparse)
depth. Further, we report qualitative results for SAVi++ in the unconditional setting, i.e. without
providing first-frame bounding boxes to the model to initialize slots, and compare to SIMONe [24]
as a representative object-centric video model baseline from the literature.

Results Quantitative results can be seen in Table 2 and qualitative results in Figures 5–6. We
find that SAVi++ markedly outperforms the BBox copy and propagation baselines, as well as the
clustering baseline in terms of object tracking. Further, the bounding box recall is high indicating
that valid objects are rarely ignored. The qualitative results in Figures 5–6 even better reflect the
significance of SAVi++’s performance as well as its potential utility for object-centric representation
learning from real-world videos (for SAVi++ results divided per object category see appendix).

Our results using sparse depth targets suggest that SAVi++ does not need complete (i.e. dense) depth
supervision. To investigate how accurate this signal needs to be, we explored the degree of sensitivity
of SAVi++ to noise in the depth signal. We trained SAVi++ with noisy depth targets by applying
additive Gaussian noise to the ground-truth sparse LiDAR depth signals with standard deviations of
10cm, 20cm and 40cm. We found that SAVi++ was able to retain its emergent tracking performance
even at the highest considered noise scale of 40cm (see Table 3 in appendix).

Table 2: Waymo Open results (mean ± standard
error in %, 3 seeds) from evaluating models on
sequences of 10 frames. SAVi++ HR is a vari-
ant trained on higher-resolution (256× 384) video
frames.

(%)
Model CoM↓ B. mIoU↑ B. Recall ↑
BBox Copy 5.0 44.3 100
BBox Prop. 5.1± 0.1 38.5± 0.5 100
K-Means (depth) 13.0± 0.1 – 100
SAVi (RGB) 21.5± 1.8 7.9± 0.9 95.8± 2.7

SAVi (depth) 24.7± 0.7 10.3± 2.4 97.4± 0.6

SAVi++ 4.4± 0.2 49.7± 0.7 96.5± 0.7

SAVi++ HR 3.9± 0.1 51.9± 0.4 96.2± 0.4

Supervised 1.1± 0.0 67.6± 0.6

We additionally experimented with removing
the bounding box conditioning in SAVi++ in the
initial frame. Removing this conditioning sig-
nal and using a learned initialization together
with a simplified encoder also yielded good
object decompositions (see SAVi++ (uncondi-
tional) in Figure 5). Compared to using plain
SIMONe [24], we observe that SAVi++ (uncon-
ditional) performs markedly better. Interestingly,
modifying the non-autoregressive SIMONe
baseline similar to SAVi++ by predicting sparse
depth instead of RGB also showed improve-
ment in object emergence. This gives further
evidence that using depth is suitable for learning
object-centric representations from real videos.
Quantitatively, SAVi++ achieves a CoM distance
of 6.9 ± 0.5 while SIMONe (with depth loss)
achieves 7.4± 0.21 over a sequence of 12 frames at test time, evaluated using Hungarian matching.

We show qualitative results for longer sequences in Figure 6 and in video-format in the supplementary
material. It is worth noting that SAVi++ was only trained on 6 frames and did not receive any tracking
supervision. Interestingly, we find that objects are often consistently tracked until the moment they
leave the scene. At this stage, slots are freed up again and tend to bind to previously unexplained
or new objects. This behaviour indicates that our reported tracking metrics are an underestimation
of the capabilities of the model, as such re-binding is not accounted for. It is, however, conceivable

1These baseline results are improved compared to an earlier version of the paper by using exactly the same
depth target transformation as for SAVi++.
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that re-binding events could be identified post-hoc if one were to use the representations learned by
SAVi++ for downstream tasks, which is an interesting avenue for future work.

4.4 Limitations

With SAVi++, we demonstrated the first proof of concept that an emergent object-centric decomposi-
tion of real-world complex videos is possible with an end-to-end slot-based approach. Yet, there is
still a lot of room for improvement.

Reliance on conditioning We focused our exploration on the conditional setup where we provided
cues in the form of bounding boxes of objects in the first frame. Although the use of such “object
hints” may share some similarity to how human visual attention (and how humans parse a visual
scene) can be directed via external signals (e.g., via gestures such as pointing), it ultimately limits the
practical applicability of our approach. Preliminary results with unconditional SAVi++ suggest that
this information may not be strictly necessary and could be removed in future research.

Reliance on ground-truth target signals In a similar vein, the reliance of SAVi++ on ground-truth
target signals for training is a limitation that may affect its practical applicability. Fortunately, LiDAR
sensors for depth estimation are readily available in many application domains (such as in robotics
and self-driving), and there is also a rich literature on monocular depth estimation. While estimated,
depth (or flow) are expected to be noisier compared to the signals considered in our experiments, our
experiment with “noisy depth” offers an initial sign that this may not affect performance much.

Gap to videos recorded in the wild It is also important to point out that although Waymo Open
offers a challenging real-world benchmark for learning about objects, its videos are relatively
structured compared to real-world videos recorded “in the wild”, and especially heavy on cars, roads,
traffic signs, pedestrians, etc. Other datasets, such as DAVIS [41] or Kinetics [28] offer greater
complexity in that regard and it is foreseeable that further development of SAVi++ will be needed
to truly support these. An example of this is that objects in Waymo Open usually do not re-appear,
which is an aspect that is currently not explicitly modeled in SAVi++ (e.g. to ensure that the same
object is re-captured by the same slot). More generally, there is substantial headroom to improve the
modeling of disappearing and reappearing objects in future work, such as by explicitly modeling
object presence [33], or by explicitly attending to past latent states [58].

Gap to supervised approaches Finally, we note how both in the conditional and the unconditional
setting, the segmentation and tracking performance, though impressive given the minimal amount of
supervision the model receives, still qualitatively lags behind supervised approaches. Improving on
the temporal consistency of object tracks, especially in the unconditional setting, is another promising
direction for future work.

5 Conclusion

We demonstrate that object tracking and segmentation can emerge from utilizing information about
scene geometry in the form of depth signals in complex video data with slot-based neural architectures.
We utilize a series of synthetic multi-object video benchmarks with increasing complexity to find a
simple yet effective set of changes to an existing state-of-the-art object-centric video model (SAVi),
allowing us to bridge the gap from synthetic to complex real-world driving videos.

Our work marks a first step towards building end-to-end trainable systems that learn to perceive
the world in an object-centric, decomposed fashion without relying on detailed human supervision.
While many open challenges remain, this result evidences that object-centric deep neural networks
are not inherently limited to simple synthetic environments, and we are excited about the potential
for this class of methods to radically reduce the need for human supervision in building scalable
perceptual systems for the real world.
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