
A Different functional norms and corresponding function spaces

Here we introduce some preliminary definitions on function norms and functions spaces involved in
this paper, and the definition for distributional universality.

For a measurable mapping f : Rn → Rd and a subset K ⊆ Rn, we define:

∥f∥Lp(K) ≜

(∫
K

∥f(x)∥pdx
)1/p

, 1 ≤ p <∞,

∥f∥L∞(K) ≜ lim
p→∞

∥f∥Lp(K)
f cont.
===== sup

x∈K
∥f(x)∥,

where ∥ · ∥ can be any norm on Rd, as norms on the finite-dimensional vector space are all equivalent.
For simplicity, we choose the maximum norm on Rd, i.e., ∥(x1, x2, · · · , xd)∥ = max1≤i≤d |xi|.
We can also consider the norm containing derivative information when f is k-th differentiable:

∥f∥Ck(K) ≜
∑

|α|≤k

∥Dαf∥L∞(K),

where α = (α1, α2, · · · , αd) ∈ Nd, |α| =
∑d

i=1 αi and Dαf = ∂|α|f

∂x
α1
1 ···∂xαd

d

.

With these norms, we can define corresponding function spaces:

Lp(K) ≜ {Domain(f) = K : ∥f∥Lp(K) <∞}
L∞(K) ≜ {Domain(f) = K : ∥f∥L∞(K) <∞}
Ck(K) ≜ {Domain(f) = K : ∥f∥Ck(K) <∞}

when K is compact, Ck(K) ⊆ L∞(K) ⊆ Lp(K), and an important fact is that Ck(K) is dense
in Lp(K) under Lp norm. Thus the universality over Ck(K) in Ck-norm is stronger than the
universality over L∞(K) in L∞ norm, further stronger than the universality over Lp(K) in Lp norm.
Definition A.1. (Distributional universality). LetM be a set a set of measurable mappings from Rn

to Rd. We say thatM is a distributional universal approximator if for any absolutely continuous
probability measure µ over Rn w.r.t. Lebesgue measure, and any probability measure ν over Rd,
there exists a sequence {gi}∞i=1 ⊆ M such that (gi)∗µ converges to ν in distribution as i → ∞,
where (gi)∗µ(A) ≜ µ

(
g−1
i (A)

)
for any measurable set A.

B Proofs

B.1 Proofs for Theorem 3.2

Definition B.1. Isotopies. An isotopy between two diffeomorphisms ϕ0, ϕ1 ∈ Diffkc
(
Rd

)
is a Ck-map

H : [0, 1] × Rd → Rd such that the mapping ht : Rd → Rd defined by ht (x) = H (t, x) for all
t ∈ [0, 1] satisfies h0 = ϕ0, h1 = ϕ1 and ht ∈ Diffkc

(
Rd

)
for all t ∈ [0, 1]. It turns out that t→ ht

is a continuous path in the group Diffkc
(
Rd

)
joining ϕ0 to ϕ1.

Proposition B.2. (Proposition 1.2.1 in [4]) The group Diffkc
(
Rd

)
is connected. Moreover, the group

Isok
(
Rd

)
of diffeomorphisms with compact supports which are isotopic to the identity map I through

isotopies coincide with Diffkc
(
Rd

)
. Here the identity map I means I (x) = x for all x ∈ Rd.

Definition B.3. (δ, k)-near-identity Ck-diffeomorphisms. Let Bδ,k be the Ck-norm ball with
radius δ and centered at identity map I (x) = x, that is to say, Bδ,k = {f ∈ Diffkc

(
Rd

)
:

sup|α|≤k ∥D|α| (f − I) ∥L∞ < δ}. A diffeomorphism ϕ ∈ Diffkc
(
Rd

)
is said to be (δ, k)-near-

identity, if ϕ ∈ Bδ,k.

Lemma B.4. (Lemma 2.1.8 in [4]) For any diffeomorphism f ∈ Diffkc
(
Rd

)
and any δ > 0 ,

there exists a finite sequence of (δ, k)-near-identity diffeomorphisms g1, · · · , gs such that f =
gs ◦ gs−1 ◦ · · · ◦ g1.
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Proof. Note that there exists an isotopy ht from I to f such that h0 = I and h1 = f . We rewrite
f = h1 =

(
h1 ◦ h−1

(s−1)/s

)
◦
(
h(s−1)/s ◦ h−1

(s−2)/s

)
◦ · · · ◦

(
h1/s ◦ h−1

0

)
and let gi = hi/s ◦h−1

(i−1)/s,
we can see that f = gs ◦ gs−1 ◦ · · · ◦ g1. Take s large enough, we can make hi/s and h(i−1)/s close
enough such that hi/s ◦ h−1

(i−1)/s is (δ, k)-near-identity.

Theorem B.5. There exists a δ0 > 0, such that for any δ < δ0 and any f ∈ Diff1c
(
Rd

)
that is (δ, 1)-

near-identity, f can be written as g ◦ h with h (x, y) =
(
x, h̃ (x, y)

)
and g (x, y) = (g̃ (x, y) , y) for

x ∈ Rd−1, y ∈ R. If f ∈ Diffkc
(
Rd

)
, so are g and h. Further more, g satisfies

(
δ̃, 1

)
-near-identity

for δ̃ = δ
1−δ > 0.

Proof. Let πi : Rd → R denote the projection onto the ith coordinate. Suppose f : Rd → Rd

is compactly supported and sufficiently Ck-close to the identity. Then for any point (x, y) =
(x1, · · · , xd−1, y), the map fx : R→ R given by fx (y) = πnf (x, y) is a diffeomorphism: surjec-
tivity follows from the fact that f has compact support, which means limy→±∞ fx (y) = ±∞ and
by the continuity of fx; injectivity follows from the fact that if fx (y1) = fx (y2) for some y1 ̸= y2,
then fx must has zero derivatives at some point y ∈ (y1, y2), but the derivative of fx respect to y is
near 1, a contradiction.

Now given f , define h and g : Rd−1 × R→ Rd−1 × R by

h (x, y) = (x, fx (y)) , and
g (x, y) = (g1 (x, y) , g2 (x, y) , · · · , gd−1 (x, y) , y) ,

where gi (x, y) = πi

(
f
(
x, f−1

x (y)
))
∈ R. Obviously g, h ∈ Diffkc

(
Rd

)
given f ∈ Diffkc

(
Rd

)
and

f = g ◦ h. Also we observe that, f is (δ, 1)-near-identity, thus

sup
x,y
| ∂
∂y

fx (y)− 1| < δ, sup
x,y
| ∂
∂xi

fx (y) | < δ,

sup
x,y
| ∂
∂y

f−1
x (y) | = sup

x,y
| ∂
∂y

fx (y) |−1 <
1

1− δ
.

Then we have

0 =
d

dxi
y =

d

dxi

(
f−1
x (fx (y))

)
=(

∂

∂xi
f−1
x ) (fx (y)) + (

∂

∂y
f−1
x ) (fx (y)) ·

(
∂

∂xi
fx (y)

)
,

and further

| ∂
∂xi

f−1
x (y) | =|

(
∂

∂y
f−1
x

)
(y) ·

((
∂

∂xi
fx

)(
f−1
x (y)

))
|

≤ sup | ∂
∂y

f−1
x | · sup |

∂

∂xi
fx| <

δ

1− δ
.

If we denote fj (x, y) = πjf (x, y), we get

| d
dxi

gj (x, y)− δi,j |

=| ∂
∂xi

fj
(
x, f−1

x (y)
)
− δi,j +

∂
∂y

(
fj

(
x, f−1

x (y)
))
· ∂
∂xi

f−1
x (y) |

<δ + δ · δ

1− δ
=

δ

1− δ
,

which proved that g is
(

δ
1−δ , 1

)
-near-identity. Here δi,j are the kronecker symbols and we notice

| ∂
∂xi

fj − δi,j | < δ.
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Corollary B.6. There is a 0 < δ < 1
d−1 such that for any f that is (δ, 1)-near-identity, f can be

written as f1 ◦ f2 ◦ · · · fn, fi ∈ S1,d
c with fi (x) =

(
x1, x2, · · · , xi−1, f̃i (x) , xi+1, · · · , xd

)
for

x = (x1, · · · , xd) ∈ Rd. If f is in Diffkc
(
Rd

)
for some k >= 1, then so are fi.

Proof. By taking δ small enough, we can make δ̃ = δ/ (1− δ) small enough, thus the g in Thm. B.5
can be further decomposed. A simple observation shows that if f already preserves some coordinates,
then so does g. If we set δi =

δi−1

1−δi−1
and δ1 = δ < 1

n−1 , by noticing 1
δn−1

= 1
δ1
−n+2 > 1, we can

make δn−1 small enough, thus the decomposition can always be continued until all the coordinates
have been decomposed.

Proof of Thm. 3.2. It can be immediately proved by Lem. B.4 and Cor. B.6 .

B.2 Definition of distDiff1c(Rd) and proof of Theorem 3.3

Definition B.7. For any f and g ∈ Diff1c(Rd), let π(f, g, ϵ) denotes the set of partitions between f
and g with maximum jump less than ϵ,

π(f, g, ϵ) := {(f1, · · · , fn) : f1 = f, fn = g, ∥fi ◦ f−1
i+1 − I∥Ck < ϵ, 1 ≤ i < n, n ∈ N+}

then we define

distDiff1c(Rd)(f, g) := lim sup
ϵ→0

min
(f1,··· ,fn)∈π(f,g,ϵ)

n−1∑
i=1

∥fi ◦ f−1
i+1 − I∥Ck .

Proof of Thm. 3.3 . By Lem. B.4, f can be decomposed into s1 many ( 1
d−1 , 1)-near-identity diffeo-

morphisms with s1 ≈ (d − 1)ℓ; by Cor. B.6, each ( 1
d−1 , 1)-near-identity diffeomorphism can be

decomposed into at most d single-coordinate transforms, thus s ≤ s1 · d ≈ d(d− 1)ℓ. The evaluation
for ℓ is difficult, but a lower bound is straightfoward: ℓ ≥ ∥f − I∥C1 . When f is not far from I , the
lower bound is adequate. More details refer to [4].

B.3 Proof for Theorem 3.4

Proof. Take any positive number 1 > ϵ̃ > 0 and compact set K ∈ Rd. Put r ≜ maxx∈K ∥f1 (x) ∥
and K ′ ≜ {x ∈ Rd : ∥x∥ ≤ r + 1}. Let g2 ∈ G satisfying

∥f2 − g2∥Ck(K′) < ϵ̃.

Since any continuous map is uniformly continuous on a compact set, we take a positive number δ > 0
such that for any x,y ∈ K ′ with |x− y| < δ,

sup
|α|≤k

∥Dαf2 (x)−Dαf2 (y) ∥ < ϵ̃.

From the assumption, we can take g1 ∈ G satisfying

∥f1 − g1∥Ck(K) < min{1, δ}.

Then it is clear that f1 (K) ⊆ K ′ by the definition of K ′. Moreover, we have g1 (K) ⊆ K ′. In fact,
we have

∥g1 (y) ∥ ≤ sup
x∈K
∥f1 (x)− g1 (x) ∥+ |f1 (y) | ≤ 1 + r

for any y ∈ K ′.

Then for any x ∈ K, we have

∥f2 ◦ f1 − g2 ◦ g1∥
≤∥f2 ◦ f1 − f2 ◦ g1∥+ ∥f2 ◦ g1 − g2 ◦ g1∥ < 2ϵ̃.
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Now let us consider the cumulative error for derivatives. We have

∥D (f2 ◦ f1)−D (g2 ◦ g1) ∥
≤ ∥D (f2 ◦ f1)−D (f2 ◦ g1) ∥+ ∥D (f2 ◦ g1)−D (g2 ◦ g1) ∥
= ∥ (Df2) ◦ f1 ·Df1 − (Df2) ◦ g1 ·Dg1∥+ ∥ (Df2) ◦ g1 ·Dg1 − (Dg2) ◦ g1 ·Dg1∥
≤ ∥ (Df2) ◦ f1 ·D (f1 − g1) ∥+ ∥ (D (f2 − g2)) ◦ g1 ·Dg1∥+ ∥ ((Df2) ◦ f1 − (Df2) ◦ g1) ·Dg1∥
< (∥Df2∥+ 2∥Dg1∥) ϵ̃
< C (f1, f2) ϵ̃

by noticing that
∥Dg1 (x) ∥ ≤ ∥Df1 (x) ∥+ ϵ̃ ≤ ∥Df1 (x) ∥+ 1.

Higher order derivatives can be estimated following the same procedure with more complex computa-
tions and reusing of triangular inequality. We can finally arrive at

∥f2 ◦ f1 (x)− g2 ◦ g1 (x) ∥Ck(K) < C̃ (f1, f2) ϵ̃

with C̃ (f1, f2) only depends on f1 and f2 and their derivatives, doesn’t depend on ϵ̃ because f1, f2
are compactly supported, which means they have finite high order derivatives over Rd.

Thus we take ϵ̃ = ϵ
C̃(f1,f2)

, then ∥f2 ◦ f1 (x) − g2 ◦ g1 (x) ∥Ck(K) ≤ ϵ, and then finished our
proof.

B.4 Proof for Theorem 3.6

Proof. Note that

ιd ◦ τ ◦ πd (x1, x2, · · · , xd, 0) = (x1, x2, · · · , τd (x) , 0) .
This can be decomposed into three small steps:

(x1, x2, · · · , xd, 0)
ϕ1→ (x1, x2, · · · , xd, τd (x))

ϕ2→ (x1, x2, · · · , τd (x) , xd)
ϕ3→ (x1, x2, · · · , τd (x) , 0) .

Next let us approximate ϕ1, ϕ2, ϕ3 using the elements in G-INNd+1. By definition, ϕ1 can be written
as Φd+1,d,σ,t with σ to be any function, t (x) = τd (x). By assumption,H has Ck-universality for
t, thus we know G-INNd+1 has universality for ϕ1. ϕ2 is just a permutation which is already in our
layers. ϕ3 can be written as Φd+1,d,σ,t with σ = 0, t (x) = −τ−1

d (x). Here τ−1
d (x) is the inverse

of τd (x) w.r.t. xd because τd (x) is a monotonic function w.r.t. xd. Thus, we claim that G-INNd+1

has universality for ϕ3. By Thm. 3.4, we know that ιd ◦ τ ◦ πd can be arbitrarily approximated by
G-INNd+1.

Thus, for any ϵ > 0, there exists a τ̃ ∈ G-INNd+1 such that

∥ιd ◦ τ ◦ πd − τ̃∥Ck(K×R) < ϵ,

and furthermore,

∥τ − πd ◦ τ̃ ◦ ιd∥Ck(K)

= ∥ (πd ◦ ιd) ◦ τ ◦ (πd ◦ ιd)− πd ◦ τ̃ ◦ ιd∥Ck(K)

≤ ∥πd∥ · ∥ιd ◦ τ ◦ πd − τ̃∥Ck(K×R) · ∥ιd∥ < ϵ.

B.5 Proofs for Theorem 3.7

Definition B.8. Isotopies along Diffk,m,d
c . An isotopy between two diffeomorphisms ϕ0, ϕ1 ∈

Diffk,m,d
c is a Ck-map H : [0, 1]× Rm+d → Rm+d such that the mapping ht : Rd → Rd defined by

ht (x) = H (t, x) for all t ∈ [0, 1], h0 = ϕ0, h1 = ϕ1 and ht ∈ Diffk,m,d
c for all t ∈ [0, 1]. It turns

out that t→ ht is a continuous path in the group Diffk,m,d
c joining ϕ0 to ϕ1.

Theorem B.9. The group Diffk,m,d
c is connected. Moreover, the group of diffeomorphisms with

compact supports which are isotopic to the identity map I through compactly supported isotopies
coincide with Diffk,m,d

c . Here the identity map I means I (x) = x for all x ∈ Rm+d.
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Proof. For arbitrary f ∈ Diffk,m,d
c , we have a compactly supported Ck-isotopy

H : Rm+d × [ϵ, 1]→ Rm+d,

given by the proportionately contraction

H ((y,x) , t) ≜ tf (y/t,x/t) ,y ∈ Rm,x ∈ Rd.

It is obvious that H ((y,x) , t) always lie in Diffk,m,d
c , the first m-coordinate corresponding to y are

fixed. By choosing ϵ small enough, we can achieve hϵ (y,x) = H ((y,x) , ϵ) ∈
(

Diff0,m,d
c

)
0
, the

C0-connected neighborhood of identity I .

Thus, there is a prolongation of H : Rm+d×[0, 1]→ Rm+d that is a compactly supported C0-isotopy
from I to f with Ht = I, for all t ∈ [0, ϵ/2]. Since compactly supported Ck-isotopy space with first
m-coordinate fixed is dense in compactly supported C0-isotopy space with first m-coordinate fixed,
and since H is already Ck on Rm+d × ([0, ϵ/2] ∪ [ϵ, 1]), we can always find a compactly supported
Ck-isotopy H̃ from I to f , and thus f is isotopic to the identity I in Diffk,m,d

c .

Follow the same proof in Lem. B.4, we can get the following lemma.

Theorem B.10. For any diffeomorphism f ∈ Diffk,m,d
c and any δ > 0 of the identity, there exists

a finite sequence of (δ, k)-near-identity diffeomorphisms g1, · · · , gs ∈ Diffk,m,d
c such that f =

gs ◦ gs−1 ◦ · · · ◦ g1.

We remark that Thm. B.5 and Cor. B.6 need no modification and can be directly applied to here.

Proof. of Thm. 3.7.

It is immediately proved by Lem. B.10 and Cor. B.6 by replac int d in Cor. B.6 with m+ d.

B.6 Proofs for Theorem 4.2

Proof. By the famous Constant Rank Theorem [7], there exists a parametric (c plays the role of
parameter) diffeomorphism fc(·) : Rdϕ → Rdϕ such that

fc(a,01×(dϕ−da)) = Φ(c,a), for all (c,a) ∈ C × A.

Then we can approximate fc by Thm. 3.6, 3.8, given that d′ = max{da, [d2 ]} ≥ dϕ.

C Learning invertible map under dimension augmentation

In this section, we analysis how to make the affine coupling flow with dimension-augmentation
invertible. For simplicity we only consider the non-parametric case. The input is x ∈ Rd, and after
dimension-augmentation x→ (x,0) and some invertible map layers f , output is F (x) = f(x,0) ∈
Rd+r, where r is the augmented dimension. Note that and F is not a surjective map to Rd+r, and
Range(F ) ∈ Rd+r is a manifold of dimension Rd. Given any y ∈ Rd+r, it’s not always true that we
can find x ∈ Rd such that F (x) = y unless y ∈ Range(F ).

To handle this problem, we need to make sure that Range(F ) is tractable for easy sampling. The
easiest way is to make Range(F ) ≈ Rd×{0}r. Note that in this way, for any y ∈ Rd, we can always
find x ∈ Rd such that f(x,0) = f−1 = (y,0), and note that f is an invertible map, which means
(x,0) = f−1(y,0). Such a f , by Thm. 3.6, Cor. 3.5 and Thm. 3.3, can be approximated arbitrary
well in Ck norm by a fixed-layer-number affine-coupling flow f̂ .

To summarize, if we want to learn an invertible map from x ∈ Rd to y ∈ Rd, we first augment x
and y to (x, 0) ∈ Rd+r and (y, 0) ∈ Rd+r; then apply affine-coupling flow to learn the map f̂ from
(x, 0) to (y, 0). After that, we apply f̂−1 to (y, 0), and get the initial-domain samples.
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D Experiments

D.1 Taiji

In this section we show the learning results of Para-CFlows on the Taiji tasks. The experimental
setting is stated in Section 5.1. We compare the effects of hidden dimensions dhid and number of
layers Nlayer. As we see, when dhid = 2, Nlayer = 6, the learned result is far from correct; when
dhid = 3, Nlayer = 6 or dhid = 2, Nlayer = 9, the results are imperfect; Other situations are almost
the same. We can also refer to Fig. 3(c) for the MSE under different setting, where we can see when
dhid = 5, Nlayer = 6, it can do better than dhid = 5, Nlayer = 15. Thus we believe that raising to
higher dimensions can do better than stacking more layers under similar extra parameter size.

(a) dhid = 2, Nlayer = 6 (b) dhid = 3, Nlayer = 6

(c) dhid = 5, Nlayer = 6 (d) dhid = 8, Nlayer = 6

Figure 5: Different training results under different hidden dimensions

D.2 BO test

D.2.1 Experimental settings

In our experiments, we use 3 well-known benchmark functions: Ackley, Trid and Rastrigin
[41]. It is noted that the original benchmark tasks are contextless. Here, we simply set the first dc
dimensions as the context vector and leave the last one dimension as the action to be optimized. For
our constructed optimization problems, Ackley has the action dimension that is coupled with all
context dimensions, Trid’s action is coupled with just one context dimension, and all the dimensions
of Rastrigin are independent with each other. To construct context-dominating tasks where the
reward depends much more on the context than the action, we set dc ≫ 1.

In the training of all the surrogate models, we consistently set the number of batch size to 64, number
of the epochs to 200, and the learning rate to 0.01. For cases when the dimensionality of context is 5,
10 and 20, we implement each of the aforementioned surrogate models in Sec. 5.2 with similar sizes
(number of trainable parameters) and the corresponding specifications are posted as in Tab.2, Tab. 3,
and Tab. 4, respectively.

D.2.2 KT

To further verify the sensitiveness, we train all models with uniformly randomly sampled data (both
context and action) of various sizes and then test the trained models on 10,000 testing contexts, each
with the action space sweeped. We calculate the Kendall’s Tau (KT) score [27] between fc(a) and
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(a) dhid = 2, Nlayer = 9 (b) dhid = 3, Nlayer = 12

(c) dhid = 5, Nlayer = 15

Figure 6: Different training results under different number of stacking layers

Table 2: When dimensionality of context is 5: #hidden-layers and #hidden-nodes represent the
number of hidden layers and nodes for state network in Para CFlow and base network in other
models, respectively. #flows is the number of modules in a flow-based model. #param is the total
number of trainable parameters in a neural surrogate model.

Method #hidden-layers #hidden-nodes #flows #parameters

Para-CFlow 1 64 3 1428
MLP 2 32 0 1313
MLP-Ascend 2 32 0 1481
Resnet 2 32 0 1346

Table 3: When dimensionality of context is 10: The meaning of the header is the same as in Tab. 2.

Method #hidden-layers #hidden-nodes #flows #parameters

Para-CFlow 0 128 3 5337
MLP 2 64 0 4993
MLP-Ascend 2 64 0 5669
Resnet 2 64 0 5058

Table 4: When dimensionality of context is 20: The meaning of the header is the same as in Tab. 2.

Method #hidden-layers #hidden-nodes #flows #parameters

Para-CFlow 1 64 3 12723
MLP 3 64 0 9793
MLP-Ascend 3 64 0 11469
Resnet 3 64 0 9922

f̂c(a), which measures the action order consistency between the groundtruth and the prediction.
As shown in Fig. 7, Para-CFlow exhibits higher KT scores than the other models under higher
dimensional context, demonstrating that it indeed preserves critical information of the action.
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Figure 7: KT scores calculated from 5 independent trials with the context dimension as 5, 10 and 20.

Figure 8: The mean and standard deviation of the cumulative regret under 10 independent trials using
discrete search with different neural surrogate models for context of dimensionality 5, 10, and 20 on
Rastrigin, Ackley and Trid, respectively.

D.2.3 Discrete search

The cumulative regrets of BO using grid search (That is, we traversal all a in linespace(−3, 3, 100)
in each surrogate-prediction state) with different neural surrogate models for context of dimensionality
5, 10 and 20 are shown in Fig. 8. Comparing this result with 4(b), we can see that Para-CFlow
has lower cumulative regrets when using Gradient Decent than grid search, but the results for other
three models do not support this. Besides, even in grid search, Para-CFlow still does the best among
different models, which means it preserves better action sensitivities.
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