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Abstract

Invertible neural networks based on Coupling Flows (CFlows) have various ap-
plications such as image synthesis and data compression. The approximation
universality for CFlows is of paramount importance to ensure the model expres-
siveness. In this paper, we prove that CFlows can approximate any diffeomor-
phism in Ck-norm if its layers can approximate certain single-coordinate trans-
forms. Specifically, we derive that a composition of affine coupling layers and
invertible linear transforms achieves this universality. Furthermore, in parametric
cases where the diffeomorphism depends on some extra parameters, we prove
the corresponding approximation theorems for parametric coupling flows named
Para-CFlows. In practice, we apply Para-CFlows as a neural surrogate model in
contextual Bayesian optimization tasks, to demonstrate its superiority over other
neural surrogate models in terms of optimization performance and gradient approx-
imations. Code will be avaliable at https://gitee.com/mindspore/models/
tree/master/research/bo/paracflow.

1 Introduction

Invertible neural networks (INNs) such as coupling flows are firstly introduced as a class of generative
models with a tractable likelihood [14, 28, 44], and have shown their usefulness and powerfulness
in various machine learning tasks such as inverse problems [2], probabilistic inference [32] and
feature extraction [25] in recent years. With plenty of successful applications of INNs, one would
wonder if such a type of models have the universal expressiveness. As most generative models mainly
concern about the transform between distributions, existing works such as [22, 26] focused on the
expressiveness from the distribution perspective. However, the expressiveness from the distribution
perspective does not result in the expressiveness from the mapping perspective, as there are a large
(or even infinite) number of functions mapping the given source µ to the given target ν . In many
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applications, knowing the distributional universality is not yet enough. One may be interested
in knowing if the optimal transport [45], which finds emerging applications in many fields, e.g.,
machine learning [35], wireless communication [33] and economics [18], can be approximated by
invertible neural networks. Therefore, beyond the distributional universality, it is also important
to investigate the universality from the mapping perspective. As INNs are always invertible, it
is natural to consider their approximation ability to diffeomorphisms. Diffeomorphism plays an
important role in mathematics, physics and engineering domains with applications in fluid dynamics
[16], wave propagation [20], robot controls [37] etc. A natural question comes to the surface: can
all diffeomorphisms be approximated by INNs? Besides, whether the INNs can approximate the
derivatives in the meanwhile is also interesting and important, e.g., it provides theoretical guarantee
for black box optimization tasks based on surrogate models when gradients are utilized.

More importantly, in many real-world problems, e.g., 3D Euclidean groups, ODE systems and
invertible PDE systems with time t as its parameter, diffeomorphisms are usually described as a
parametric type: a parametric diffeomorphism is a function f(y,x) : Rm+d → Rd such that for
any fixed parameter y0 ∈ Rm, f(y0, ·) is a diffeomorphism between Rd and Rd. It is important to
know if they can also be approximated by INNs with additional inputs of parameters. Existing works
including [42] have been proposed to investigate the universality of INNs over diffeomorphisms,
however it is not able to handle Ck-diffeomorphisms when k = d+ 1 with d as the dimension of the
space. In this paper, we address this limitation and more importantly, inspired by the contextualization
way proposed in [3], we generalize this structural theorem to the parametric diffeomorphism situation,
by concatenating parameters with the variable to be transformed, forming a new subgroup over a
higher dimensional space, and provide a complete proof. This structural theorem shows that any
compact-supported diffeomorphisms can be decomposed into finitely many compositions of single-
coordinate transforms, which we can easily prove to be Ck-approximated by, e.g., affine coupling
flows together with dimension augmentation ([15], [46]).

Lastly, we suggest using Para-CFlow, an affine coupling flow model with dimension augmentation
and contextualization, as a superior neural surrogate for black box optimization. The superiority lies
in: 1) it uses INN architecture to preserve full rank of the action; 2) it has Ck-universality when the
target system satisfies certain conditions. Specifically, 2) facilitates much more efficient surrogate
and gradient-descent based black box optimization compared to other neural surrogates.

Overall, our contribution is three-fold: 1) We improve the results in [42] to higher-order derivatives
with a simpler proof, and give an upper bound on number of layers needed for approximating a
certain diffeomorphism; 2) We generalize coupling flows to parametric coupling flows and prove
their Ck-universal approximation to parametric diffeomorphisms using a novel proving technique; 3)
We propose a practical neural network structure of the parametric affine coupling flows and verify the
advantage of using this for contextual Bayesian Optimization (BO) tasks.

2 Preliminary

Here we introduce some prior knowledge on (parametric) diffeomorphism, INNs and universality,
as well as existing works on universality of INNs. As our theoretical results are motivated by and
improve upon [42], some of our notations and preliminaries are adopted from them. In what follows,
we always assume k,m, n, d ∈ N+, where k represents the derivative order, and m,n, d represent
dimensionalities for some Euclidean spaces. All vectors are supposed to be row vectors.

2.1 Ck-diffeomorphism groups on Rd

Ck-diffeomorphisms (group). Consider an invertible map f from Rd to Rd. f is said to be a
Ck-diffeomorphism, if f has up to k-th continuous derivatives, and detDf(x) ̸= 0 for all x. One
can easily verify that, given f, g : Ck diffeomorphisms from Rd to Rd, f ◦ g and f−1 is still a Ck-
diffeomorphism from Rd to Rd. If we denote Diffk(Rd) ≜ {f : f is a Ck diffeomorphism over Rd},
we see that Diffk(Rd) has a natural group structure with composition as its group operator.

Compactly supported Ck-diffeomorphisms. In real applications, finite data cannot cover the
whole space Rd. Besides, existing approximation theories only guarantee the capability over some
bounded compact set K. Therefore we consider compactly supported functions or diffeomorphisms.
A function f : Rd → R is said to be compactly supported, if there exists a compact set K such

2



that f(x) = 0, for all x /∈ K. Similarly, a diffeomorphism f is said to be compactly supported,
if there exists a compact set K such that f(x) = x, for all x /∈ K, resulting in that all the non-
diagonal components of Df are compactly supported. We define Diffkc (Rd) ≜ {f ∈ Diffk(Rd) :

f compactly supported}. Obviously Diffkc (Rd) is a subgroup of Diffk(Rd).

Ck-parametric diffeomorphisms. A parametric diffeomorphism is a family of diffeomorphisms
with some parameter α: {fα}α∈A, where for any given α, fα is a Rd → Rd diffeomorphism. Usually
the parameter is described by some vector y ∈ Rm, and fy varies continuously or smoothly w.r.t. y.
We denote f(y,x) = fy(x). We can embed it into a higher dimensional diffeomorphism F (y,x) =(
y, f(y,x)

)
. One can verify directly that F ∈ Diffk(Rm+d) given that (1) f(y0,x) ∈ Diffk(Rd) for

any fixed y0; (2) f is k-th differentiable w.r.t. (y,x). Obviously Diffk,m,d
c ≜ {F ∈ Diffkc (Rm+d) :

F (y,x) = (y, f(y,x)) with y ∈ Rm,x ∈ Rd}, whose elements keep the first m coordinates and
change the last d ones, is a subgroup of Diffkc (Rm+d).

2.2 INNs based on parametric coupling flows

Here we introduce the classical INNs and investigate the space generated by them.

Invertible linear transforms. First, let us define the invertible linear transforms (ILT):

ILTd ≜ {L : LxT = AxT + bT , A ∈ GLd(R), b ∈ Rd}

and the parametric case where y are parameters, here GLd(R) includes all d× d regular matrices.

ILTm,d ≜ {L : L
(
yT

xT

)
=

(
Im 0
B A

)(
yT

xT

)
+

(
0
bT

)
, A ∈ GLd(R), b ∈ Rd B ∈ Rd×m}.

Coupling flows. We now define invertible coupling flows [34], a specific type of nonlinear transforms:

Φd,i,ϕ : Rd −→ Rd, (x≤i,x>i) 7−→ (x≤i, ϕ(x≤i,x>i)) ,

where ϕ(x≤i, ·) : Rd−i → Rd−i is a diffeomorphism for each fixed x≤i. Specifically, when
ϕ(x≤i,x>i) = x>i ⊙ exp (σ(x≤i)) + t(x≤i), it is the so-called affine coupling flow [13] and
we denote Φd,i,σ,t = Φd,i,ϕ for such ϕ. σ, t are some functions with d − i output units, typically
modeled with deep neural networks. ⊙ represents the point-wise product. x≤i = (x1, · · · , xi),
x>i = (xi+1, · · · , xd) for x = (x1, · · · , xd). Similarly, for parametric cases, we have:

Φd,i,m,ϕ : Rm+d −→ Rm+d, (y,x≤i,x>i) 7−→ (y,x≤i, ϕ(y,x≤i,x>i)) , (1)

and specifically, ϕ(y,x≤i,x>i) = x>i⊙exp (σ(y,x≤i))+ t(y,x≤i) for affine-type coupling flows
and we denote Φd,i,m,σ,t = Φd,i,m,ϕ for such ϕ.

Single-coordinate affine coupling flows (SACFs) denotes the flows with only the last coordinate
changed. LetHd be a set of functions from Rd to R. We define

H-SACFd ≜ {Φd,d−1,σ,t : σ, t ∈ Hd−1}, andH-SACFm,d ≜ {Φd,d−1,m,σ,t : σ, t ∈ Hm+d−1}.

Note that any multi-coordinates affine coupling flows can be represented by finite composition of
SACFs and invertible linear transforms, it suffices to just consider the universality of SACFs.

Invertible neural networks. Now let us combine linear invertible transform layers and some coupling
flow layers to construct our INNs. Let G be a set consisting of invertible coupling flows. We define
the set of INNs based on G and the parametric case:

G-INNd ≜ {gs ◦Ws ◦ · · · ◦ g1 ◦W1 : s ∈ N, gi ∈ G,Wi ∈ ILTd},
G-INNm,d ≜ {gs ◦Ws ◦ · · · ◦ g1 ◦W1 : s ∈ N, gi ∈ G,Wi ∈ ILTm,d}.

When G containsH-SACFd (orH-SACFm,d in parametric cases), it is equivalent to replacing ILTd

(or ILTm,d) by the symmetric group Sd containing all the permutation over d coordinates operating
on x. This type of networks are well known as Real-NVPs [13]. One can also define other types of
coupling flows. Nevertheless, the theoretical guarantee of any coupling flow can be verified by simply
checking their universality to single-coordinate transforms, as our main result stated in Thm. 3.5.
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2.3 Different types of universality and their relations

Here we define the functional universality. See Appx. A for distributional universality and more.
Definition 2.1. (Lp/L∞/Ck-universality [9]). LetM be a set of measurable mappings from Rn to
Rd. Let p ∈ [1,∞), k ∈ N+ and let F be a set of measurable mappings f : Uf → Rd, where Uf is a
measurable subset of Rn which may depend on f . We say thatM has Lp (or L∞, Ck)-universality
for F , if for any f ∈ F any ϵ > 0, and any compact subset K ⊆ Uf , there exists a g ∈M such that,
∥f − g∥Lp(K) < ϵ (or ∥f − g∥L∞(K), ∥f − g∥Ck(K) < ϵ, definition of these norms in Appx. A).

IfM has the Ck-universality,M has the L∞-universality because Ck(K) is dense in L∞(K) for
any compact K. Also, ifM has the L∞-universality,M has the Lp-universality for any 1 ≤ p <∞.
If an Lp-universality is satisfied for some 1 < p < ∞, then for any 1 ≤ q < p, Lq-universality is
ensured. Finally, L1-universality implies distributional universality but the reverse is not true.

2.4 Related works

Coupling (or triangular) flows. Authors of [24, 6] proved that the distributional universality of a flow
family h can be deduced, if h is dense in the set of all monotone functions by pointwise convergence
topology. In particular, [22] proved the distributional universality for neural autoregressive flows, and
[26] proved that for sum-of-square flows. [42] generalized it to Lp universality with 1 ≤ p <∞ for
affine coupling flows, and L∞ universality for autoregressive flows and sum-of-square flows.

Non-coupling flows. The expressiveness of general non-coupling flows is not well studied, as most
existing works restrict the form of nonlinearity to certain types, e.g., planar and radial flows [36],
Sylvester flows [43], in order to easily compute the determinant of the Jacobian matirx and the inverse
maps. [29] gave a first study over some specific distributions, while the universal distributional results
still remains unknown. Another type, iResNet [5], was proposed based on residual network (ResNet)
[21] to improve nonlinearity as well as the log determinant computation efficiency. [46] proved that
iResNet, capped by linear layers or with extra dimensions, has C0-universality.

Continuous time flows. The ODE-based method is also a major class of flow models as introduced
in [10, 19, 11, 38]. [11] gave counterexamples for the C0-universality of neural ODEs, however its
distributional universality is not yet addressed. An “augmented” neural ODEs was proposed by [15]
and then analyzed by [46]. They showed that embedding the original d dimensional neural ODE into
a d+ 1 dimensional space can bypass the original counterexamples, achieving a C0-universality.

3 Main results

In this section, we present our main results, following the architecture similar to [42]. Section 3.1
provides a proof for non-parametric cases, showing that: 1) the Ck-universality over the Diffkc (Rd)

can be achieved when the Ck-universality over a simple subgroup of Diffkc (Rd) is ensured; 2) affine
coupling layers with one zero-padding has Ck-universality over such a simple subgroup. In addition,
we estimate the number of layers needed for approximate certain diffeomorphism in Thm 3.3. In
Section 3.2, we generalize these results to parametric cases with a novel proof technique.

3.1 Non-parametric cases

Here we outline the main steps of our proof, and the complete proof is available in Appx. B.
Recall the space Diffkc (Rd): All the Ck,Rd → Rd diffeomorphisms which are compactly supported.
There are two advantages of choosing Diffkc (Rd) instead of Diffk(Rd): firstly the compactly supported
property greatly simplifies the structure of this group; secondly for any diffeomorphism F ∈
Diffk(Rd) and any compact set K, there exists a compactly supported diffeomorphism f ∈ Diffkc (Rd)
such that F |K = f |K , i.e., F (x) = f(x), for all x ∈ K (See Lemma 6 in [42]).

Directly proving the universality to a general diffeomorphism is difficult. It is beneficial to decompose
the original hard problem into a series of simpler ones as follows.
Definition 3.1. A diffeomorphism τ ∈ Diffkc (Rd) is in single-coordinate transforms Sk,d

c , if
τ(x) = (x1, x2, · · · , xi−1, τi(x), xi+1, · · · , xd), i.e., only one coordinate is altered, and τi(x) =
τi(x1, · · · , xd) is a function from Rd to R which is monotonic for xi .
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The theorem as follows shows that, all diffeomorphisms in Diffkc (Rd) can be constructed from Sk,d
c .

Theorem 3.2. For any subgroup H ⊆ Diffkc (Rd) s.t. Sk,d
c ⊆ H , H = Diffkc (Rd). That is, for any

f ∈ Diffkc (Rd), there exists τ1, τ2, · · · , τs ∈ Sk,d
c , s ∈ N s.t. f = τs ◦ τs−1 ◦ · · · ◦ τ1.

Proof. The following two steps are sketched: 1) If H ⊆ Diffkc (Rd) and Sk,d
c ⊆ H , H contains all

near-identity diffeomorphisms (Def. B.3). The detail is stated in Cor. B.6. 2) If H ⊆ Diffkc (Rd)

contains all near-identity diffeomorphisms, H = Diffkc (Rd). The detail is stated in Lem. B.4.

We further investigate the number of single-coordinate transforms needed to represent an arbitrary
diffeomorphism in Thm. 3.3 as follows. The definition of distDiff1c(Rd) and the proof is provided in
Appx. B.2

Theorem 3.3. Given f ∈ Diffkc (Rd), we denote distDiff1c(Rd)(f, I) = ℓ for some ℓ > 0, the minimal
length of paths between f and the identity map I lying in Diff1c(Rd) with the C1-norm induced metric.
Then f can be decomposed into d(d− 1)ℓ single-coordinate transforms.

Thm. 3.2 decomposes the original general complex diffeomorphism into finitely-many simple diffeo-
morphisms. It is natural to ask: if we can approximate all the Sk,d

c well, can we also approximate
Diffkc (Rd) well? Thm. 3.4 gives a positive answer to the question.

Theorem 3.4. (Approximation for composition.) Suppose G is a group of diffeomorphisms over Rd.
Given a set of diffeomorphisms F over Rd, denote F as the semigroup generated by F . If G has
Ck-universality for F , G has Ck-universality for F .

Proof. We only need to prove the following statement: If G has Ck-universality for f1, f2 ∈ F ,
then G has Ck-universality for f1 ◦ f2 ∈ F . By the property of semigroups, we know that G has
Ck-universality for the whole F . Details can be found in Appx. B.3.

Combining Thm. 3.2 and 3.4, noticing that Sk,d
c is inverse-invariant (for any τ ∈ Sk,d

c , τ−1 ∈ Sk,d
c ),

we can immediately obtain following corollary.

Corollary 3.5. Suppose G is a group of diffeomorphisms over Rd, if G has Ck-universality for Sk,d
c ,

then G has Ck-universality for Diffkc (Rd).

As stated in Cor. 3.5, any INNs that approximate Sk,d
c will eventually approximate Diffkc (Rd) in

Ck-norm, which is an extension from the Lp and L∞ universality stated in [42]. Furthermore, we
generalize this result to parametric cases in the next section.

Affine-Coupling Flows. Now we only need to prove the universality of G-INNd over Sk,d
c , when G

containsH-SACFd. However, even for such a simple class of diffeomorphisms, G-INNd is not able
to approximate it very well: existing works [42] shows that G-INNd has Lp universality over Sk,d

c .
Whereas they gave a negative conjecture for L∞ universality, let alone the Ck-universality.

However, despite the lack of easily computed log-determinant for density evaluation, dimension
augmentation has been proven to reach better approximation ability for Neural ODEs [15], [46].
Similarly, when the single-transform is embedded into a higher dimension Euclidean space by padding
zeros, the approximation ability becomes much stronger, achieving Ck-universality, far beyond Lp

universality. We first define the canonical immersion ιd, and submersion πd:

ιd : (x1, · · · , xd) 7→ (x1 · · · , xd, 0), πd : (x1, · · · , xd, xd+1) 7→ (x1 · · · , xd).

Thm. 3.6 says by raising the dimension by 1, we can achieve Ck -universality. Proof is in Appx. B.4.

Theorem 3.6. For any compact set K ⊆ Rd, and any τ ∈ Sk,d
c , τ : (x1, x2, · · · , xd−1, xd) −→

(x1, x2, · · · , xd−1, τd(x)), there exists τ̃ in G-INNd+1 with G ⊇ H-SACFd+1, such that ∥τ − πd ◦
τ̃ ◦ ιd∥Ck(K) < ϵ, given thatHd has Ck-universality over functions K → R.
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3.2 Parametric cases

Following Section 3.1, we generalize the results to parametric cases. We use a novel proof technique,
by concatenating parameters with the primary input to be transformed, forming a new subgroup over
a higher dimensional space, and exploiting the structure of this subgroup.

We denote Sk,m,d
c ≜ Sk,m+d

c ∩Diffk,m,d
c , which is the set of transforms acting on a single coordinate

of x. Recall the definition of compactly supported parametric diffeomorphisms group in Section
2.1, where y acts as parameters. One might raise a question: why not directly use the result
in non-parametric case, as all the elements in Diffk,m,d

c are also in Diffkc (Rm+d)? Note that the
decomposition theorem only ensures that Sk,m+d

c can generate Diffkc (Rm+d) and then Diffk,m,d
c , it

does not guarantee that Sk,m,d
c can generate Diffk,m,d

c . Without such a guarantee, we have to use
operators that may alter coordinates of both y and x, and the coordinates of y in the output layer
should be exactly the same as the coordinates of y in the input layer, which restricts the flexibility and
increases the approximation difficulty. Thus we derive new dedicated theorems for parametric cases.

Theorem 3.7. For any subgroup H ⊆ Diffk,m,d
c s.t. Sk,m,d

c ⊆ H , H = Diffk,m,d
c . That is, for any

f ∈ Diffk,m,d
c , there exists τ1, τ2, · · · , τs ∈ Sk,m,d

c , s ∈ N s.t. f = τs ◦ τs−1 ◦ · · · ◦ τ1.

Proof. The following two steps are sketched: 1) If H ⊆ Diffk,m,d
c and Sk,m,d

c ⊆ H , H contains
all near-identity diffeomorphisms (Def. B.3). The detail is stated in Cor. B.6. 2) If H ⊆ Diffk,m,d

c

contains all near-identity diffeomorphisms, H = Diffk,m,d
c The detail is stated in Lem. B.10.

Given the above theorem, we easily obtain the Ck-universality for Diffk,m,d
c following Section 3.1.

Theorem 3.8. Suppose G is a group of diffeomorphisms over Rm+d. If G has Ck-universality for
Sk,m,d
c , then G has Ck-universality for Diffk,m,d

c .

A proof of G-INNm,d universality over Sk,m,d
c , when G containsH-SACFm,d, follows Thm. 3.6 in

Section 3.1, and thus the detail of the proof is skipped here.

4 Para-CFlows as superior neural surrogates for black box optimization

In real applications such as control and optimization of telecommunication networks, power grid
systems, and electronic systems, we aim to optimize a complicated system under various contexts.
Specifically, we are interested in an unknown function b(a, c) : A× C → R, where A ⊆ Rda , C ⊆
Rdc are connected and positive measurable. a is a set of actions one can tune and c is a context vector
representing exogenous stimuli. In most cases, we are interested in optimizing the function b, i.e.
finding a∗ = argmaxa b(c,a) given a context c. Our task is to quickly find a∗ at each c using as
few queries as possible. In this paper, we advocate to use Para-CFlows, affine coupling flow models
with dimension augmentation and parameterization (context information inputted as parameters), to
model the relationship between b and a, c. Specifically, Para-CFlows are constructed as follows:
Step 1: We first map a into a higher dimensional space Rd (d > da): ϕ0 : a 7→ (a,aW ) ≜ ã(0),
where W ∈ Rda×(d−da). By construction, rank(ϕ0) = da.
Step 2: We further compose ϕ0 with a series of invertible affine coupling layers ϕi, 1 ≤ i ≤ N
operating in Rd (Eq. (1)). For any x ∈ Rd, let d′ = max{da, [d2 ]}, we define

ϕc,i(x) = (x≤d′ ,x>d′ ⊙ exp(σi(c,x≤d′)) + ti(c,x≤d′)) ,

σi, ti are functions with d− d′ outputs, implemented by any nonlinear functions like DNNs.
Step 3: We write ã(i) = ϕiPi(ã

(i−1)), 1 ≤ i ≤ N , where Pi are any fixed random permutation, and

ã(N) = (ϕc,NPN ) ◦ · · · ◦ (ϕc,1P1) ◦ ϕ0(a) ≜ ϕ(c,a), (2)

which is followed by a simple function b̂ : Rd → R represented by a simple neural network that
shall be trained. Then the whole model is trained by minimizing the Mean Square Error (MSE).

minσi,ti,b̂
1
M

∑
1≤j≤M

(
bj − b̂(ϕ(cj ,aj))

)2

with bj = b(cj ,aj) are trainning samples.

Although it is a straight-forward extension of coupling flows and a similar one was found in [3], our
key contribution mainly lie in the theoretical part: for the first time, we prove its Ck-universality to
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Figure 1: Network structure of Para-CFlow

parametric diffeomorphisms and with this property, we advocate to apply it to address an vital action
sensitivity issue in black box optimization other than computer vision tasks where flow models are
most widely applied.

We now analyze the superiority of Para-CFlows as the surrogate for black box optimization.

Property A: Para-CFlows preserves full information of actions. Existing methods [30, 12, 1, 17,
23] for BO do not handle well the weak action sensitivity issue of many real system optimization
tasks [40], where the actions/configuration parameters’ effect is overwhelmed by the highly volatile
system state and thus the surrogate model f̂(c,a) can easily degenerate to f̂(c) due to a small sample
size, especially when dc ≫ da. On the contrary, Para-CFlow, by construction, preserves all the
information (the rank) of a up to the last feature extraction layer before the final regression layer.

Property B: Para-CFlows has Ck universality to all rank-preserving systems. Based on the
universality of parametric coupling flows in Section 3, we further investigate what kind of objective
function b can be approximated by Para-CFlows. We give the necessary condition to b as follows.
Assumption 4.1. b is an observation of the inner system state Φ : b(c,a) = l(Φ(c,a)) and the
system is rank-preserving, i.e. the inner state Φ(c,a) : C ×A → Rdϕ is a differentiable function
and preserves full information of actions, i.e., rank

(
∂Φ
∂a

)
= da.

Under Assumption 4.1, we can get the following result, which ensures the expressiveness of our
architecture,
Theorem 4.2. For any system Φ : C × A → Rdϕ satisfying Asmp. 4.1, if d ≥ 2dϕ and Φ have
up to k-th order derivatives, then for any ϵ > 0, we can always find a ϕ in the form (2), such that
∥Φ(c,a)−πϕ(c,a)∥Ck(C×A) ≤ ϵ, given that σi, ti, b̂ are Ck-universal function approximator. Here
π is the canonical submersion: Rd → Rdϕ , (x1, x2, · · · , xdϕ

, · · · , xd) 7→ (x1, x2, · · · , xdϕ
).

Readers can check Appx. B.6 for the proof. Thm 4.2 shows that the inner system Φ can be uniformly
approximated by the feature extraction layer ϕ of Para-CFlow. The observation function l(·) can
then be approximated by b̂ as a result of the universality of Multi-Layer Perceptons (MLPs).

The Ck-approximability property of Para-CFlow are of vital importance for black box optimization.
Let us just focus on the exploitation phase, i.e., a∗ = argmax b̂(ϕ(c,a)). When the action space is
continuous and high dimensional (though in this paper, we focus on the context dominating tasks
where dc ≫ da), one is not able to find the optima easily by brute-force search. Many existing
works utilize meta-heuristic such as Evolutionary Algorithm (EA) of which the performance heavily
depends on the population size and the number of iterations, and thus it is computation demanding and
time consuming. Instead, one can apply Gradient Descent (GD) to the surrogate if it is differentiable,
i.e. at+1 ← at + η∇ab̂(ϕ(c,a))|a=at . However, for the GD method to work, it requires that
the surrogate approximates not only the function value but also its first-order derivative. However
function value approximation does not necessarily guarantee derivative approximation. A simple
illustrative example is fn(x) = g(x) + sin(nx)/n. One can easily observe that fn(x) → g(x),
but f ′

n(x) = g′(x) + cos(nx) will never converge to g′(x) when n→∞. With this argument, we
advocate Para-CFlow as an adequate choice for surrogate modeling for continuous action space
BO. We also find it suitable to approximate Q-function in Reinforcement Learning (RL), especially
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for DPG [39], DDPG[31] and references therein where one need to estimate the gradient of the
Q-function w.r.t. the action to train the actor network. Extension to DRL will be left for future work.

With the aforementioned properties, our proposed Para-CFlow model can serve as a superior neural
surrogates and in the setting of BO, we can easily adopt existing SOTA methods of Bayesian deep
learning and deep ensembles to facilitate the uncertainty modeling with Para-CFlow.

5 Experiments

In this section, we conduct experiments to verify the expressiveness of our proposed Para-CFlow
and demonstrate its advantage as neural surrogate models in application to black-box optimizations.

5.1 Learning diffeomorphism “Taiji”

We demonstrate the expressiveness of our model to learn a parametric diffeomorphism with a synthetic
task called “Taiji”. We define our target parametric diffeomorphism:

fy : (ρ cos θ, ρ sin θ) 7→ (ρ cos θ̃, ρ sin θ̃),where θ̃ = θ + y arccos(min(ρ, 1)). (3)
On the unit circle ρ = 1, it is not differentiable, thus we expect the trained model to have irregular
derivatives over the unit circle, while maintain accurate derivatives elsewhere.

First, we design a task with sufficient amount of data to verify the C1 approximation ability of
Para-CFlows. We generate samples {(xi, yi)}1≤i≤30000 with xi ∼ U [−1, 1]2 and yi ∼ U [0, 1]
independently. Under the polar coordinate representation, i.e., xi = (ρi cos θi, ρi sin θi), we calculate
the target fyi

(xi) = (ρi cos θ̃i, ρi sin θ̃i) according to Eq. (3). We use a 6-layers affine coupling
flows, each layer composed with a random permute. The coupling functions σ, t are implemented by
1-hidden-layer Multi-Layer Perceptron (MLP) with hidden-unit number comparable to input dimension.
We pad zeros to the input x, and use the first two output dimensions to compute the loss.

(a) Trained f̂y(x) v.s. Target fy(x) (b)

Figure 2: 2(a): learning “Taiji” diffeomorphism tasks in Section 5.1. Black region, x2 > 0 ∩ ρ ≤ 1;
white region, x2 ≤ 0∩ ρ ≤ 1; yellow region, ρ > 1. ρ =

√
x2
1 + x2

2 and x = (x1, x2). f̂◦N
1 denotes

the N -fold composition f̂1 ◦ · · · ◦ f̂1. 2(b): Comparing Para-CFlow with Resnet and MLP with
small sample size and parameter y(i) = y, 1 ≤ i ≤ 100. Grey color area has no point resides.

On the left panel of Fig. 2(a), we observe good consistency between the trained model f̂y(x) and
fy(x), when y ∈ [0, 1]. Note that we only use samples with yi ∈ [0, 1] for training, and thus the
model generalizability to y > 1 is not guaranteed. However, as the true diffeomorphism satisfies
fy1
◦ fy2

= fy1+y2
, we iterate the trained model recurrently and expect the final output to achieve

the effect for y > 1. The results on the right panel of Fig. 2(a) justify that the cumulative error from
composition does not grow fast, and our model can approximate complex diffeomorphisms with
sufficient layers. In Fig. 3(a) and Fig. 3(b) we plot the derivatives of Para-CFlow, compared to the
true one. The non-differentiability of the groundtruth on the unit circle results in irregular behaviors
of trained model near the unit circle; elsewhere it shows good consistency.

To further verify our theorem stated in Section 3, specifically the effect of padding zero(s), we test
the same model under different hidden dimensions dhid and number of stacking layers in Fig. 3(c).
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(a) ∂f̂(1)(y,x)
∂x

v.s. ∂f(1)(y,x)
∂x

(b) ∂f̂(y,x)
∂y

v.s. ∂f(y,x)
∂y

(c)

Figure 3: 3(a) and 3(b): Derivatives of the trained model f̂y(x) = (f̂ (1)(y,x), f̂ (2)(y,x)) with black
arrows and the groundtruth fy(x) = (f (1)(y,x), f (2)(y,x)) with red arrows, all at y = 1. 3(c):
MSE under different hidden dimensions and number of layers.

Here hidden dimension equals to the input dimension (2 in this experiment) plus the number of
padding zero(s). As we expected, according to our theorems, with padding zero(s) Para-CFlow
enjoys universality. We also investigate the expressiveness when hidden dimensions = 2. When we
increase the number of stacking layers, MSE also decrease, which justifies the Lp universality result
in [42]. However, increasing the hidden dimension is much more efficient in terms of improving
expressiveness than increasing the number of stacking layers. Such results support our theory of
zero-padding. More results of different architecture settings are available in Appx. D.1.

Next we design a more challenging task to compare Para-CFlow against a simple MLP with a
hidden-layer-setting as (128, 64, 32), and Residual Nets (Resnet) [21], that concatenates y and x as
the network’s input and then appends x to the output of each layer forward for prediction. Unlike
the previous experiment where a scalar y is used, we generate 3000 samples of a 100-dimensional
parameter vector yi = (y

(1)
i , · · · , y(100)i ) where y

(j)
i ∼ N (yi, 0.16) and yi ∼ U [0, 1]. Then (xi,yi)

is fed to each model to learn the target favg(yi)(xi). Fig. 2(b) shows that Para-CFlow learn a much
more continuous mapping than MLP and Resnet. While Resnet learns relatively better the outer part
than MLP, similar to MLP it suffers from bad mapping in the inner part, i.e. the grey area inside the
unit circle is much larger than Para-Flow, which represents bad continuity of the learnt mapping.

5.2 Application to contextual BO

In this section,we ensemble Para-CFlows as a novel surrogate model for BO with three well-known
benchmark functions: Rastrigin, Ackley and Trid [41]. Note that the original benchmark tasks
are contextless, here we simply set the first dc dimensions as the context vector sampled from a
multivariate uniform distribution and leave the last dimension as the action to optimize. To construct
context-dominating tasks we set dc ≫ 1. In all benchmarks above, the contexts c are uniformly
sampled at random from [−3, 3]dc sequentially while the action a is optimized by gradient descent
in [−3, 3] over surrogate models. The used ensemble-like surrogate models for contextual BO are
listed as follows: (1) Para-CFlow: Ensemble of Para-CFlows for prediction with uncertainty; (2)
MLP: Ensemble of MLPs for uncertainty modelling by concatenating context c and a to obtain input
(c, a) ∈ Rdc+1; (3) MLP-Ascend: Similar to MLP, the difference is that it firstly raises both c and a to
the same hidden dimension max(5, dc) and then concatenates them as inputs to a MLP; (4) Resnet:
Ensemble of multiple Resnet that concatenates c and a as the network’s input and then appends a to
the output of each layer forward for prediction. More experimental settings are available in Appx. D.

Firstly, we investigate the action sensitivity of each model trained with 100 random samples. The
dimensionality of context is set to 5, 10, 20, which is significantly greater than that of action. The
action sensitivity is calculated as the ratio of Permutation Feature Importance (PFI) [8] of the
action w.r.t. that of the context, i.e. PFI(a)/maxi(PFI(ci)) and reported in Tab.1. We observe that
Para-CFlow and Resnet have much higher action sensitivities thanks to the model architecture,
while MLP and MLP-Ascend are dominated by contexts as expected. We further investigate whether
different surrogates and their gradients manage to guide the real objective function optimization.
Denote each trajectory as {(bt, b̂t, at)Tt=1|c}, where (at)Tt=1 is a T -step gradient trajectory over the
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(a) (b)

Figure 4: 4(a): quiver plot of (b̂t)Tt=1 (x-axis) v.s. (bt)Tt=1 (y-axis) along each averaged gradient
trajectory over 10 random initialization × 10 random contexts. 4(b):The mean and standard deviation
of the cumulative regret under 10 independent trials with the context dimension as 5, 10 and 20.

surrogate b̂(c, a) and b(c, a) is the corresponding real objective value . We visualize the quiver

plot of (b̂t)Tt=1 (x-axis) v.s. (bt)Tt=1 (y-axis) along each gradient trajectory for all compared
surrogates in Fig.4(a). We can easily observe that Para-CFlow outperforms other surrogate models
as the red arrows move towards the bottom left corner which exactly means the gradient trajectory
on Para-CFlow indeed minimizes the real objective function, and thus the result supports our
main results of Ck approximability, whereas the compared trajectories move towards the top left
corner after a few steps probably because those surrogates suffer from more severe local oscillation
w.r.t. a, comparing to Para-CFlow, resulting in unexpected gradient explosion. We then compare
different surrogate models’ performances on BO. The mean and standard deviation of the cumulative
regrets for different surrogate models are reported in Fig. 4(b) where we observe improvement using
Para-CFlow as the neural surrogates, especially for the Rastrigin benchmark.

Table 1: Comparison of action sensitivity over 10 independent trails

Rastrigin Ackley Trid
dc = 5 dc = 10 dc = 20 dc = 5 dc = 10 dc = 20 dc = 5 dc = 10 dc = 20

Para-CFlow 2.62±0.71 4.30±1.16 7.14±1.49 3.62±1.21 4.47±0.95 4.37±1.64 1.61±0.44 1.10±0.51 1.34±0.68
MLP 0.89±0.16 0.70±0.14 0.71±0.13 0.91±0.17 0.79±0.15 0.51±0.16 0.71±0.20 0.64±0.19 0.47±0.20
MLP-Ascend 0.90±0.24 0.80±0.21 0.15±0.16 0.95±0.20 0.88±0.10 0.58±0.14 0.81±0.29 0.64±0.19 0.19±0.15
Resnet 1.65±0.22 1.60±0.22 2.32±0.34 2.03±0.38 1.88±0.25 3.44±1.02 1.29±0.32 1.77±0.39 1.74±0.56

6 Conclusion

In this paper, we firstly prove the equivalence between the Ck-universality over compactly-supported
diffeomorphisms and that over single-coordinate transforms, resulting in the Ck universal approxima-
tion ability of affine coupling flows. Furthermore, we generalize the main theorems to parametric
cases and propose a practical model called Para-CFlows which could serve as a good neural surrogate
for gradient-based search and optimization. With good capabilities both in universal approximation
and robust sensing of critical features in parametric diffeomorphisms, we empirically exhibit the
advantages of Para-CFlow using various benchmarks. However, due to the dimension augmentation
(for expressiveness purpose), Para-CFlow is not able to benefit from fast log-determinant estimation
if it is applied to generative model tasks which will be studied in our future work.
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[1] Robin Allesiardo, Raphaël Féraud, and Djallel Bouneffouf. A neural networks committee for

the contextual bandit problem. In ICONIP, 2014.

[2] Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric Pellegrini, Ralf S.
Klessen, Lena Maier-Hein, Carsten Rother, and U. Köthe. Analyzing inverse problems with
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