
Appendix

A A Stochastic Markov Model of a 2-Server Load Balancing Problem

The simulation results of Fig. 2b is based on a basic load balancing setup of 2 servers with different
processing capacities v1

v2
= 2 (i.e. server 1 is 2x faster than server 2). Each server has a queue

of size Q, such that 0  l1, l2  Q. Traffic arrivals and departures are modeled as Poisson
processes with rates � (observed traffic), � (unobserved traffic), and v1, v2. With sufficiently short
timeslots, it can be assumed that only one arrival or departure (at most) happen at a given timeslot
(i.e.

P2
i=1(�i + �i + vi)  1); the system is then Markovian with the state (l1, l2), departure rates

(µ1, µ2), and arrival rates (�1, �2, �1, �2). For simplicity and stability, the system works at nominal

capacity (i.e. � + � = v). With qi(n)li denoting the probability (or probability density function), of
server qi to have a queue length of li at time-step n, the transition of server occupations between two
time-steps can be described as, for 0 < li < Q (corner cases are treated accordingly):

qi(n)li � qi(n� 1)li = (�i + �i) · qi(n� 1)li�1 + vi · si(n� 1)li+1 � (�i + �i + vi) · qi(n� 1)li .

The QoS performance of each load balancing algorithm in Fig. 2b is measured as the weighted
service duration of a connection (

P
i2{1,2}

li
l1+l2

li
µi

), under different configurations. When the LB
has accurate observations and configurations (observing 100% traffic – i.e. � = 0 – and assigning
server weights based on actual processing speeds w1

w2
= v1

v2
= 2), WCMP and SED have the best

performance. When the LB observes only partial network traffic (50%�Q and 33%�Q corresponds
to � = �, � = 2⇤�, respectively) and the rest of the network traffic is uniformly split between the two
servers (�1 = �2), LSQ and SED outperform WCMP, which is agnostic to instant server occupancy.
However, partial traffic observation also degrades the performance of LSQ and SED. When LBs
have inaccurate server weights (⇠ W i.e. in case of mis-configuration, w1

w2
= 1

2 , while µ1

µ2
= 2),

WCMP and SED exhibit degraded performance even when the LB agent sees all the traffic (� = 0).
Taking both server queue lengths and processing speeds into account, SED makes more informed
load balancing decisions, yet its performance risks being degraded by both partial observations on
server queue lengths and inaccurate server weights.

B Analysis of Distribution Fairness

B.1 Analysis of VBF

Lemma 11. The VBF for load balancing system satisfies the following property:

F⇡i,�⇡i
i

(li) � F ⇡̃i,�⇡i
i

(̃li) = F⇡i,�⇡i(l) � F ⇡̃i,�⇡i (̃l) (10)

Proof. From the definition of the variance-based fairness (as Def. 2) we have the following for
8i 2 [M ], j 2 [N ],

F⇡i,�⇡i(l) = � 1

N

NX

j=1

(lj � l)2 (11)

F⇡i,�⇡i
i

(li) = � 1

N

NX

j=1

(lij � li)
2 (li =

1

N

NX

j=1

lij) (12)
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By indexing the agent i as the one to change its strategy and slightly abusing notation, denote
lj = lij + l�ij , where l�ij =

P
k 6=i

lkj .

F⇡i,�⇡i(l) = � 1

N

NX

j=1

(lij + l�ij � (li + l�i))
2 (where (li + l�i) =

1

N

X

j

(lij + l�ij)) (13)

= � 1

N

NX

j=1

[lij + l�ij � (li + l�i)]
2 (14)

= � 1

N

NX

j=1

[(lij � li)
2 + (l�ij � l�i)

2 � 2(lij � li)(l�ij � l�i)] (15)

= � 1

N

NX

j=1

(lij � li)
2 � 1

N

NX

j=1

[(l�ij � l�i)
2 � 2

N

NX

j=1

(lij � li)(l�ij � l�i)] (16)

= F⇡i,�⇡i
i

(li) � 1

N

NX

j=1

(l�ij � l�i)
2 (

NX

j=1

(lij � li) = 0) (17)

where the second term is a common term not depend on the changing policy ⇡i. Therefore, the second
term will be cancelled in F⇡i,�⇡i(l) � F ⇡̃i,�⇡i (̃l) = F⇡i,�⇡i

i
(li) � F ⇡̃i,�⇡i

i
(̃li), thus finishes the

proof.

Proposition 12. Maximising the VBF is sufficient for minimising the makespan, subjective to the

load balancing problem constraints (Eq. (3) and (4)):
max F (l) ) min max

j

(lj) (18)

this also holds for per-LB VBF as max Fi(li) ) min maxj(li).

Proof. Given the stability constraint in Eq. (3)
P

M

i=1 wi(t) 
P

N

j=1 vj , we denote the total amount
of workload in the system C =

P
N

j=1 lj , and lk = maxj2[N ] lj . Based on the constraint in Eq. (4),
we have C � 0, lj(t) � 0.

max F (l) , min �F (l) (19)

�F (l) =
1

N

NX

j=1

((lj) � l)2 (20)

=
1

N

NX

j=1

(lj � C

N
)2 (21)

=
1

N

NX

j=1

l2
j

� 2C

N2

NX

j=1

lj +
C2

N2
(22)

=
1

N

NX

j=1

l2
j

� C2

N2
(23)

 [(max
j

lj)
2 � C2

N2
] (by means inequality) (24)

with the equivalence achieved when lj = lk, 8j 6= k, j 2 [N ] holds. Therefore,

max F (l) ) min(lk)2 � C2

N2
(25)

, min lk (26)
, min max

j2[n]
lj (27)

and the condition is sufficient but not necessary because min(lk)2 � C
2

N2 is essentially minimizing
the upper bound of �F (l).
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B.2 Analysis of PBF

Proposition 13. Maximising the product-based fairness is sufficient for minimising the makespan,

subjective to the load balancing problem constraints (Eq. (3) and (4)):

max F (l) ) min max(l) (28)

Proof. For a vector of workloads l = [l1, . . . , lN ] on each server j 2 [N ], by the definition of
fairness,

max F (l) = max

Q
j2[N ] lj

maxk02[N ] lk0
(29)

WLOG, let lk = maxk02[N ] lk0 , then,

max F (l) = max
Y

j2[N ],j 6=k

lj (30)

Similar to the proof of Proposition 12, given the stability constraint in Eq. (3)
P

M

i=1 wi(t) 
P

N

j=1 vj ,
we denote the total amount of workload in the system C =

P
N

j=1 lj . Based on the constraint in
Eq. (4), we have C � 0, lj(t) � 0. By means inequality,

0

@
Y

j2[N ],j 6=k

lj

1

A

1
N�1


P

j2[N ],j 6=k
lj

N � 1
=

C � lk
N � 1

. (31)

with the equivalence achieved when li = lj , 8i, j 6= k, i, j 2 [N ] holds. Therefore,

max F (l) ) max
C � lk
N � 1

(32)

, min lk (33)
, min max

j2[N ]
lj (34)

The inverse may not hold since max C�lk
N�1 does not indicates max F (l), so maximising the linear

product-based fairness is sufficient but not necessary for minimising the makespan. This finishes the
proof.

B.3 VBF for MPG

Theorem 14. Multi-agent load balancing is MPG with the VBF Fi(li) as the reward ri for each LB

agent i 2 [M ], then suppose for 8s 2 S at step h 2 [H], the potential function is time-cumulative

total fairness: �⇡i,�⇡i(s) =
P

H

t=h
F⇡i,�⇡i(l(t)).

Proof.

V ⇡i,⇡�i

i
(s) � V ⇡̃i,⇡�i

i
(s) = E⇡i,⇡�i

 HX

t=h

ri,t(st,at)

����sh = s

�
� E⇡̃i,⇡�i

 HX

t=h

ri,t(st, ãi,t, a�i,t)

����sh = s

�

(35)

= E⇡i,⇡�i

 HX

t=h

Fi(li(t))

�
� E⇡̃i,⇡�i

 HX

t=h

Fi(̃li(t))

�
(36)

=
HX

t=h

✓
F⇡i,�⇡i(l) � F ⇡̃i,�⇡i (̃l)

◆
(Lemma 3) (37)

= �⇡i,�⇡i(s) � �⇡̃i,�⇡i(s) (38)

Notice that s is the ground truth state of the environment, therefore involving the expected time l to
finish remaining jobs.
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Figure 5: Simulator implementation details.

Lemma 15. NE for MPG is ✏-approximate NE for ✏-approximate MPG. [46]

Proof. We know NE (⇡⇤
i
, ⇡⇤

�i
) for MPG,

V
⇡
⇤
i ,⇡

⇤
�i

i
(s) � V

⇡̃i,⇡
⇤
�i

i
(s) = �⇡

⇤
i ,⇡

⇤
�i(s) � �⇡̃i,⇡

⇤
�i(s) � 0 (39)

the policies can be ✏-approximate NE for another game with a different value function bV but the
same potential function,

bV ⇡
⇤
i ,⇡

⇤
�i

i
(s) � bV ⇡̃i,⇡

⇤
�i

i
(s) � ✏, 8i 2 [N ], ⇡̃i 2 ⇧i, s 2 S (40)

thus, ����

✓
bV ⇡

⇤
i ,⇡

⇤
�i

i
(s) � bV ⇡̃i,⇡

⇤
�i

i
(s)

◆
�

✓
�⇡

⇤
,⇡

⇤
�i(s) � �⇡̃,⇡

⇤
�i(s)

◆����  ✏ (41)

which satisfies the definition of ✏-approximate MPG.

C Implementation

C.1 Simulator

In order to compare the proposed RLB algorithms to the theoretically optimal solution which has
perfect observation over the system – which is not achievable in real-world system, we implement
an event-driven simulator to simulate the discrete process of network flow arrival and departure in a
networked system. The simulator implements the network topology as in Fig. 5a, where each LB is
connected to all servers.

Real-world network applications can be CPU-bound or IO-bound [47, 48]. The simulator allows con-
figuring applications that require multi-stage processes switching between CPU/IO queues (Fig. 5b).
For instance, a connection request for a 2-stage application is first processed in the CPU queue, then
in the IO queue, before being sent back to the client.

Two different processing models are used for CPU and IO queues, respectively. A FIFO model
is defined for CPU queues, and connections that arrive when no CPU is available will be blocked
in a backlog queue until there is an available CPU. Realistic network applications feature blocked
processor sharing model [47, 48], in which the instantaneous processing speed for each task v̂j(t) at
time t on the j-th server is:

v̂j(t) =

(
1 |wj(t)|  pj ,

pj

min(p̂j ,|wj(t)|) |wj(t)| > pj ,
(42)

where |wj(t)| denotes the number of on-going tasks, and pj denotes the number of processors on the
j-th server. At any given moment, the maximum number of tasks that can be processed is p̂j . Tasks
that arrive when |wj(t)| � p̂j will be blocked in a wait queue (similar to backlog in e.g. Apache)
and will not be processed until there is an available slot in the CPU processing queue. However, this
does not happen under the constraints in Eq. (3) as the task arrival rates are always slower than task
departure rates (processing speed). The server processing speed therefore is vj(t) = v̂j(t)|wj(t)|. IO
is simulated as a simple processor sharing model, in which the instantaneous processing speed is the
inverse of the number of connections in the IO queue. The backlog queue length of each server is
configured as 64. Connections that arrive when the backlog queues are full will be rejected, with 40s
timeout. Communication latency between 2 nodes is uniformly distributed between 0.1ms and 1ms.
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Figure 6: Feature collection mechanism: shm layout and data flow pipeline.

C.2 Real-World DC Testbed

C.2.1 System Platform

Application servers are virtualised on 4 UCS B200 M4 servers, each with one Intel Xeon E5-2690
v3 processor (12 physical cores and 48 logical cores), interconnected by UCS 6332 16UP fab-
ric. Operating systems are Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-128-generic x86_64).
Compilers are gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1 18.04). Applications employed in
this paper are the following: Apache 2.4.29, VPP v20.05, MySQL 5.7.25-0ubuntu0.18.04.2,
and MediaWiki v1.30. The VMs are deployed on the same layer-2 link, with statically configured
routing tables. Apache HTTP servers share the same VIP address on one end of GRE tunnels with
the load balancer on the other end.

C.2.2 Apache HTTP Servers

The Apache servers use mpm_prefork module to boost performance. Each server has maximum 32
worker threads and TCP backlog is set to 128. In the Linux kernel, the tcp_abort_on_overflow
parameter is enabled, so that a TCP RST will be triggered when the queue capacity of TCP connection
backlog is exceeded, instead of silently dropping the packet and waiting for a SYN retransmit. With
this configuration, the FCT measures application response delays rather than potential TCP SYN
retransmit delays. Two metrics are gathered as ground truth server load state on the servers: CPU
utilization and instant number of Apache busy threads. CPU utilization is calculated as the ratio of
non-idle cpu time to total cpu time measured from the file /proc/stat and the number of Apache
busy threads is assessed via Apache’s scoreboard shared memory.

C.2.3 24-Hour Wikipedia Replay Trace

To create Wikipedia server replicas, an instance of MediaWiki6 of version 1.30, a MySQL server and
the memcached cache daemon are installed on each of the application server instance. WikiLoader

tool [49] and a copy of the English version of Wikipedia database [43], are used to populate MySQL
databases. The 24-hour trace is obtained from the authors of [43] and for privacy reasons, the trace
does not contain any information that exposes user identities.
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C.2.4 Feature Collection and Policy Update in the Data Plane

Algorithm 3 Reservoir sampling with no rejection
1: k  reservoir buffer size
2: buf  [(0, 0), . . . , (0, 0)] . Size of k
3: for each observed sample v arriving at t do
4: randomId rand()
5: idx randomId%N . randomly select one index
6: buf [idx] (t, v) . register sample in buffer
7: end for

In order to apply RL in an asynchronous close-loop load balancing framework with high scalability
and low latency, communication between the load balancer data plane and the ML application is
implemented via POSIX shared memory (shm). This mechanism allows features to be extracted from
the data plane and conveyed to the RL agent – with absolutely zero control message or communication
overhead, and allows data-driven decisions generated by the RL agent to be updated asynchronously
on the load balancer.

The pipeline of the data flow over the lifetime of a TCP connection is depicted in Fig. 6. By
statefully tracking flow states, on receipt of different networking packets, we inspect packet header
and collect networking features as counters or samples. Quantitative features (task duration and
task completion time) are collected as samples, using reservoir sampling (Algorithm 3). Since
networking environments are dynamic, it is important to capture not only the features, but also the
sequential information of the system. Reservoir sampling gathers a representative group of samples
in fix-sized buffer from a stream, with O(1) insertion time. It captures both the sampling timestamps
and exponentially-distributed numbers of samples over a time window, which help conduct sequential
pattern analysis7. For a Poisson stream of events with rate �, the expectation of the amount of samples
that are preserved in buffer after n steps is E = �

�
k�1

k

��n, where k is the size of reservoir buffer.
On the other hand, counters are collected atomically and made available to the data processing agent
using multi-buffering.

Cloud services have different characteristics and they are identified by virtual IPs (VIPs), which
correspond to clusters of provisioned resources – e.g. servers, identified by a unique direct IP (DIP). In
production, cloud DCs are subject to high traffic rates and their environments and topologies change
dynamically. This requires to organise collected features in a generic yet scalable format, and make
features available for ML algorithms without disrupting the data plane. We organise observations
of each VIPs in independent POSIX shared memory (shm) files, to provide scalable and dynamic
service management. In each shm file, collected features are further partitioned by egress equipments
so that spatial information can be distinguished, including counters and reservoir samples. Fig. 6
exemplifies the shm layout and data flow.

The bit-index binary header helps efficiently identify active application servers. Each server has
its own independent memory space, storing counters, reservoir samples, and data plane policies
(actions) if necessary. As depicted in Fig. 6, on receipt of the first ACK from the client to a specific
server i, VNF increments the number of flows in the counters cache of node i with O(1) complexity.
With the same level of complexity, quatitative features (e.g. flow duration t3 � t0 gathered at t3
in Fig. 6) can be stored in the reservoir buffer of node i using Algorithm 3. Gathered features
(counters and samples) are made available in an organised layout and they can be quickly accessed
by ML algorithms running in a different process. With the bit-index header, locating features for a
given server requires O(1) computational complexity and O(k) memory complexity, where k is the
reservoir buffer size. Obtained features for all active servers can then be aggregated and processed to
make further inferences or data-driven decisions, which can be written back to the memory space of
each server (O(1) computational complexity).

6https://www.mediawiki.org/wiki/Download
7Based on the characteristics of different system dynamics, e.g. long-term distribution shifts or short-term

oscillations, tuning the reservoir sampling mechanism enables to collect different statistical representations of
the states.
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Operation / Complexity Computation Memory
Add / Remove VIP O(1) O(kN +mN)
Add server O(1) O(k +m)
Remove server O(1) O(1)
Register reservoir sample
Update counter (cache) O(1) O(1)

Update counters / actions
(multi-buffering) O(1) O(N)

Get the latest
observation

1 node
O(m)

O(k +m)
All nodes O(kN +mN)

Update action in
the data plane

1 node
O(m)

O(1)
All nodes O(N)

Table 7: Computation and memory complexity of different operations, where k is the size of reservoir
buffer, N is the number of servers, and m is the level of multi-buffering.
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{lb4_vip_px}.{i+1}.1 = 3.3.{i+1}.1

gre{i*2+1} {vip6_addr}
{lb6_vip_px}:{I+1}::beef = dead:0x{I+1}::beef

lbvpp0

…

LB1 eth0 (NAT - ssh)
ip: 10.0.2.15/24

{mgmt_port}={lb_mgmt_port}+0: 8800

GigabitEthernet0/5/0 (VPP)
{ip4_addr}={tap4_px}.252: 10.0.0.252/24
{ip6_addr}={tap6_px}:fffd: dc1b::fffd/64

lbmgmt1eth1 (TAP)
{mgmt_ip}={mgmt_px}.252: 10.10.0.252/24

gre{i*2} {vip4_addr}
{lb4_vip_px}.{i+1}.1 = 3.3.{i+1}.1

gre{i*2+1} {vip6_addr}
{lb6_vip_px}:{I+1}::beef = dead:0x{I+1}::beef

lbvpp1

svmgmt7

svvpp7

eth0 (NAT - ssh)
ip: 10.0.2.15/24
{mgmt_port}={sv_mgmt_port}+7: 9007

SV7eth1 (TAP)
{mgmt_ip}={mgmt_px}.8: 10.10.0.8/24

eth2 (TAP)
{ip4_addr}={tap4_px}.8/24: 10.0.0.8/24
{ip6_addr}={tap6_px}:8/64: dc1b::8/64

Figure 7: Network topology of the real-world DC testbed.

While quantitative features are collected using reservoir sampling, counters are incremented by
the data plane in the cache, and periodically drawn from cache using m-level multi-buffering with
incremental sequence ID. When copying data between cache and buffer, the sequence ID is set to 0 to
avoid I/O conflicts. Pulling the counters from cache to multi-buffering requires O(1) computational
complexity and maximal O(N) memory complexity. ML algorithms can pull the latest observations
from the multi-buffering with no disruption in the data plane, with O(m) computational complexity
to find the buffer with the highest sequence ID. Similarly, new network policies and data-driven
decisions (e.g. forwarding rules) can be updated to the data plane via action multi-buffering with
O(m) computational complexity.

To summarise, both computation and memory space complexity is presented in Table 7. The whole
dataflow is asynchronous and avoid stalling in the data exchange process in both the data plane and
the control plane.

C.2.5 Network Topology

For reproducibility, the network topology is depicted in Fig. 7. Two physical servers are connected
via a VLAN. Each device is an instance of KVM, which is widely used for in-production vitualised
Content Delivery Networks (CDNs).
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Table 8: Survey on real-world testbed configurations.
Related Work Testbed Scale Note

6LB [4] 2 LB + 28 servers (2-CPU each) Our paper uses the same network trace as input traffic.

Ananta [50] 14 LBs for 12 VIPs The exact number of servers per VIP and the in-production
traffic is not documented in the paper.

Beamer [51] 2 LB + 8 servers (small)
4 LB + 10 servers (large)

Large scale experiments are conducted with 700 active
HTTP connections max.

Duet [52] 3 software LB + 3 hardware LB
+ 34 servers

Synthetic traffic is applied so that the server cluster
behind VIP processes 60k (identical) packets per second.

SilkRoad [14] 1 hardware LB or 3 software LB
per VIP

Real-world PoP traffic is applied, where one server cluster
behind VIP processes on average 309.84 active connections
per second.

Cheetah [20] 2 LB + 24 servers A Python generator creates 1500-2500 synthetic requests/s.

C.2.6 Realistic Testbed

Modern data center may comprise thousands of servers and hundreds of LBs. However, each
independent service is exposed in a modular way at one or several virtual IP (VIP) addresses to
receive requests, running over a cluster of servers. Each server in the cluster can be identified by a
unique direct IP (DIP). Traffic and queries from the clients destined to a VIP are load balanced among
the DIPs of the service. The development of virtualization, where computers are emulated and/or
sharing an isolated portion of the hardware by way of Virtual Machines (VMs), or run as isolated
entities (containers) within the same operating system kernel, has accelerated the commoditization of
compute resources. Therefore, the gigantic in-production data center network are typically partitioned
into small pods, where different services (VIPs) are hosted. To justify the setups of our experiment
satisfy the “real-world” requirement, we present a brief survey of real-world DC setup based on a set
of state-of-the-art load balancing research papers, which are summarized below (Table 8).

Using 2 physical servers (48 CPUs each), we have made our best effort to find a configuration that
allows us to conduct experiments similar to real-world setups. Based on the survey above, we believe
that the experiments conducted in this paper have reasonable scale – not only in terms of number of
agents (2/6 LBs) and servers (7/20 servers), but also in terms of traffic rates – more than 2k queries
per second per VIP and more than 1150.76 concurrent connections in large scale experiments —-
and are representative of real-world circumstances.

C.3 Benchmark Load Balancing Methods

To compare load balancing performance, 4 state-of-the-art workload distribution algorithms are
implemented. Equal-cost multi-path (ECMP) randomly assigns servers to tasks with a server as-
signment function P(j) = 1

n
, where P(j) denotes the probability of assigning the j-th server [13].

Weighted-cost multi-path (WCMP) assigns servers based on their weights derived, and has an assign-
ment function as P(j) = vjP

vj
[3]. Local shortest queue (LSQ) assigns the server with the shortest

queue, i.e. arg minj2[n] |wj(t)| [19]. Shortest expected delay (SED) assigns the server the shortest
queue normalized by the number of processors, i.e. arg minj2[n]

|wj(t)|+1
vj

[2], and is expected to
have the best performance among conventional heuristics. In the simulator, an Oracle LB algorithm
is implemented, which distributes connections to the server which is expected to finish all its job with
the lowest delay (including the new connection). The Oracle LB is aware of the remaining time of
each connection, which is otherwise not observable for network LBs in real-world setups. When
receiving a new connection, the Oracle LB algorithm calculates the remaining time to process on each
server (assuming the newly received connection is assigned on the server as well) and assigns the
server with the lowest remaining time to process to the new-coming connection, to make sure that the
makespan is always minimised with the global observation, which is not possible to be achieved in
real-world system. The load balancing decisions for the Oracle algorithm are also made immediately
for the Oracle LB algorithm.
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Table 9: Hyperparameters in MARL-based LB.

Hyperparameter Simulation Experiments
Moderate-Scale Moderate-Scale Large-Scale

Distributed LB

Learning rate 3 ⇥ 10�4 1 ⇥ 10�3 1 ⇥ 10�3

Batch size 25 25 12
Hidden dimension 64 64 128

Hypernet dimension 32 32 64
Replay buffer size 3000 3000 3000

Episodes 500 120 200
Updates per episode 10 10 10

Step interval 0.5s 0.25s 0.25s
Target entropy �|A| �|A| �|A|

LB System

TCT Distribution Exponential Real-world trace Real-world trace
Average TCT 1s 200ms 200ms

Average bytes per task - 12KiB 12KiB
Traffic rate 20.28tasks/s [650, 800]tasks/s 2000tasks/s

Number of LB agents 2 2 6
Total number of servers 8 7 20

Server group 2 4 (1-CPU) 3 (2-CPU) 10 (2-CPU)
Server group 1 4 (2-CPU) 4 (4-CPU) 10 (4-CPU)

Episode duration 60s 60s 60s

Table 10: Four configurations with different application types.
Application

Type
Pure
CPU

CPU
Intensive Balanced IO

Intensive
Avg. CPU Time (s) 1. 0.75 0.5 0.25
Avg. IO Time (s) 0. 0.25 0.5 0.75

D Hyperparameters

MARL-based load balancing methods are trained in both simulator, and moderate- and large-scale
testbed setups for various amount of episodes. At the end of each episode, the RL models are trained
and updated for 10 iterations. Given the total provisioned computational resource, the traffic rates of
network traces for training are carefully selected so that the RL models can learn from sensitive cases
where workloads should be carefully placed to avoid overloaded less powerful servers. The set of
hyper-parameters are listed in Table 9.

E Results

E.1 Inaccurate Server Weights

In real-world systems, not only error-prone configurations, but also different application profiles can
lead to inaccurate server weight assignments. Using a similar setup where 2 cluster of 4 servers have
the same IO processing speed but 2x different CPU processing speeds, different application profiles
are compared to derive the actual server processing capacity differences. A 3-stage application whose
queries follow CPU-IO-CPU processing stages is compared with a pure CPU application. Both
CPU and IO processing time follow exponential distributions and the aggregated average FCT is
1s. The four different types of network applications are configured as in Table 10. As depicted in
Fig. 2a, with different provisioned resource ratios for CPU (2x) and IO (1x) queues, to guarantee the
optimal workload distribution fairness and make each server have the minised maximal remaining
time to finish among all servers at all time, the weights to be assigned for servers with different
provisioned capacities are stochastic and depend on different application profiles. Therefore, it is
a sub-optimal solution for existing load balancing algorithms to statically configure server weights
based on computational resources.

The setup in the paper for Table 3 is the following. There are 2 LB agents and 8 servers. 4 servers have
1 CPU worker-thread each while the other 4 servers have 2 CPU worker-threads each, to simulate
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Figure 8: Experimental results with real-world network traces from different period of time during a
day, which demonstrates the effectiveness of the proposed distributed RL framework with VBF as
rewards.

the different server processing capacities. Three types of applications are compared. 100%-CPU
application is a single stage application, whose expected time to process is 1s in the CPU queue
and 0s in the IO queue. 75%-CPU+25%-IO application is a two stage application, whose expected
time to process is 0.75s in the CPU queue and 0.25s in the IO queue, simulating the CPU-intensive
applications. 50%-CPU+50%-IO application is a two stage application, whose expected time to
process is 0.5s in both the CPU and IO queue. The actual time to process for each task follows an
exponential distribution. The traffic rate is normalised to consume on average 84.5% resources.

E.2 Ablation Results

Besides the experiments conducted in the paper, we further study the following aspects of the
application of MARL on real-world network load balancing problems.

E.2.1 Reward Engineering

To verify the effectiveness of the proposed potential function VBF, we compare it with a set of
different reward functions, including makespan (MS), PBF, and coefficient of variation (CV). During
our study based on real-world testbed, we found that, when using VBF as the reward, the convergence
is fast at the beginning of the training process and the sample variance of average flow duration (as
an estimation of the queuing and processing delay) on each server becomes close to zero. However,
it does not necessarily mean that the load balancing policy is optimal and the NE is achieved. To
capture the small variance which is close-to-zero, we also calculate the logarithm of VBF (logVBF) as
reward. And the combination of VBF + logVBF is an empirical design aiming at faster convergence
towards the NE policy. The complete comparison results are shown in Table 11 (average QoS) and
in Table 12 (99th percentile QoS), where the proposed distributed MARL framework achieves the
best performance for most cases. To provide a complete view of all comparison results besides
the one shown in Fig. 4b, we show the CDF of task completion time under all test cases in Fig. 8
Accompanying the evaluation results of average QoS in large-scale testbed in Table 4, we also show
in Table 13 the 99th percentile QoS in large-scale testbed.
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Table 11: Complete results of average QoS (s) for comparison in moderate-scale real-world network
setup (DC network and traffic).

Method Period I (796.315 queries/s) Period II (687.447 queries/s) Period III (784.522 queries/s) Period IV (784.522 queries/s)
Wiki Static Wiki Static Wiki Static Wiki Static

WCMP 0.435 ± 0.083 0.171 ± 0.055 0.254 ± 0.087 0.073 ± 0.056 0.412 ± 0.101 0.134 ± 0.059 0.834 ± 0.323 0.492 ± 0.276
LSQ 0.141 ± 0.073 0.023 ± 0.030 0.143 ± 0.040 0.023 ± 0.011 0.620 ± 0.442 0.339 ± 0.316 0.357 ± 0.373 0.173 ± 0.299
SED 0.137 ± 0.076 0.020 ± 0.023 0.131 ± 0.067 0.027 ± 0.035 0.215 ± 0.210 0.051 ± 0.081 0.346 ± 0.496 0.169 ± 0.330

RLB-SAC [40] Jain 0.137 ± 0.020 0.009 ± 0.006 0.125 ± 0.035 0.012 ± 0.008 0.193 ± 0.073 0.026 ± 0.022 0.204 ± 0.084 0.039 ± 0.047
G 0.140 ± 0.053 0.015 ± 0.019 0.103 ± 0.022 0.010 ± 0.007 0.149 ± 0.049 0.015 ± 0.011 0.155 ± 0.052 0.011 ± 0.011

QMix-LB

MS 0.258 ± 0.174 0.071 ± 0.087 0.142 ± 0.073 0.030 ± 0.034 0.217 ± 0.157 0.048 ± 0.069 0.263 ± 0.202 0.073 ± 0.092
logMS 0.167 ± 0.031 0.009 ± 0.004 0.132 ± 0.034 0.011 ± 0.008 0.844 ± 1.376 0.635 ± 1.249 0.278 ± 0.130 0.041 ± 0.038
VBF 0.128 ± 0.052 0.014 ± 0.017 0.132 ± 0.075 0.016 ± 0.025 0.141 ± 0.025 0.008 ± 0.004 0.286 ± 0.162 0.068 ± 0.066

logVBF 0.106 ± 0.011 0.007 ± 0.001 0.109 ± 0.032 0.011 ± 0.009 0.171 ± 0.043 0.022 ± 0.013 0.223 ± 0.045 0.026 ± 0.017
VBF+logVBF 0.112 ± 0.005 0.005 ± 0.002 0.101 ± 0.010 0.005 ± 0.001 0.187 ± 0.090 0.024 ± 0.029 0.201 ± 0.080 0.021 ± 0.020

PBF 0.142 ± 0.035 0.012 ± 0.006 0.099 ± 0.011 0.004 ± 0.001 0.211 ± 0.153 0.047 ± 0.078 0.181 ± 0.042 0.018 ± 0.009
CV 0.407 ± 0.505 0.201 ± 0.340 0.113 ± 0.036 0.009 ± 0.008 0.203 ± 0.089 0.039 ± 0.037 0.219 ± 0.072 0.031 ± 0.017

Centr-LB
VBF 0.690 ± 0.211 0.284 ± 0.181 0.152 ± 0.041 0.016 ± 0.011 1.068 ± 0.386 0.570 ± 0.378 1.378 ± 0.377 0.867 ± 0.350

logVBF 0.676 ± 0.231 0.265 ± 0.151 0.160 ± 0.023 0.013 ± 0.005 0.938 ± 0.200 0.446 ± 0.179 0.972 ± 0.288 0.495 ± 0.268
VBF+logVBF 0.520 ± 0.034 0.167 ± 0.017 0.192 ± 0.040 0.019 ± 0.014 0.759 ± 0.254 0.306 ± 0.222 1.013 ± 0.168 0.520 ± 0.167

Distr-LB
(this paper)

VBF 0.106 ± 0.013 0.007 ± 0.002 0.090 ± 0.016 0.007 ± 0.005 0.159 ± 0.054 0.017 ± 0.009 0.196 ± 0.091 0.032 ± 0.033
logVBF 0.139 ± 0.021 0.011 ± 0.004 0.129 ± 0.032 0.012 ± 0.011 0.250 ± 0.156 0.057 ± 0.077 0.226 ± 0.059 0.038 ± 0.019

VBF+logVBF 0.126 ± 0.038 0.009 ± 0.006 0.094 ± 0.023 0.006 ± 0.006 0.108 ± 0.022 0.004 ± 0.001 0.104 ± 0.013 0.006 ± 0.003
CV 0.150 ± 0.040 0.011 ± 0.009 0.149 ± 0.060 0.026 ± 0.025 0.301 ± 0.146 0.066 ± 0.072 0.267 ± 0.156 0.051 ± 0.052

Table 12: Complete results of 99th percentile QoS (s) for comparison in moderate-scale real-world
network setup (DC network and traffic).

Method Period I (796.315 queries/s) Period II (687.447 queries/s) Period III (784.522 queries/s) Period IV (784.522 queries/s)
Wiki Static Wiki Static Wiki Static Wiki Static

WCMP 5.801 ± 4.519 4.462 ± 3.867 4.019 ± 3.601 3.192 ± 3.543 3.239 ± 2.721 2.305 ± 2.700 8.066 ± 7.025 6.733 ± 5.329
LSQ 0.722 ± 0.487 0.195 ± 0.314 0.814 ± 0.478 0.288 ± 0.259 1.846 ± 1.915 1.168 ± 1.575 1.257 ± 1.921 0.831 ± 2.002
SED 0.706 ± 0.399 0.208 ± 0.246 0.697 ± 0.460 0.217 ± 0.291 0.726 ± 0.554 0.203 ± 0.261 0.909 ± 1.180 0.450 ± 1.112

RLB-SAC [40] Jain 0.858 ± 0.240 0.159 ± 0.125 0.830 ± 0.358 0.227 ± 0.186 1.227 ± 0.489 0.354 ± 0.246 1.283 ± 0.594 0.408 ± 0.374
G 0.945 ± 0.495 0.185 ± 0.214 0.682 ± 0.255 0.177 ± 0.162 1.003 ± 0.459 0.225 ± 0.176 0.973 ± 0.389 0.166 ± 0.156

QMix-LB

MS 1.469 ± 0.789 0.584 ± 0.547 1.095 ± 0.694 0.444 ± 0.423 1.182 ± 0.801 0.420 ± 0.483 1.447 ± 0.885 0.751 ± 0.772
logMS 0.985 ± 0.264 0.117 ± 0.043 0.909 ± 0.388 0.172 ± 0.142 7.043 ± 12.237 6.427 ± 12.479 1.326 ± 0.584 0.371 ± 0.305
VBF 0.732 ± 0.395 0.159 ± 0.239 0.665 ± 0.550 0.157 ± 0.278 0.744 ± 0.278 0.123 ± 0.093 1.028 ± 0.694 0.279 ± 0.365

logVBF 0.682 ± 0.100 0.124 ± 0.019 0.772 ± 0.313 0.205 ± 0.159 1.174 ± 0.323 0.382 ± 0.183 1.426 ± 0.323 0.327 ± 0.153
VBF+logVBF 0.664 ± 0.057 0.087 ± 0.056 0.611 ± 0.097 0.055 ± 0.027 1.171 ± 0.568 0.302 ± 0.293 1.206 ± 0.501 0.278 ± 0.239

PBF 0.661 ± 0.193 0.087 ± 0.099 0.505 ± 0.119 0.048 ± 0.029 0.768 ± 0.728 0.205 ± 0.465 0.726 ± 0.433 0.128 ± 0.136
CV 1.928 ± 2.228 1.281 ± 2.095 0.708 ± 0.405 0.131 ± 0.130 1.331 ± 0.593 0.481 ± 0.297 1.344 ± 0.329 0.451 ± 0.218

Centr-LB
VBF 3.101 ± 1.582 1.985 ± 1.790 0.903 ± 0.350 0.328 ± 0.353 4.409 ± 2.693 3.629 ± 3.219 6.649 ± 4.562 6.120 ± 4.721

logVBF 2.715 ± 0.444 1.718 ± 0.547 1.016 ± 0.229 0.264 ± 0.092 3.247 ± 0.725 2.136 ± 0.832 4.286 ± 2.091 3.459 ± 2.323
VBF+logVBF 2.459 ± 0.101 1.309 ± 0.063 1.243 ± 0.358 0.285 ± 0.189 2.796 ± 0.900 1.702 ± 1.287 3.466 ± 0.820 2.628 ± 1.142

Distr-LB
(this paper)

VBF 0.651 ± 0.151 0.119 ± 0.072 0.571 ± 0.237 0.133 ± 0.136 1.039 ± 0.302 0.298 ± 0.125 1.187 ± 0.594 0.355 ± 0.318
logVBF 0.923 ± 0.162 0.193 ± 0.086 0.933 ± 0.415 0.243 ± 0.302 1.491 ± 0.764 0.579 ± 0.531 1.481 ± 0.473 0.558 ± 0.286

VBF+logVBF 0.745 ± 0.316 0.185 ± 0.152 0.385 ± 0.094 0.023 ± 0.003 0.595 ± 0.199 0.051 ± 0.030 0.563 ± 0.180 0.100 ± 0.073
CV 0.865 ± 0.261 0.147 ± 0.121 1.109 ± 0.668 0.433 ± 0.431 1.730 ± 0.468 0.612 ± 0.420 1.383 ± 0.666 0.446 ± 0.345

E.2.2 Communication Overhead of CTDE and Centralised RL

This section studies the communication overhead of CTDE RL scheme and analyses its impact on
real-world distributed systems.

First, we discuss the communication overhead in data center networks in two-folds: throughput and
latency.

1. Thoughput: Active signaling (e.g. periodically probing, or sharing messages) is an intrinsic
way to observe and measure system states so that informed decisions can be made to improve
performance [53, 54]. Higher communication frequency gives more relevant and timely observations
yet there is a trade-off between communication frequency and additionally consumed bandwidth.
Especially, in large distributed systems like data center networks, services are organized by multiple
server clusters scattered all over the physical data center network in the era of cloud computing.
Thus, management traffic among different nodes can cascade and plunder the bandwidth for data
transmission in high-tier links. To demonstrate the trade-off between measurement quality and
throughput overhead, we have conducted experiments to evaluate (i) the relevance of collected
server utilization information to the actual server utilization information with root mean square error
(RMSE) and Spearman’s Correlation in our testbed on physical servers. When a controller VM
periodically probes a server cluster via TCP sockets8, as depicted in Fig. 9, the visibility over system
states (relevance between measurements and ground truth) correlates with the probing frequency.
Additional management traffic within a single service cluster —- behind one virtual IP (VIP) —- can
exceed the 90th percentile of per-destination-rack flow rate (100kbps as depicted in Figure 8a in [45])
in Facebook data center in production.
As depicted in Fig. 10a, CTDE RL scheme requires agents to communicate and share their trajectories,
which include the observed states and actions. This leads to linearly increasing replay buffer size with

8In the 69-byte control packet emitted by the server, the 24-byte payload consists of the server ID, CPU and
memory usage, and the number of busy application threads.
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Table 13: Comparison of 99th percentile QoS (s) in large-scale real-world network setup (DC network
and traffic).

Method Period I (2022.855 queries/s) Period II (2071.129 queries/s)
Wiki Static Wiki Static

WCMP 3.014 ± 0.612 2.152 ± 0.907 4.290 ± 3.593 3.300 ± 3.308
LSQ 1.863 ± 0.888 0.843 ± 0.773 1.243 ± 1.389 0.675 ± 1.223
SED 0.891 ± 0.475 0.208 ± 0.251 1.074 ± 0.751 0.592 ± 0.650

RLB-SAC-G [40] 1.064 ± 0.283 0.210 ± 0.132 0.739 ± 0.317 0.186 ± 0.214

QMix-LB VBF 1.104 ± 0.481 0.241 ± 0.264 1.223 ± 1.169 0.634 ± 0.983
PBF 1.201 ± 0.321 0.196 ± 0.112 0.583 ± 0.103 0.071 ± 0.050

Distr-LB
(this paper)

VBF 1.350 ± 0.311 0.263 ± 0.139 1.180 ± 0.702 0.448 ± 0.371
VBF+logVBF 0.890 ± 0.250 0.103 ± 0.064 0.531 ± 0.149 0.057 ± 0.039

Figure 9: Correlation (Spearman) increases when the probing frequency grows, yet, so do additional
control messages.

the growth of number of episodes. The replay buffer size also grows with the number of agents which
makes CTDE RL scheme not a scalable mechanism. Transmitting and synchronising replay buffer
among agents incur additional communication overhead in the networking system, reducing the
throughput for data transmission channel – which can break full-bisection bandwidth (an important
throughput related performance metric) in data center networks [55] – thus decreasing the QoS.
2. Latency: Using the same network topology as the moderate-scale real-world testbed, when a
single controller VM periodically transmit different amount of bytes via TCP sockets towards the
agents, the latency overhead increases with the number of servers, which diminishes the QoS, as
depicted in Fig. 10b. It is measured for per-packet round trip time (RTT) between two directly
connected network nodes. While normal RTT is 0.099ms ± 0.014ms in such setup, with additional
communication overhead, RTT can grow more than 10x. This is not considered as low additional
latency, especially not in high performance networking systems. In elastic and cloud computing
context and real-world setups, load balancers can be deployed in different racks [56]. There can be
multiple hops between two nodes and one connection consists of tens of hundreds of packets, which
can lead to cascaded high latency.
Based on the analysis of Fig. 9, we can see that delayed measurement and communication can
cause degraded system state observation. To further demonstrate the performance of the passive
feature collection mechanism which incurs absolutely zero communication overhead, an additional
experiment is conducted to compare the feature collection latency. The latency overhead of passive
feature collection process in our paper using POSIX shared memory is compared with different active
probing techniques. The idle communication latency is compared using both KVM and Docker con-
tainers between two hosts either deployed on the same machine (local) or on two neighbor machines

(a) (b)

Figure 10: Communication overhead for CTDE (a) grows linearly during training and (b) can have
negative effects on the packet transmission latency of the whole networking system.
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This paper

Figure 11: Feature collection latency comparison against active probing techniques.

Table 14: Comparison of average job completion time (s) of static pages under different traffic rates
using large-scale real-world setup.

Method Traffic Rate (queries/s)
731.534 1097.3 1463.067 1828.834 2194.601 2377.484 2560.368 2743.251 2926.135

LSQ 0.048
±0.002

0.055
±0.003

0.059
±0.003

0.069
±0.008

0.131
±0.070

0.643
±0.325

1.910
±0.269

2.873
±0.215

3.545
±0.146

SED 0.054
±0.001

0.061
±0.004

0.068
±0.004

0.080
±0.004

0.117
±0.025

0.660
±0.396

1.718
±0.366

2.767
±0.207

3.482
±0.189

Distr-LB
(this paper)

VBF 0.047
±0.001

0.054
±0.003

0.059
±0.005

0.066
±0.007

0.105
±0.035

0.266
±0.139

1.465
±0.115

2.047
±0.145

2.704
±0.108

VBF+logVBF 0.047
±0.001

0.054
±0.004

0.059
±0.004

0.069
±0.008

0.084
±0.009

0.413
±0.249

1.183
±0.063

1.838
±0.083

2.513
±0.105

(remote). To compare with the shortest latency possible of an hardware-based SDN controller directly
connected to the agent, a loopback test is conducted using a NetFPGA [57] connected to the machine
via both Ethernet and PCIe. We parse features stored in the local shared memory with a simple
Python script without generating control messages. As depicted in Fig. 11, its median processing
latency outperforms typical VM- and container-based VNF probing mechanisms [58–61] by more
than 94.18µs.

To evaluate the performance of the proposed algorithm within the operational range of traffic rates,
we conducted the scaling experiment using 6 LB agents and 20 servers in the real-world testbed
with traffic rates that range from low to high. As shown in Table 14 and 15, similar to the QoS
(99-th percentile of the task completion time) evaluation in Table 5 and 6. Low traffic rates do not
saturate server processing capacities and the servers are not stressed. Therefore, all servers are able
to handle all the requests without accumulating jobs in the queue regardless of the differences of
their processing capacities. However, under heavy traffic rates, LSQ still distribute workloads so
as to maintain the same queue lengths on servers with different processing speeds, which leads to
degraded average task completion time. SED assigns more jobs in proportional to the number of
CPUs deployed for each server, achieving slightly better performance than LSQ in terms of the
average task completion time. The proposed Distr-LB outperforms both LSQ and SED especially
under heavy traffic rates, thus when servers undergo heavy resource utilisation. Since the server
processing speed for different applications is not necessarily proportional to the number of CPU–as
we have discussed over Fig. 2a in Sec. 2, Distr-LB is able to learn the appropriate ratio of workload
distribution for servers with different capacities.

Table 15: Comparison of average job completion time (s) of static pages under different traffic rates
using large-scale real-world setup.

Method Traffic Rate (queries/s)
731.534 1097.3 1463.067 1828.834 2194.601 2377.484 2560.368 2743.251 2926.135

LSQ 0.004
±0.001

0.004
±0.000

0.003
±0.000

0.004
±0.000

0.018
±0.023

0.252
±0.234

1.455
±0.258

2.426
±0.207

3.080
±0.136

SED 0.003
±0.000

0.004
±0.001

0.004
±0.000

0.004
±0.000

0.006
±0.003

0.284
±0.308

1.283
±0.374

2.322
±0.226

3.041
±0.188

Distr-LB
(this paper)

VBF 0.004
±0.000

0.004
±0.000

0.004
±0.000

0.004
±0.000

0.005
±0.001

0.055
±0.070

1.039
±0.144

1.617
±0.135

2.277
±0.096

VBF+logVBF 0.004
±0.000

0.004
±0.000

0.004
±0.000

0.004
±0.000

0.006
±0.004

0.116
±0.114

0.750
±0.063

1.413
±0.083

2.076
±0.096
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Table 16: Comparison of QoS (mean, 95th-percentile, and 99th-percentile task completion time in s)
when server processing capacity changes over time.

Wiki Static
Mean 95th-percentile 99th-percentile Mean 95th-percentile 99th-percentile

WCMP 1.792 ± 0.393 7.534 ± 1.817 2.366 ± 1.685 1.512 ± 0.385 6.571 ± 1.996 1.084 ± 1.842
LSQ 0.453 ± 0.178 1.958 ± 0.827 3.482 ± 1.257 0.202 ± 0.130 0.975 ± 0.617 1.801 ± 1.064
SED 0.340 ± 0.268 1.225 ± 0.812 30.600 ± 6.718 0.130 ± 0.206 0.519 ± 0.571 29.893 ± 7.042

QMix-LB

MS 0.373 ± 0.177 1.621 ± 0.830 4.046 ± 6.632 0.144 ± 0.112 0.663 ± 0.523 2.655 ± 6.899
PBF 0.368 ± 0.375 1.529 ± 1.581 2.436 ± 1.468 0.159 ± 0.338 0.733 ± 1.437 0.974 ± 1.204
VBF 0.282 ± 0.166 1.186 ± 0.799 3.187 ± 1.479 0.081 ± 0.104 0.395 ± 0.518 1.654 ± 1.181

VBF+logVBF 0.533 ± 0.179 2.525 ± 0.913 4.864 ± 1.635 0.266 ± 0.129 1.409 ± 0.680 3.374 ± 1.626
Distr-LB

(this paper)
VBF 0.262 ± 0.100 1.086 ± 0.454 2.190 ± 0.792 0.057 ± 0.044 0.305 ± 0.234 0.683 ± 0.510

VBF+logVBF 0.221 ± 0.112 0.895 ± 0.530 1.903 ± 0.976 0.039 ± 0.057 0.197 ± 0.284 0.480 ± 0.650

E.2.3 MARL Robustness

With the rise of elastic and server-less computing, where tenants in data center can share physical
resources (e.g. CPU, disk, memory), servers can have different processing capacities, which may also
change over time dynamically —- because of e.g. updated server configuration (upgrading an Amazon
EC2 a1.xlarge instance to a1.4xlarge) or resource contention (co-located workloads) [62].
According to [14], there are 32% of server clusters in data center that update more than 10 times per
minute based on the measurements collected over 432 minutes up time in a month. 3% of clusters
have more than 50 updates perf minute. Therefore, dynamic changes prevail in real-world data center
networks.

Therefore, this section studies the robustness of the proposed distributed RL-based LB framework to
react to dynamic changes in server processing speeds, e.g. when server VMs are migrated to a new
physical architecture. Using the same moderate-scale real-world testbed with 2 LB agents, additional
CPU-bound workloads are applied on the 4-CPU server group starting from 25s. As depicted in
Fig. 12a, under heavy Wikipedia traffic, MARL-based LB agents adapt server weights over time and
achieves better performance than heuristic LB algorithms – finishing the same amount of workloads
faster, maintaining lower amount of acive number of threads, even when server processing capacity
is reduced. As depicted in Fig. 12b, over multiple runs (10 runs for each LB algorithm), RL-based
LB algorithms effectively achieves lower task completion time in dynamic environments. They help
avoid human intervention and make the LB agents autonomously adapt to the changes in the system.
Table 16 lists the performance of all LB algortihms in terms of the QoS (measured as the average and
95th-percentile task completion time).
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(a) Additional workloads are applied on servers with 4 CPUs at around 25s.

(b) FCT CDF comparisons for two types of tasks.

Figure 12: Load balancing performance comparison in dynamic environments.
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