
A Limitations and Future Work

We perform large-scale analysis on a variety of modular systems through simple rule-based data
generating distributions. Through our analysis, we uncover several interesting insights into the
regimes where modularity, sparsity and perfect specialization helps and how sub-optimal standard
modular systems are in terms of collapse and specialization.

Limitations. While we provide an in-depth analysis of modular systems and the sub-optimalities they
suffer from, we do realize that our experimentation is done from a purely synthetic perspective. It
would be quite interesting to see how it extends and extrapolates to more real-world domains. To this
end, we would point the reader to the list of future works outlined below to extend it to more complex,
but still synthetic, domains and also to Appendix B which discusses in detail ways to leverage insights
from this work to perform experimentation in real-world settings as well as considerations that should
be kept in mind when designing the same.

Future Work. We believe that this is a first step towards better benchmarking and understanding of
modular systems. However, there are still a number of important and interesting directions that have
not been explored in this work. We discuss some of these important future directions here.

Stochasticity. In Section 3, we see that we consider deterministic formulations of py(· |x, c) and
there is no labeling noise. One direction of exploration is to extend the settings considered here to
noisy domains and investigate whether similar analyses still hold.

Hard Attention. In this work, we only considered simple soft-attention based activation decisions
in end-to-end trained modular systems described in Section 4. An interesting future work involves
benchmarking hard-attention based modular systems to explore whether they perform or specialize
better, and also if the problem of collapse is exacerbated in such models.

Finite-Data Regime. Since this is the first work that provides such an analysis in this field, we decided
to stick to the simplest setting of infinite-data regime to limit the effects of overfitting. We believe that
a useful future work would be to consider a low-data regime to see whether the inductive biases of
modularity and sparsity lead to even better generalization when there is only little data to learn from.

Complex Rules. While we consider the simplest setting for each rule, one could consider more
complex distributions where x is also conditional on the rule c and where the labeling function,
denoted by y in Section 3, is a complex non-linear function instead of a simple linear function.
Analysis on trends between modular and monolithic models with increasing complexity of rules
would not only lead to better understanding of such systems but also bridge it closer to real-world
settings.

Harder OoD Settings. Modular systems are often shown to lead to better OoD generalization. In
this work, we considered the simplest possible OoD settings that were often heavily correlated with
in-distribution performances. Future work should investigate more complex OoD settings where
either the support of x is dis-joint between in-distribution and OoD, or there are combinatorial
computations required to obtain labels y, such that certain rule permutations are with-held in training
and used for evaluations.

Better Inductive Biases. A very important next step is to discover and investigate various inductive
biases and regularization procedures that bridge the gap between the current modular systems and
the perfectly specializing systems. Our benchmark provides the perfect opportunity that allows for
analysis into the levels of specialization of different models.

The above points highlight only some of the immediate future works that would paint a richer and
more intricate picture of what current modular systems are capable of, and what are the benefits we
can obtain through perfect specialization.

Apart from extensions to the rule and module settings, we believe that it would also be important to
investigate further into the quantitative evaluation metrics that we consider, in particular -

Generalizing to non equi-probable rules. Our current metrics on collapse and specialization rely on
the need for equi-probable rules in the data generating distribution. It would be important to extend
this to a more general setting where certain rules could be present more than the others.

Different number of rules and modules. For ease of quantitative evaluation, we only consider a
well-specified system where the number of rules and the number of modules are kept the same. An
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important next step is to formulate the collapse and specialization metrics to work in the settings
where the number of modules could be more (or less) than the number of rules present in the data.

While investigating all the above possibilities is surely exciting, we believe that our work and setting
provides the test-bed to allow for extensions and analysis into all the laid-out possibilities. This would
not only allow for a more thorough understanding of modular systems but also lead to investigations
into inductive biases that benefit such systems on various real-world settings.

B Impact, Extensions and Connections to Real-World Domains

While we do not perform explicit experimentation on real-world domains, we believe that the analysis
done here would extrapolate to real-world settings and allow for better and more sample efficient
large scale models. In this section, we highlight ways in which the analysis can either be extended to
or impact real world settings as well as additional considerations for researchers to take into account
when considering the different real-world extensions proposed here.

Understanding Large MoE Models. MoE based models have also been shown to be quite successful
in large-scale domains Fedus et al. (2021); Shazeer et al. (2017); Lepikhin et al. (2020); Zuo et al.
(2021); Wang et al. (2022). However, it is not clear whether they only offer ease of optimization or
also benefits in performance through some notion of specialization. We believe it is an important
research question to understand if their performance gains are linked to specialization, and if they
are, how far are we from perfect specialization and how to reach there. To this end, we believe that
our metrics can provide concrete quantitative assessment of the level of specialization obtained, and
we believe that improving the capacity for specialization in our settings would extrapolate to more
complex domains too. There are already some partial works that try to address the problems that
we quantify; for example, the switch transformer uses a load-balancing term to prevent collapse.
Certain works Zuo et al. (2021); Wang et al. (2022) also show that context dependent routing often
doesn’t provide additional benefits over random routing and one possible reason for this could be that
context dependent routing is often severely sub-optimal in obtaining specialization as seen in our
experiments.

In sum, consider our synthetic task setup along with evaluation metrics as an integrated tool for model
architecture evaluation, rather than toy tasks. We think such architecture evaluation will be important
to develop in the future, as networks start to exploit more modular structure. We consider our work
as a systematic contribution toward this, helping to go beyond trial-and -error network design.

Extension to Real World Settings. The reason we consider synthetic settings is to have a very clear
definition of specialization, that is, there is only one criteria which should drive specialization in
our experiments and that is the rule context c. However, in more complex domains and multi-task
settings, it is not so clear anymore. For example, between CIFAR10 and ImageNet classification,
specialization could be at the level of dataset (CIFAR10 vs ImageNet) or at the level of object types
(living vs non-living objects or ground vs water vs sky objects) or even at the lower level details
(like presence of features like eyes, wings, wheels, etc.). Another example is Multilingual Language
Modeling, where the notion of specialization could be tied to individual languages, or to different
language families.

Even though the level of specialization is unclear in such complex domains, a possible way forward
is taking a handful of notions of specialization and testing whether any of them leads to better
performance in MoE models (eg. whether specialization at the level of language leads to better
multilingual language modeling metrics in large MoE network styled as GT-Modular). That is,
through GT-Modular and Modular-op styled MoE models, we can at least now test whether a
designed notion of specialization is good for the task or not. Further, we can also extrapolate ways
of improving specialization and reducing collapse from our synthetic domain to large-scale MoE
systems which might lead not only to better performance but also more optimal sparse gating systems.

Pre-training and Fine-tuning Extensions . It is also possible to extend this analysis to test for
transfer ability of models by constructing a set of tasks to pre-train on and then another set of tasks
to perform fine-tuning on, with the hypothesis that a well-specialized system should learn better or
faster during fine-tuning. However, we would like to point out that this is not a simple extension since
it also requires a clear notion of consistency/similarity between different rules. One could assume
that training on certain rules and testing on completely unrelated rules is not of as much importance,
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and hence it requires a notion of similarity between tasks (eg. KL divergence between different
mixture components as a notion of similarity; but it would require a move away from deterministic
computations to noisy rules). Even after obtaining such a metric, it would provide another axis of
study; i.e. how much similarity should be there between tasks for modularity to provide benefits.
While an important question, we believe that it is a different research question from what we try to
answer, which is the sub-optimality of modular systems in obtaining specialization.

Synthetic Language Task Extensions. Our setup can also be extended to testing of language models
(LMs) by modeling the data distribution as some form of a mixture distribution in an underlying
probabilistic context free grammar (pCFG) and analyzing whether current MoE systems specialize
on the notion of experts in this setting.

Usage in Statistical Modeling and Neuroscience. Mixture distributions and Mixture of Experts
based models have been widely used in Machine Learning and are applied in a number of real-world
scenarios. They are often used to model statistical populations with subpopulations where each
subpopulation could be modeled by a specific density and the mixture weights would reflect the
proportion of each subpopulation. In this regard, we can look at our analysis at trying to determine in
a general case of mixture distributions, how well can an MoE model discover the subpopulations,
how can we evaluate it and whether it leads to any benefits in terms of performance.

In the recurrent domain, connections of the proposed data-distribution and modeling assumption
can be made with switching linear dynamical systems (sLDS) which have been shown to be widely
successful in modeling non-stationary interactions between high-dimensional neural populations Fox
et al. (2008, 2010); Wulsin et al. (2013); Linderman et al. (2016); Glaser et al. (2020). Our recurrent-
based data is reflective of the modeling assumptions in sLDS and our RNN models can be seen as
an implementation of a flexible mixture-of-experts based system in this domain, however without
incorporating the bayesian or stochastic perspective which is an important next step as outlined in
Appendix A. Since such works rely on learning to discover low-dimensional structure in neurons
through mixtures, we believe that our analysis would benefit this direction of research too by
quantifying the extent to which an expert orients with a subpopulation.

C Proof of Model Relations

To prove: Given enough representational capacity, we need to show that GT-Modular ⊆ Modular-op
⊆ Modular ⊆ Monolithic.

We prove this step-by-step by using the functional forms of different models as described in Table 1.

Claim: GT-Modular ⊆ Modular-op

Proof. Given the formulation of a GT-Modular system as

ŷm = fm(x, c) (21)

ŷ =

R∑
m=1

cm ŷm (22)

and of the Modular-op system as

ŷm = f ′
m(x, c) (23)

p = g(c) (24)

ŷ =

R∑
m=1

pm ŷm (25)

We see that we obtain GT-Modular from Modular-op simply by setting g(·) as the identity function
and fm = f ′

m

Claim: Modular-op ⊆ Modular
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Proof. The formulation of a Modular-op system is given as

ŷm = fm(x, c) (26)
p = g(c) (27)

ŷ =

R∑
m=1

pm ŷm (28)

and that of the Modular system as

ŷm, pm = f ′
m(x, c) (29)

ŷ =

R∑
m=1

pm ŷm (30)

We can describe f ′
m(x, c) =

(
f ′
m1

(x, c), f ′
m2

(x, c)
)

for the Modular system. Setting f ′
m1

(x, c) =

fm(x, c) and f ′
m2

(x, c) = g(c) for all x, c, we recover Modular-op from the Modular system.

Claim: Modular ⊆ Monolithic

Proof. Let the formulation of a Modular system be

ŷm, pm = fm(x, c) (31)

ŷ =

R∑
m=1

pm ŷm (32)

where fm(x, c) =
(
fm1

(x, c), fm2
(x, c)

)
. The formulation of the the Monolithic system is

ŷ = f(x, c) (33)

We can recover the Modular system from Monolithic simply by setting f(x, c) =
R∑

m=1
fm2

(x, c) ·

fm1
(x, c).

Given enough capacity of all the systems, all the functional assignment are possible. This completes
the proof, and shows that each choice provides an additional inductive bias by potentially restricting
the functional class.

D MLP

We provide detailed results of our MLP based experiments highlighting the effects of the training
setting (Regression or Classification), the number of rules (ranging from 2 to 32) and the different
model capacities. In these set of experiments, we use the MLP version of the data generating process
(as highlighted in Section 3) and consider the models (highlighted in Section 4) with f and fm
modeled using MLP architectures.

Task Setup. We follow the task setup as described in Section 3. We consider 1-dimensional data
samples for x1 and x2 and for the task parameters, we sample αc, βc

iid∼ N (0, I). Further, for the OoD
generalization setup, we instead sample input from a different distribution, i.e., x1,x2

iid∼ N (0, 2 I).

Model Setup. Input consists of numbers x1 ∈ R and x2 ∈ R as well as the rule context c ∈
{0, . . . , R}, with R being the total number of rules. The model consists of two encoders Ex and
Ec where Ex maps x1 and x2 independently to Rd and Ec maps c to Rd. Each of the encoders
are implemented as non-linear neural networks with a single hidden layer. The encoded inputs are
then concatenated together and fed to a model chosen from Monolithic, Modular, Modular-op and
GT-Modular. The output of this model lies in Rd and is fed to a non-linear decoder with a single
hidden layer to provide the final prediction ŷ.

Monolithic: This model consists of a non-linear single layered neural network that gets the concatena-
tion of the three encodings as input and outputs a vector in Rd.
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Figure 8: Ranking Metric for MLP-Classification. Each pie chart shows the number of times
a model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d).
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Figure 9: In-Distribution Performance of MLP-Classification Models. Performance (lower is
better) of different models of varying capacities trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Modular: This model consists of R different non-linear single layered neural networks (modules),
each of which gets the concatenation of the three encodings as input and outputs a corresponding
activation score pm and prospective output hm. The actual output of this modular system can be
understood as

∑
m pmhm which incorporates the output of each module in a soft manner as pm is

obtained through a softmax. This output is then fed to a decoder, as in the other models.

Modular-op: This model is quite similar to the Modular system, with the only difference being that
pm is not obtained from each module’s computations but instead from a separate non-linear network
with one hidden layer which gets the encoding of c as input and outputs a probability vector p ∈ ∆R,
i.e. the activation probability of each module.

GT-Modular: This model is also quite similar to the Modular system, with the only difference
being that pm = 1 if m is equal to c, otherwise pm = 0. Thus, there is a unique sparse one-to-one
correspondence between rule context and module selection. It can also be thought of as a Modular-op
model with the separate network being an identity mapping.

For our experiments, we ablate over the encoding dimension d and the hidden layer size of the model
over the set {(32, 128), (64,256), (128, 512), (256, 1024), (512, 2048)} and control for the number of
parameters between the four different kinds of models considered.

Training Details. We train all the models for 100,000 iterations with a batch-size of 256 and the
Adam optimizer with learning rate of 0.0001. For the classification tasks, we consider binary cross
entropy loss, while for regression we consider the l1 loss.

Classification. We first look at the results on the binary classification based MLP tasks. For reporting
performance metrics, we consider all model capacities as well as number of rules while for collapse
and specialization metrics, we consider the smallest, mid-size and largest models and report over the
different number of rules.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 8. The rankings are based on the votes obtained by the different models. Given a task,
averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.
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Figure 10: Out-of-Distribution Performance of MLP-Classification Models. Performance (lower
is better) of different models of varying capacities trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Small Medium Large

Co
lla

ps
e-

Av
g

Rules = 2

Small Medium Large

Rules = 4

Small Medium Large
Capacity

Rules = 8

Small Medium Large

Rules = 16

Small Medium Large

Rules = 32

GT-Modular Modular-op Modular Random

Figure 11: Collapse-Avg Metric for MLP-Classification Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 12: Collapse-Worst Metric for MLP-Classification Models. Highlights the amount of
collapse (lower is better) suffered by different models of varying capacities trained across different
number of rules. Each bar on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.
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Figure 13: Inverse Mutual Information Metric for MLP-Classification Models. Highlights how
poor the specialization (lower is better) is of different models of varying capacities trained across
different number of rules. Each bar on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.

Next, we refer the readers to Figure 9 for the in-distribution and Figure 10 for the out-of-distribution
performance of the various models across both different model capacities as well as different number
of rules.
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Figure 14: Adaptation Metric for MLP-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 15: Alignment Metric for MLP-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 16: Ranking Metric for MLP-Regression. Each pie chart shows the number of times a
model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d).

Collapse-Avg. For each rule setting, we report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 11.

Collapse-Worst. For each rule setting, we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure 12.

Inverse Mutual Information. For each rule setting, we report the Inverse Mutual Information metric
score of the different models and the three different model capacities in Figure 13.

Adaptation. For each rule setting, we report the Adaptation metric score of the different models and
the three different model capacities in Figure 14.

Alignment. For each rule setting, we report the Alignment metric score of the different models and the
three different model capacities in Figure 15.

Regression. Next, we look at the results on the regression based MLP tasks. For reporting perfor-
mance metrics, we consider all model capacities as well as number of rules while for collapse and
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Figure 17: In-Distribution Performance of MLP-Regression Models. Performance (lower is
better) of different models of varying capacities trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

105 106 107

0.0025

0.0035

0.0045

0.0055

Lo
ss

Rules: 2

105 106 107

0.0025

0.0035

0.0045

0.0055
Rules: 4

105 106 107

Number of Parameters

0.0020

0.0030

0.0040

0.0050

Rules: 8

105 106 107

0.003

0.005

0.007

Rules: 16

105 106 107
0.003

0.005

0.007

0.009

Rules: 32

GT-Modular Modular-op Modular Monolithic

Figure 18: Out-of-Distribution Performance of MLP-Regression Models. Performance (lower is
better) of different models of varying capacities trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 19: Collapse-Avg Metric for MLP-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 20: Collapse-Worst Metric for MLP-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

specialization metrics, we consider the smallest, mid-size and largest models and report over the
different number of rules.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 16. The rankings are based on the votes obtained by the different models. Given a task,
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Figure 21: Inverse Mutual Information Metric for MLP-Regression Models. Highlights how
poor the specialization (lower is better) is of different models of varying capacities trained across
different number of rules. Each bar on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.
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Figure 22: Adaptation Metric for MLP-Regression Models. Highlights how poor the specialization
(lower is better) is of different models of varying capacities trained across different number of rules.
Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling 25
runs.
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Figure 23: Alignment Metric for MLP-Regression Models. Highlights how poor the specialization
(lower is better) is of different models of varying capacities trained across different number of rules.
Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling 25
runs.

averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.

Next, we refer the readers to Figure 17 for the in-distribution and Figure 18 for the out-of-distribution
performance of the various models across both different model capacities as well as different number
of rules.

Collapse-Avg. For each rule setting, we report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 19.

Collapse-Worst. For each rule setting, we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure 20.

Inverse Mutual Information. For each rule setting, we report the Inverse Mutual Information metric
score of the different models and the three different model capacities in Figure 21.

Adaptation. For each rule setting, we report the Adaptation metric score of the different models and
the three different model capacities in Figure 22.
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Alignment. For each rule setting, we report the Alignment metric score of the different models and the
three different model capacities in Figure 23.

E MHA

We provide detailed results of our MHA based experiments highlighting the effects of the training
setting (Regression or Classification), the number of rules (ranging from 2 to 32) and the different
model capacities. In these set of experiments, we use the MHA version of the data generating process
(as highlighted in Section 3) and consider the models (highlighted in Section 4) with f and fm
modeled using MHA architectures.

Task Setup. We follow the task setup as described in Section 3. We consider the sequence length as
10 for training and the input vnr and v′

nr to be 1-dimensional per token per rule. We consider two
different notions of search d(·, ·), outlined as

• Search-Version 1: Here qnr and q′
nr are 1-dimensional per token per rule. The search rule

is defined as d(a, b) =
∣∣a− b

∣∣.
• Search-Version 2: Here qnr and q′

nr are 2-dimensional per token per rule and are instead
sampled independently from a 2-dimensional hyper-sphere. The search rule is defined as
d(a, b) = aT b.

For the task parameters, we sample αc, βc
iid∼ N (0, I). Further, for the OoD generalization setup, we

instead sample input from a different distribution, i.e., we use N (0, 2 I) instead of standard normal
and in case of sampling from hyper-sphere, we instead consider one with double the radius. We also
test with different sequence lengths, specifically 3, 5, 10, 20 and 30.

Model Setup. Input consists of a set of vectors {vi}Ni=1 where each vector vi is of dimensionality
4R for Search-Version 1 and 6R for Search-Version 2 as well as a set of rule contexts {ci}Ni=1
where ci ∈ {0, . . . , R} with R being the total number of rules. As in the MLP setup, we first use a
single layered non-linear feed-forward network to independently encode each tuple (vi, ci) to some
latent space of dimension d. The encoded input then goes through a choice of model ranging from
Monolithic, Modular, Modular-op and GT-Modular which gives an output in Rd which is then fed to
a single-layered non-linear feed-forward decoder network to give the final prediction {ŷi}Ni=1.

Monolithic: This model consists of a single Multi-Head Attention block with 2R heads that gets the
encoded input set and outputs a corresponding set of vectors in Rd. We keep the number of heads as
2R to allow for learning for all rules, as each rule requires 2 heads.

Modular: This model consists of R different Multi-Head Attention blocks (modules) with 2 heads
each, each of which gets the encoded input set and outputs a corresponding activation score pi,m and
prospective output hi,m for the ith token. The actual output of this modular system at each token can
be understood as

∑
m pi,mhi,m which incorporates the output of each module in a soft manner as

pi,m is obtained through a softmax. This output is then fed to a decoder, as in the other models.

Modular-op: This model is quite similar to the Modular system, with the only difference being
that pi,m is not obtained from each module’s computations but instead from a separate non-linear
single-layered feed-forward network which gets ci as input and outputs a probability vector pi ∈ ∆R

for each token i, i.e. the activation probability of each module for each token.

GT-Modular: This model is also quite similar to the Modular system, with the only difference being
that pi,m = 1 if m is equal to ci, otherwise pi,m = 0. Thus, there is a unique sparse one-to-one
correspondence between rule context and module selection. It can also be thought of as a Modular-op
model with the separate network being an identity mapping.

For our experiments, we ablate over the encoding dimension d and the hidden size which defines
the heads dimensionality of the model over the set {(32, 128), (64,256), (128, 512), (256, 1024),
(512, 2048)} and control for the number of parameters between the four different kinds of models
considered. This requires a non-trivial computation because in an MHA system, a monolithic one
with attention layer size 256 has more parameters than a mixture of 4 MHA models with 64 size each,
but has less parameters than a mixture of 4 MHA models with 256 size due to the final output MLP

24



GT-Modular
61.2%

Modular

10.0%

Modular-op11.6%

Monolithic

17.2%

(a) In-Distribution

GT-Modular

68.0% Modular
5.6%

Modular-op

20.4%

Monolithic

6.0%

(b) Out-of-Distribution

Modular

69.6%

Monolithic

30.4%

(c) In-Distribution

Modular

76.4%

Monolithic

23.6%

(d) Out-of-Distribution

Figure 24: Ranking Metric for MHA-Classification. Each pie chart shows the number of times
a model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For
OoD, we only consider the extreme setting with largest sequence length and change in distribution of
individual tokens.
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Figure 25: In-Distribution Performance of MHA-Classification Models. Performance (lower is
better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.

that combines multiple heads. The computations done in the code are to obtain an estimate of the
layer size that maintains similar total number of parameters in the two systems.

Training Details. We train all the models for 500,000 iterations with a batch-size of 256 and the
Adam optimizer with learning rate of 0.0001. For the classification tasks, we consider binary cross
entropy loss, while for regression we consider the l1 loss.

Classification. We first look at the results on the binary classification based MHA tasks. For reporting
performance metrics, we consider all model capacities, all number of rules as well as the two search
versions while for collapse and specialization metrics, we consider the smallest, mid-size and largest
models and report over the different number of rules as well the search versions.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 24. The rankings are based on the votes obtained by the different models. Given a task,
averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.

We refer the readers to Figure 25 for the in-distribution performance and Figure 26 for the most
extreme out-of-distribution performance (where we use the largest sequence length (30) and also
change the distribution from which individual tokens are sampled) of the various models across both
different model capacities, search functions as well as different number of rules. We also refer the
reader to Figures 56 - 59 for the out-of-distribution case where only the sequence length is varied
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Figure 26: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 27: Collapse-Avg Metric for MHA-Classification Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

in the data and to Figures 60 - 64 where both the sequence length is potentially altered and also the
distribution from which individual data points are sampled.

Collapse-Avg. For each rule setting and search version, we report the Collapse-Avg metric score of
the different models and the three different model capacities in Figure 27.

Collapse-Worst. For each rule setting and search version, we report the Collapse-Worst metric score
of the different models and the three different model capacities in Figure 28.

Inverse Mutual Information. For each rule setting and search version, we report the Inverse Mutual
Information metric score of the different models and the three different model capacities in Figure 29.

Adaptation. For each rule setting and search version, we report the Adaptation metric score of the
different models and the three different model capacities in Figure 30.

Alignment. For each rule setting and search version, we report the Alignment metric score of the
different models and the three different model capacities in Figure 31.
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Figure 28: Collapse-Worst Metric for MHA-Classification Models. Highlights the amount of
collapse (lower is better) suffered by different models of varying capacities trained across different
number of rules. Each bar on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.
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Figure 29: Inverse Mutual Information Metric for MHA-Classification Models. Highlights how
poor the specialization (lower is better) is of different models of varying capacities trained across
different number of rules. Each bar on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.

Regression. Next, we look at the results on the regression based MHA tasks. For reporting
performance metrics, we consider all model capacities, all number of rules as well as the two search
versions while for collapse and specialization metrics, we consider the smallest, mid-size and largest
models and report over the different number of rules as well the search versions.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 32. The rankings are based on the votes obtained by the different models. Given a task,
averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.

We refer the readers to Figure 33 for the in-distribution performance and Figure 34 for the most
extreme out-of-distribution performance (where we use the largest sequence length (30) and also
change the distribution from which individual tokens are sampled) of the various models across both
different model capacities, search functions as well as different number of rules. We also refer the
reader to Figures 65 - 68 for the out-of-distribution case where only the sequence length is varied
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Figure 30: Adaptation Metric for MHA-Classification Models. Highlights how poor the special-
ization (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 31: Alignment Metric for MHA-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

in the data and to Figures 69 - 73 where both the sequence length is potentially altered and also the
distribution from which individual data points are sampled.

Collapse-Avg. For each rule setting and search version, we report the Collapse-Avg metric score of
the different models and the three different model capacities in Figure 35.

Collapse-Worst. For each rule setting and search version, we report the Collapse-Worst metric score
of the different models and the three different model capacities in Figure 36.

Inverse Mutual Information. For each rule setting and search version, we report the Inverse Mutual
Information metric score of the different models and the three different model capacities in Figure 37.

Adaptation. For each rule setting and search version, we report the Adaptation metric score of the
different models and the three different model capacities in Figure 38.

Alignment. For each rule setting and search version, we report the Alignment metric score of the
different models and the three different model capacities in Figure 39.
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Figure 32: Ranking Metric for MHA-Regression. Each pie chart shows the number of times a
model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For
OoD, we only consider the extreme setting with largest sequence length and change in distribution of
individual tokens.
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Figure 33: In-Distribution Performance of MHA-Regression Models. Performance (lower is
better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.

F RNN

We provide detailed results of our RNN based experiments highlighting the effects of the training
setting (Regression or Classification), the number of rules (ranging from 2 to 32) and the different
model capacities. In these set of experiments, we use the RNN version of the data generating process
(as highlighted in Section 3) and consider the models (highlighted in Section 4) with f and fm
modeled using simple RNN architectures.

Task Setup. We follow the task setup as described in Section 3. We consider the sequence length as
10 for training and the input xn to be 32-dimensional.

For the task parameters, we sample Ac, Bc
iid∼ N (0, 1√

32
I) and w ∼ N (0, I). Further, for the OoD

generalization setup, we instead sample input from a different distribution, i.e., we use N (0, 2 I)
instead of standard normal. We also test with different sequence lengths, specifically 3, 5, 10, 20 and
30.

Model Setup. Input consists of a sequence of vectors {vi}Ni=1 where each vector vi is of dimen-
sionality 32, as well as a set of rule contexts {ci}Ni=1 where ci ∈ {0, . . . , R} with R being the total
number of rules. As in the MLP setup, we first use a single layered non-linear feed-forward network
to independently encode each tuple (vi, ci) to some latent space of dimension d. The encoded input
then goes through a choice of model ranging from Monolithic, Modular, Modular-op and GT-Modular
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Figure 34: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Co
lla

ps
e-

Av
g

Rules = 2 Rules = 4 Rules = 8 Rules = 16 Rules = 32

Small Medium Large

Co
lla

ps
e-

Av
g

Rules = 2

Small Medium Large

Rules = 4

Small Medium Large
Capacity

Rules = 8

Small Medium Large

Rules = 16

Small Medium Large

Rules = 32

GT-Modular Modular-op Modular Random

Figure 35: Collapse-Avg Metric for MHA-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

which gives an output in Rd which is then fed to a single-layered non-linear feed-forward decoder
network to give the final prediction {ŷi}Ni=1.

Monolithic: This model consists of a single LSTM Cell that gets the encoded sequence as input and
outputs a corresponding sequence of vectors in Rd.

Modular: This model consists of R different LSTM Cells (modules) each of which gets the encoded
sequence as input and outputs a corresponding activation score pi,m and prospective output hi,m

for each token. The actual output of this modular system at each token can be understood as∑
m pi,mhi,m which incorporates the output of each module in a soft manner as pi,m is obtained

through a softmax. This output is then fed to a decoder, as in the other models.

Modular-op: This model is quite similar to the Modular system, with the only difference being
that pi,m is not obtained from each module’s computations but instead from a separate non-linear
single-layered feed-forward network which gets ci as input and outputs a probability vector pi ∈ ∆R

for each token i, i.e. the activation probability of each module for each token.

30



Co
lla

ps
e-

W
or

st

Rules = 2 Rules = 4 Rules = 8 Rules = 16 Rules = 32

Small Medium Large

Co
lla

ps
e-

W
or

st

Rules = 2

Small Medium Large

Rules = 4

Small Medium Large
Capacity

Rules = 8

Small Medium Large

Rules = 16

Small Medium Large

Rules = 32

GT-Modular Modular-op Modular Random

Figure 36: Collapse-Worst Metric for MHA-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 37: Inverse Mutual Information Metric for MHA-Regression Models. Highlights how
poor the specialization (lower is better) is of different models of varying capacities trained across
different number of rules. Each bar on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.

GT-Modular: This model is also quite similar to the Modular system, with the only difference being
that pi,m = 1 if m is equal to ci, otherwise pi,m = 0. Thus, there is a unique sparse one-to-one
correspondence between rule context and module selection. It can also be thought of as a Modular-op
model with the separate network being an identity mapping.

For our experiments, we ablate over the encoding dimension d and the dimensionality that controls
the hidden size of the RNN over the set {(32, 128), (64,256), (128, 512), (256, 1024), (512, 2048)}
and control for the number of parameters between the four different kinds of models considered. This
requires a non-trivial computation because in a recurrent system, a monolithic RNN with hidden size
256 has more parameters than a mixture of 4 RNN models with 64 hidden size each, but has less
parameters than a mixture of 4 RNN models with 256 hidden size. The computations done in the
code are to obtain an estimate of the hidden size that maintains that the total number of parameters in
the two systems are similar.
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Figure 38: Adaptation Metric for MHA-Regression Models. Highlights how poor the specialization
(lower is better) is of different models of varying capacities trained across different number of rules.
Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling 25
runs.
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Figure 39: Alignment Metric for MHA-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

Training Details. We train all the models for 500,000 iterations with a batch-size of 256 and the
Adam optimizer with learning rate of 0.0001, with gradient clipping at 1.0. For the classification
tasks, we consider binary cross entropy loss, while for regression we consider the l1 loss.

Classification. We first look at the results on the binary classification based RNN tasks. For reporting
performance metrics, we consider all model capacities and all number of rules while for collapse
and specialization metrics, we consider the smallest, mid-size and largest models and report over the
different number of rules.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 40. The rankings are based on the votes obtained by the different models. Given a task,
averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.

We refer the readers to Figure 41 for the in-distribution performance and Figure 42 for the most
extreme out-of-distribution performance (where we use the largest sequence length (30) and also
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Figure 40: Ranking Metric for RNN-Classification. Each pie chart shows the number of times
a model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For
OoD, we only consider the extreme setting with largest sequence length and change in distribution of
individual tokens.
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Figure 41: In-Distribution Performance of RNN-Classification Models. Performance (lower is
better) of different models of varying capacities and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

change the distribution from which individual tokens are sampled) of the various models across both
different model capacities as well as different number of rules. We also refer the reader to Figures
74 - 77 for the out-of-distribution case where only the sequence length is varied in the data and to
Figures 78 - 82 where both the sequence length is potentially altered and also the distribution from
which individual data points are sampled.

Collapse-Avg. For each rule setting, we report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 43.

Collapse-Worst. For each rule setting, we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure 44.

Inverse Mutual Information. For each rule setting, we report the Inverse Mutual Information metric
score of the different models and the three different model capacities in Figure 45.

Adaptation. For each rule setting, we report the Adaptation metric score of the different models and
the three different model capacities in Figure 46.
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Figure 42: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 43: Collapse-Avg Metric for RNN-Classification Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 44: Collapse-Worst Metric for RNN-Classification Models. Highlights the amount of
collapse (lower is better) suffered by different models of varying capacities trained across different
number of rules. Each bar on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.
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Figure 45: Inverse Mutual Information Metric for RNN-Classification Models. Highlights how
poor the specialization (lower is better) is of different models of varying capacities trained across
different number of rules. Each bar on the graph is obtained from an average over five tasks, each
with five seeds, totaling 25 runs.
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Figure 46: Adaptation Metric for RNN-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

Alignment. For each rule setting, we report the Alignment metric score of the different models and the
three different model capacities in Figure 47.
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Figure 47: Alignment Metric for RNN-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 48: Ranking Metric for RNN-Regression. Each pie chart shows the number of times a
model wins the competition (higher is better), which means outperforms the other models on a
single task. Ranking is based on all models with in-distribution ranking in (a) and out-of-distribution
ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular
and Monolithic systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For
OoD, we only consider the extreme setting with largest sequence length and change in distribution of
individual tokens.

Regression. Next, we look at the results on the regression based RNN tasks. For reporting per-
formance metrics, we consider all model capacities and all number of rules while for collapse and
specialization metrics, we consider the smallest, mid-size and largest models and report over the
different number of rules.

Performance. For ease of readability, we first provide a snapshot of the results through rankings
in Figure 48. The rankings are based on the votes obtained by the different models. Given a task,
averaged over the five training seeds, a vote is given to the model that performs the best. This provides
a quick view of the number of times each model outperformed the rest.

We refer the readers to Figure 49 for the in-distribution performance and Figure 50 for the most
extreme out-of-distribution performance (where we use the largest sequence length (30) and also
change the distribution from which individual tokens are sampled) of the various models across both
different model capacities, search functions as well as different number of rules. We also refer the
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Figure 49: In-Distribution Performance of RNN-Regression Models. Performance (lower is
better) of different models of varying capacities and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 50: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 51: Collapse-Avg Metric for RNN-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 52: Collapse-Worst Metric for RNN-Regression Models. Highlights the amount of collapse
(lower is better) suffered by different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.
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Figure 53: Inverse Mutual Information Metric for RNN-Regression Models. Highlights how poor
the specialization (lower is better) is of different models of varying capacities trained across different
number of rules. Each bar on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.

reader to Figures 83 - 86 for the out-of-distribution case where only the sequence length is varied
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Figure 54: Adaptation Metric for RNN-Regression Models. Highlights how poor the specialization
(lower is better) is of different models of varying capacities trained across different number of rules.
Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling 25
runs.
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Figure 55: Alignment Metric for RNN-Classification Models. Highlights how poor the specializa-
tion (lower is better) is of different models of varying capacities trained across different number of
rules. Each bar on the graph is obtained from an average over five tasks, each with five seeds, totaling
25 runs.

in the data and to Figures 87 - 91 where both the sequence length is potentially altered and also the
distribution from which individual data points are sampled.

Collapse-Avg. For each rule setting, we report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 51.

Collapse-Worst. For each rule setting, we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure 52.

Inverse Mutual Information. For each rule setting, we report the Inverse Mutual Information metric
score of the different models and the three different model capacities in Figure 53.

Adaptation. For each rule setting, we report the Adaptation metric score of the different models and
the three different model capacities in Figure 54.

Alignment. For each rule setting, we report the Alignment metric score of the different models and the
three different model capacities in Figure 55.
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Figure 56: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 57: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 58: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 59: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

39



8

10

12

14

Er
ro

r

Search-Version: 1 | Rules: 2

10

14

18

22

Search-Version: 1 | Rules: 4

15.0

20.0

25.0

30.0

Search-Version: 1 | Rules: 8

15

25

35

Search-Version: 1 | Rules: 16

20

30

40

Search-Version: 1 | Rules: 32

105 106

4

6

8

10

12

14

Er
ro

r

Search-Version: 2 | Rules: 2

105 106

10

15

20

25

30
Search-Version: 2 | Rules: 4

105 106

Number of Parameters

10

15

20

25

30

Search-Version: 2 | Rules: 8

105 106

15

20

25

30

35

Search-Version: 2 | Rules: 16

105 106
15

20

25

30

35

40

Search-Version: 2 | Rules: 32

GT-Modular Modular-op Modular Monolithic

Figure 60: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 61: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 62: Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 63: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 64: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on MHA-Classification Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

0.15

0.25

0.35

Lo
ss

Search-Version: 1 | Rules: 2

0.2

0.4

Search-Version: 1 | Rules: 4

0.2

0.4

0.6

Search-Version: 1 | Rules: 8

0.4

0.6

0.8

Search-Version: 1 | Rules: 16

0.5

0.7

0.9

Search-Version: 1 | Rules: 32

105 106

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Search-Version: 2 | Rules: 2

105 106

0.1

0.2

0.3

0.4

0.5

0.6

Search-Version: 2 | Rules: 4

105 106

Number of Parameters

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Search-Version: 2 | Rules: 8

105 106

0.3

0.4

0.5

0.6

0.7

0.8

Search-Version: 2 | Rules: 16

105 106

0.5

0.6

0.7

0.8

0.9

Search-Version: 2 | Rules: 32

GT-Modular Modular-op Modular Monolithic

Figure 65: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 66: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 67: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 68: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 69: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 70: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 71: Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 72: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 73: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on MHA-Regression Models. Performance (lower is better) of different models of
varying capacities, different search versions in data and trained across different number of rules. Each
point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 74: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 75: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 76: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 77: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 78: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 79: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 80: Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 81: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 82: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on RNN-Classification Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 83: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 84: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 85: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 86: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 87: Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 88: Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 89: Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 90: Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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Figure 91: Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered)
Performance on RNN-Regression Models. Performance (lower is better) of different models of
varying capacities and trained across different number of rules. Each point on the graph is obtained
from an average over five tasks, each with five seeds, totaling 25 runs.
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