
Is a Modular Architecture Enough?

Sarthak Mittal†, Yoshua Bengio, Guillaume Lajoie
Mila, Université de Montréal

Abstract

Inspired from human cognition, machine learning systems are gradually revealing
advantages of sparser and more modular architectures. Recent work demonstrates
that not only do some modular architectures generalize well, but they also lead to
better out-of-distribution generalization, scaling properties, learning speed, and
interpretability. A key intuition behind the success of such systems is that the data
generating system for most real-world settings is considered to consist of sparsely
interacting parts, and endowing models with similar inductive biases will be helpful.
However, the field has been lacking in a rigorous quantitative assessment of such
systems because these real-world data distributions are complex and unknown. In
this work, we provide a thorough assessment of common modular architectures,
through the lens of simple and known modular data distributions. We highlight
the benefits of modularity and sparsity and reveal insights on the challenges faced
while optimizing modular systems. In doing so, we propose evaluation metrics
that highlight the benefits of modularity, the regimes in which these benefits are
substantial, as well as the sub-optimality of current end-to-end learned modular
systems as opposed to their claimed potential.1

1 Introduction
Deep learning research has an established history of drawing inspiration from neuroscience and
cognitive science. From the way hidden units combine afferent inputs, to how connectivity and
network architectures are designed, many breakthroughs have relied on mimicking brain strategies.
It is no surprise then that modularity and attention have been leveraged, often together, in artificial
networks in recent years (Bahdanau et al., 2015; Andreas et al., 2016; Hu et al., 2017; Vaswani et al.,
2017; Kipf et al., 2018; Battaglia et al., 2018; Goyal et al., 2019, 2021), with impressive results.
Indeed, work from cognitive neuroscience (Baars, 1997; Dehaene et al., 2017) suggests that cortex
represents knowledge in a modular way, with different such modules communicating through the
bottleneck of working memory (where very few items can simultaneously be represented), in which
content is selected by attention mechanisms. In recent work from the AI community (Bengio, 2017;
Goyal & Bengio, 2020), it was proposed that these characteristics could correspond to meaningful
inductive biases for deep networks, i.e., statistical assumptions about the dependencies between
concepts manipulated at the higher levels of cognition. Both sparsity of the dependencies between
these high-level variables and the decomposition of knowledge into recomposable pieces that are
as independent as possible (Peters et al., 2017; Bengio et al., 2019; Goyal & Bengio, 2020; Ke
et al., 2021) would make learning more efficient. Out-of-distribution (OoD) generalization would
be facilitated by making it possible to sequentially compose the computations performed by these
modules where new situations can be explained by novel combinations of existing concepts.

Although a number of recent results hinge on such modular architectures (Graves et al., 2014; Andreas
et al., 2016; Hu et al., 2017; Vaswani et al., 2017; Kipf et al., 2018; Santoro et al., 2018; Battaglia
et al., 2018; Goyal et al., 2019, 2021; Locatello et al., 2020; Mittal et al., 2020; Madan et al., 2021),

†Correspondence authors sarthmit@gmail.com
1Open-sourced implementation is available at https://github.com/sarthmit/Mod_Arch

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:sarthmit@gmail.com
https://github.com/sarthmit/Mod_Arch

the abundance of tricks and proposed architectural modifications makes it challenging to parse real,
usable architectural principles. It is also unclear whether the performance gains obtained by such
Mixture-of-Experts (MoE) based modular systems are actually due to good specialization, as is often
claimed, or due to other potential confounding factors like ease of optimization.

In this work, we extend the analysis from Rosenbaum et al. (2019); Maziarz et al. (2019); Cui & Jaech
(2020); Csordás et al. (2020) and propose a principled approach to evaluate, quantify, and analyse
common ingredients of modular architectures, supported by either standard MLP-like connectivity,
recurrent connections or attention (Bahdanau et al., 2015; Vaswani et al., 2017) operations. To do
so, we develop a series of benchmarks and metrics aimed at probing the efficacy of a wide range of
modular networks, where computation is factorized. This reveals valuable insights and helps identify
not only where current approaches succeed but also when and how they fail. Whereas previous work
on disentangling (Bengio, 2013; Higgins et al., 2016; Kim & Mnih, 2018) has focused on factoring
out the different high-level variables that explain the data, here we focus on disentangling system
modules from each other, the structural ingredients of network that can facilitate this factorization,
and how such ingredients relate to the data generating distributions being parsed and processed.

Given the recent increased interest in sparse modular systems (Rahaman et al., 2021; Fedus et al.,
2021; Du et al., 2021; Mittal et al., 2021), we believe that this work will provide a test-bed for
investigating the workings of such models and allow for research into inductive biases that can push
such models to achieve good specialization. Through detailed experiments and evaluation metrics,
we make the following observations and contributions:

• We develop benchmark tasks and metrics based on probabilistically selected rules to quantify
two important phenomena in modular systems, the extent of collapse and specialization.

• We distill commonly used modularity inductive biases and systematically evaluate them
through a series of models aimed at extracting commonly used architectural attributes
(Monolithic, Modular, Modular-op and GT-Modular models).

• We find that specialization in modular systems leads to significant boosts in performance
when there are many underlying rules within a task, but not so much with only few rules.

• We find standard modular systems to be often sub-optimal in both their capacity on focusing
on the right information as well as in their ability to specialize, suggesting the need for
additional inductive biases.

2 Notation / Terminology

M
od

u
les

Rules

Choose a rule

Draw

Training Setting
Regression / Classification

A
rch

itectu
re

M
LP / M

H
A

 / R
N

N

Prediction

True Label

Model chooses a
module softly

Figure 1: Illustration of modularity evalutation
framework. Task configurations define the rules in
the data-generating process while model parameters
define the kind of model to be trained on it.

In this paper, we study how a family of modu-
lar systems performs on a common set of tasks,
prescribed by a synthetic data generating pro-
cess which we call rule-based data. Below,
we introduce the notation for key ingredients:
(1) rules and how they form tasks, (2) mod-
ules and how they can take different model
architectures, (3) specialization and how we
evaluate models. We refer the reader to Figure
1 for an illustration of our setup.

Rules. To properly understand modular sys-
tems and analyze their benefits and shortcom-
ings, we consider synthetic settings that allow
fine-grained control over different aspects of
task requirements. In particular, operations
must be learned on the data-generating distri-
bution illustrated in Equations 1-3, which we also refer to as rules. Details about the exact operations
used in experiments are described in Section 3.

c ∼ Categorical(·) (1)
x ∼ px(·) (2)

y |x, c ∼ py(· |x, c). (3)

Given this distribution, we define a rule to be an expert of this
distribution, that is, rule r is defined as py(· |x, c = r) where c is
a categorical variable representing context, and x is an input se-
quence. For example, consider x = (1, 2) and c to select between
addition and multiplication. Then, depending on c, the correct

2

output should be either y = 3 or y = 2. More details about the specifics of these data distributions are
presented in Section 3. Systems will be trained to infer y given c and x. This simple setup is meant
to capture context-dependent tasks on variable data distributions, e.g. reasoning according to different
features (e.g. shape, color, etc.). However, unlike such complex systems, ground truth knowledge
of required operations is known for our synthetic task, allowing for deeper quantitative analysis.

Tasks. A task is described by the set of rules (data-generating distribution) illustrated in Equations
1-3. Different sets of {py(· |x, c)}c imply different tasks. For a given number of rules, we train
models on multiple tasks to remove bias towards any particular task.

Modules. A modular system comprises a set of neural network modules, each of which can
contribute to the overall output. One can see this through the functional form y =

∑M
m=1 pm ym,

where ym denotes the output and pm the activation of the mth module. Details about the different
modular systems are outlined in Section 4.

From this point onwards, we exclusively use rules to refer to the specialized components in the
data-generating process, and modules to refer to the experts that are learned by a modular system.
Further, for ease of quantitative assessment, we always set the number of modules equal to the
number of rules, except when evaluating monolithic models (with a single module). Modules can
be implemented in three different architectures, as described next.

Model Architectures. Model architectures describe the choice of architecture considered for
each module of a modular system, or the single module in a monolithic system. Here we consider
Multi-Layer Perceptron (MLP), Multi-Head Attentions (MHA), and Recurrrent Neural Network
(RNN). Importantly, the rules (or data generating distributions) are adapted to the model architecture,
and we often refer to them as such (e.g. MLP based rules). Details about the data distributions and
models considered in this work are provided in Sections 3 and 4 respectively.

Perfect Specialization. When training modular systems on rule-based data, we would like the mod-
ules to specialize according to the rules in the data-generating distribution. Thus, there is an important
need to quantify what constitutes perfect specialization of the system to the data. To allow for easier
quantification, we always consider an equal number of modules and rules. However, future work
should evaluate the ability of modular systems to automatically infer the required number of modules.

3 Data Generating Process
Since we aim to study modular systems through synthetic data, here we flesh out the data-generating
processes operating based on the rules scheme described above (see Equations 1-3). We use a
simple Mixture-of-Experts (MoE) Yuksel et al. (2012); Masoudnia & Ebrahimpour (2014) styled
data-generating process (Mixture Distribution), where we expect different modules to specialize to the
different mixture components (rules). It is important to note that this system is slightly different from
the traditional flat MoE since the experts are more plug-and-play and can be composed to solve a par-
ticular problem. As an example, if we consider a mixture of recurrent systems, different tokens (time-
points) in the input sequence can undergo computations according to different rules (e.g. a switching
linear dynamical system), as opposed to the choice of expert being governed by the whole sequence.

We now look at more specific setups of the data-generating systems in consideration, the general
template of which was outlined above. To do so, we explain the data-generating processes amenable
to our three model architectures: MLP, MHA, and RNN. Additionally, each of the following tasks
have two versions: regression, and classification. These are included to explore potential differences
these distinct loss types may induce.

c ∼ U{1, R} (4)

x1,x2
iid∼ N (0, I) (5)

y = αcx1 + βcx2 (6)

MLP. Here, we define the data scheme that is amenable for learning
of modular MLP-based systems. In this synthetic data-generating
scheme, a data sample consists of two independent numbers and a
choice of rule being sampled from some distribution. Different rules
lead to different linear combinations of the two numbers to give the
output. That is, the choice of linear combination is dynamically instantiated based on the rule drawn.
This is mathematically formulated in Equations 4-6, where αc and βc are the data parameters, I the
identity matrix and y denotes the label for the regression tasks and sign(y) for the classification tasks.

Hence, the data comes from a MoE distribution where c denotes which linear combination governs
the conditional distribution py(· |x1,x2, c). When training modular architectures on such data, one
expects each module in the trained system to specialize according to a unique rule.

3

cn
iid∼ U{1, R} (7)

qnr,q
′
nr,vnr,v

′
nr

iid∼ N (0, I) (8)
sn = min

i ̸=n
d (qncn ,qicn) (9)

s′n = min
i ̸=n

d
(
q′
ncn ,q

′
icn

)
(10)

yn = αcnvsncn + βcnv
′
s′ncn

(11)

MHA. Now, we define the data scheme that is tuned for
learning in modular MHA based systems. Essentially,
a MHA module can be understood through a set of
searches (query-key interactions), a set of correspond-
ing retrievals (values) and then some computation of
the retrieved values, as explained by Mittal et al. (2021).
Accordingly, we design the data-generating distribution
with the following properties: Each rule is composed
of a different notion of search, retrieval and the final
linear combination of the retrieved information respectively. We mathematically describe the process
in Equations 7-11, where n = 1, ..., N and r = 1, ..., R with N as the sequence length and R the
number of rules. We denote the tuple (qnr,q

′
nr,vnr,v

′
nr) as xn. Further, yn denotes the label for

the regression tasks while for classification, we consider the categorical label to be sign(yn).

Thus, we can see that cn denotes the rule for the nth token. This rule governs which two tokens
are closest to the nth token, demonstrated as sn and s′n. It also governs what features are retrieved
from the searched tokens, which are vsncn and vs′ncn . These retrieved features then undergo a
rule-dependent linear combination (on cn). Here, too, when training a modular MHA architecture, we
want each MHA module in the system to be able to specialize to a unique MHA rule in the data system.

cn
iid∼ U{1, R} (12)

xn
iid∼ N (0, I) (13)

sn = Acnsn−1 +Bcnxn (14)

yn = wT sn (15)

RNN. For recurrent systems, we define a rule as a kind of
linear dynamical system, where one of multiple rules can be
triggered at any time-point. Mathematically, this process can
be defined through Equations 12-15, where n = 1, ...N , with
N describing the sequence length. Each rule thus describes
a different procedure for the update of the state st as well as
the effect of the input xt to the state. Thus, we can see that cn
denotes the rule to be used at the nth time-point. Further, yn denotes the label for the regression
tasks while for classification, we consider the labels as sign(yn).

Hence, in all settings, the data comes from a MoE distribution where c denotes the rule and governs
the conditional py(· |x, c). When training modular architectures on such data, one expects each
module in the trained system to specialize according to a unique rule. Our aim is to use these synthetic
rule-based data setting to study and analyse modular systems and understand whether end-to-end
trained modular systems concentrate on the right information to specialize based on, i.e. based on c,
whether they do learn perfect specialization and whether perfect specialization actually helps in these
settings. To properly understand this, we detail the different kinds of models considered in Section 4
as well as the different metrics proposed in Section 5 to analyse trained systems.

For this work, we limit our analysis to infinite-data regime where each training iteration operates on a
new data sample Future work would perform similar analysis in the regime of limited data.

4 Models Model Functional Form

Monolithic ŷ = f(x, c)

Modular
ŷm, pm = fm(x, c)

ŷ =
∑R

m=1 pm ŷm

Modular-op
ŷm = fm(x, c)

p = g(c)

ŷ =
∑R

m=1 pm ŷm

GT-Modular
ŷm = fm(x, c)

ŷ =
∑R

m=1 cm ŷm

Table 1: Functional Forms of Different
Models. Exact functional forms of the
different models considered in this work,
given the data (x, c). Depending on con-
text, f and fm are either MLP, MHA or
RNN architectures.

Several works claim that end-to-end trained modular sys-
tems outperform their monolithic counterparts, especially
in out-of-distribution settings. However, there is a lack
of step-by-step analysis on the benefits of such systems
and whether they actually specialize according to the data
generating distribution or not. To perform an in-depth
analysis, we consider four different types of models that
allow for varying levels of specialization, which are:
Monolithic, Modular, Modular-op, and GT-Modular. We
give the formulations for each of these models below and
then discuss the different analysis we can perform through
them. We also illustrate these models in Table 1 and
depending on the data-generating procedure described in
Section 3, f and fm can be implemented as either MLP,
MHA or RNN cells in this work.

Monolithic. A monolithic system is a big neural network
that takes the entire data (x, c) as input and makes

4

predictions ŷ based on it. There is no inductive bias about modularity or sparsity explicitly baked
in the system and it is completely up to back-propagation to learn whatever functional form is needed
to solve the task. An example of such a system is a traditional Multi-Head Attention (MHA) based
system, eg. a Transformer.

1 2 3 4

Module

1
2

3
4

Ru
le

Ground Truth Rules: 4 | Modules: 4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Example of Collapse. Entry
(i, j) denotes the activation probability
of module j on rule i. We see that Mod-
ule 3 never activates, signifying collapse,
while Module 4 covers two rules.

Modular. A modular system is composed of a number
of modules, each of which is a neural network of a given
architectural type (MLP, MHA, or RNN). Each module m
takes the data (x, c) as input and computes an output ŷm

and a confidence score, normalized across modules into
an activation probability pm. The activation probability re-
flects the contribution of each module’s output to the final
output ŷ of the system. Thus, there is an explicit baked-in
inductive bias of modularity but it is still up to system-wide
back-propagation to figure out the right specialization. An
example of such a system is a mixture of MLPs or reusable
RNNs, reusable across different time/positions.

Modular-op. A modular-op (for operation only) system
is very similar to the modular system with just one small
difference. Instead of the activation probability pm of
module m being a function of (x, c), we instead make
sure that the activation is decided only by the rule context
c. Hence, unlike modular systems, modular-op cannot be distracted by x in figuring out specialization
of different modules. Even though the operation required is explicitly provided, this model still needs
to learn specialization through back-propagation.

GT-Modular. A GT-modular system (for ground truth) serves as an oracle benchmark, i.e., a modular
system that specializes perfectly. In particular, the activation probability p′ms of modules are just set
according to c, which is the indicator present in the data (x, c). Thus, this is a perfectly specializing
system that chooses different modules sparsely and perfectly according to the different data rules.

Given enough capacity, we can see that there is a hierarchy of models based on the functions they can
implement, with GT-Modular ⊆ Modular-op ⊆ Modular ⊆ Monolithic. Put differently, models from
Monolithic to GT-Modular increasingly incorporate the inductive biases for modularity and sparsity.
This is proved in Appendix C by inspecting the function classes implemented by these models.

GT-Modular
61.4%

Modular

7.3%

Modular-op
20.5%

Monolithic

10.8%

Modular
59.6%

Monolithic
40.4%

Figure 3: Ranking Metric. Spread indicates the number of
experiments where the corresponding model did better. Plots
include Left: All models, Right: Models trained without
explicit rule-based module selection. Note that (a) explicit
specialization (GT-Modular) helps, and (b) Modular systems
outperform Monolithic but with small margin.

In what follows, we want to analyse
the benefits of having simple end-to-
end trained modular systems as op-
posed to monolithic ones. This can be
understood through a comparison of
various performance based metrics be-
tween Monolithic and Modular mod-
els, explained in the next section. This
will allow us to answer if a modular
architecture is always better for vari-
ous distinct rule-based data generating
systems. For instance, a comparison
between the Modular and Modular-
op models will show whether the stan-
dard modular systems are able to focus on the right information and ignore the distractors in driving
specialization. To study this, we will look at performance as well as collapse and specialization
metrics between these class of models. A comparison between GT-Modular and Modular-op will
show the benefits of having a sparse activation pattern with proper resource allocation of modules as
opposed to an end-to-end learned specialization on the right information (without distractors).

Finally, we note that GT-Modular is a modular system which obtains perfect specialization. Through
this model, we aim to analyse whether perfect specialization is in-fact important and if so, how
far are typical modular systems from obtaining similar performance and specialization through
end-to-end training. We now describe the metrics used for these evaluations.

5

0.10

0.20

0.30

0.40

Er
ro

r

MLP

Classification | ID

0.1

0.3

0.5

Classification | OoD

0.0030

0.0040

0.0050

0.0060

0.0070

Lo
ss

Regression | ID

0.01

0.03

0.05

0.07
Regression | OoD

10

20

30

40

Er
ro

r

MHA

25

35

45

0.3

0.5

0.7

0.9

Lo
ss

1.75

1.85

1.95

2.05

0 5 10 15 20 25 30 35
Rules

0.0

5.0

10.0

15.0

20.0

Er
ro

r

RNN

0 5 10 15 20 25 30 35
Rules

5

15

25

0 5 10 15 20 25 30 35
Rules

0.0

0.4

0.8

1.2

Lo
ss

0 5 10 15 20 25 30 35
Rules

1.0

2.0

3.0

4.0

5.0

GT-Modular Modular-op Modular Monolithic

Figure 4: Performance Results. Performance of different models with MLP (top row), MHA
(middle row) and RNN (bottom row) architectures against varying number of rules, evaluated both
in-distribution and out-of-distribution. Modular systems generally outperform monolithic ones (lower
is better) but a typical end-to-end trained modular system (green) is neither able to concentrate on the
right information (compare with orange) nor able to get optimal specialization (compare with blue).

5 Metrics
To reliably evaluate modular systems, we propose a suite of metrics that not only gauge the perfor-
mance benefits of such systems but also evaluate them across two important modalities: collapse
and specialization, which we use to analyse the extent of resource allocation (in terms of parame-
ters/modules) and specialization respectively of a modular system.

Performance. The first set of evaluation metrics are based on performance of the models in both
in-distribution as well as out-of-distribution (OoD) settings. These metrics capture how well the
different models perform on a wide variety of different tasks. For classification settings, we report
the classification error while for regression settings, we report the loss.

In-Distribution. This refers to the in-distribution performance, evaluated by looking at both the final
performance as well as convergence speeds of the different models.

Out-of-Distribution. This refers to the OoD performance of different models. We consider very
simple forms of OoD generalization: either (a) change in distribution of x by increasing variance, or
(b) different sequence lengths, wherever the possibility presents (eg. in MHA and RNN).

Collapse Metrics. We propose a set of metrics Collapse-Avg and Collapse-Worst that quantify the
amount of collapse suffered by a modular system. Collapse refers to the degree of under-utilization
of the modules. An example of this is illustrated in Figure 2, where we can see that Module 3 is never
used. We consider the setting where all the data rules are equi-probable and the number of modules
in the model are set to be the same as the number of data rules, to R. High collapse thus refers to
under-utilization of resource (parameters) provided to the model, illustrating that certain modules are
never being used and concurrently meaning that certain modules are being utilized for multiple rules.

CA =
R

R− 1

R∑
m=1

max

(
0,

1

R
− p(m)

)
(16)

Collapse-Avg. Given the data-setting with R
equi-probable rules, and hence R modules in the
model, we let p(m) be the marginal probability
distribution of activation of module m. Then, we define the Collapse-Avg metric CA as in Equation

6

2 4 8 16 32

0.1

0.3

0.5

M
et

ri
c

Sc
or

e

Collapse-Avg

2 4 8 16 32

0.2

0.6

1.0 Collapse-Worst

2 4 8 16 32
Rules

0.2

0.6

1.0

Alignment

2 4 8 16 32

0.05

0.15

0.25

0.35

Adaptation

2 4 8 16 32

0.2

0.6

1.0

Inverse Mutual Information

GT-Modular Modular-op Modular Random

Figure 5: Metrics against Increasing Number of Rules. Evaluation of different modular systems
through collapse (first two columns) and specialization (next three columns) metrics (lower is better)
while varying the number of rules. We see that the problems increase with more rules.

16, where R
R−1 is for normalization. This metric captures the amount of under-utilization of all the

modules of the system. A lower number is preferable for this metric, as a lower number demonstrates
that all the modules are equally utilized.

CW = 1−R min
m

p(m) (17)Collapse-Worst. Given the same data and model setting as above,
the Collapse-Worst metric CW is defined as in Equation 17. This
metric captures the amount of under-utilization of the least used module of the system. Again, a low
number is preferable as it signifies that even the least used module is decently utilized by the model.

Specialization Metrics. To complement collapse metrics, we also propose a set of metrics, (1)
Alignment, (2) Adaptation and (3) Inverse Mutual Information to quantify the amount of specialization
obtained by the modular systems. We again consider the setting of equi-probable rules and the same
number of modules and rules R. These metrics are aimed at capturing how well the modules specialize
to the rules, that is, whether different modules stick to different rules (good specialization) or whether
all modules contribute almost equally to all rules (poor specialization).

sd = min
P∈SR

d (A,P) (18)
Alignment. Given a modular system trained on rule-based data with
R rules and modules, one can obtain the activation matrix A, where
Arm denotes p(module = m | rule = r), that is, the probability of
activation of module m conditioned on rule r. Further, given a distance metric d(·, ·) over the space
of matrices, perfect specialization can be quantified through Equation 18, where SR denotes the space
of permutation matrices over R objects. We consider d(·, ·) as a normalized L1 distance. The score
sd demonstrates the distance between the activation matrix A and its closest permutation matrix,
with distances computed according to the metric d(·, ·). Note that sd → 0 implies that each module
specializes to a unique rule, thereby signifying perfect specialization. Since the space of permutation
matrices SR grows exponentially at the rate of Θ(R!), computing sd naively soon becomes intractable.
However, we use the Hungarian algorithm (Kuhn, 1955) to compute it in polynomial time. This
metric shows how close the learned modular system is to a perfectly specializing one, where a low
score implies better specialization.

SIMI = 1− 1

logR
Ep(m,r)

[
log

p(m, r)

p(m)× p(r)

]
(19)

Inverse Mutual Information. Given R as
the number of rules and modules and let
the joint distribution p(m, r) denote the
activation probability of module m on rule r, the Inverse Mutual Information metric SIMI is defined
as in Equation 19. A low inverse mutual information metric is preferable as it denotes that the modules
are more specialized to the rules as opposed to multiple modules contributing to a single rule.

SA = Ep∼P

[
R∑
i=1

∣∣∣p(r̂i)− q(m̂i)
∣∣∣] (20)

Adaptation. Let R be the number of rules and modules
and P a distribution over the R-dimensional simplex.
Further, let p(·) be the distribution over rules (not
equi-probable in this metric) and q(·) the corresponding
distribution obtained over the modules. Note that the distribution q(·) is dependent on p(·). Given
these distributions, we define the Adaptation metric SA in Equation 20, where r̂i and m̂i are such that
p(r̂1) ≤ p(r̂2) ≤ ... ≤ p(r̂R) and q(m̂1) ≤ q(m̂2) ≤ ... ≤ q(m̂R) and P is a dirichlet distribution.

This metric can be understood as the amount by which the modules adapt (signified through the
distribution q(·)) to changes in the rule distributions (which are p(·) sampled from P). The matching
between the rule and module is obtained through a simple sort as defined above. A low adaptation
score implies that the marginal distribution of the modules adapt well according to the distribution
of the rules. That is, when a rule is weakly present in the data, there exists a module which weakly
contributes in the corresponding output, averaged over multiple different rule distributions.

7

0.05

0.15

0.25

0.35

0.45

M
et

ri
c

Sc
or

e

Collapse-Avg

0.1

0.3

0.5

0.7

Collapse-Worst

0.1

0.3

0.5

0.7

0.9
Alignment

GT-Modular Modular-op Modular Random

0.05

0.15

0.25

0.35
Adaptation

0.2

0.6

1.0

Inverse Mutual Information

Figure 6: Metrics for Different Models. While end-to-end training of activation decisions leads to
reduced collapse (first two columns) and better specialization (next three columns) (lower is better)
than random activations, it is still far from a perfectly specializing system. This signifies that the
models are not able to learn good specialization and actually suffer from increased collapse when
learned solely through back-propagation.

To understand these metrics, note that uniform random activation patterns for the modules lead to low
collapse metrics but high alignment, adaptation and inverse mutual information metrics, implying little
collapse but poor specialization, as expected. On the other hand, GT-Modular systems necessarily lead
to low collapse metrics as well as low alignment, adaptation and inverse mutual information, denoting
little collapse and good specialization, which is expected since specialization is given as oracle.

6 Experiments
We are now ready to report experiments on the models outlined in Section 4 with associated data
generation processes described in Section 3. For each level of modularity (i.e. Monolithic, Modular,
Modular-op, GT-Modular), we analyse models learning over five different number of rules, ranging
from few (2) to many (32), five different model capacities (number of parameters) and two different
training settings, i.e. regression and binary classification. To remove any biases towards particular
task parameters (e.g. αc, βc in Equation 6), we randomly select new rules to create five different
tasks per setting and, train five seeds per task. In essence, we train ∼20,000 models2 to properly
analyse the benefits of modularity, the level of specialization obtained by end-to-end trained systems,
the impact of number of rules and the impact of model capacity.

0 100000 200000 300000 400000 500000
Iterations

5

10

15

20

25

Pe
rf

or
m

an
ce

GT-Modular
Modular-op

Modular
Monolithic

Figure 7: Training Curve. Aver-
aged over different model architec-
tures, training settings, model ca-
pacities and number of rules. We
see that end-to-end trained modular
systems are still far from the bene-
fits of perfect specialization.

Performance. We refer the readers to Figure 3 for a com-
pressed overview on the performance of various models. We
see that GT-Modular system wins most of the times (left),
indicating the benefits of perfect specialization. We also
see that between standard end-to-end trained Modular and
Monolithic systems, the former outperforms but not by a
huge gap. Together, these two pie charts indicate that current
end-to-end trained modular systems do not achieve good
specialization and are thus sub-optimal by a substantial margin.

We then look at the specific architectural choices (MLP, MHA
and RNN cells for functions f and fm in Table 1) and anal-
yse their performance and trends across increasing number of
rules. Figure 4 shows that while there are concrete benefits
of a perfectly specializing system (GT-Modular) or even mod-
els that know what information to drive specialization from
(Modular-op), typical end-to-end trained Modular systems are
quite sub-optimal and not able to realize these benefits, espe-
cially with increasing number of rules which is where we see
substantial benefits of good specialization (contrast Modular vs
GT-Modular and Modular-op). Moreover, while such end-to-
end Modular systems do generally outperform the Monolithic ones, it is often only by a small margin.

We also see the training pattern of different models averaged over all other settings, with the
average containing error for classification and loss for regression, in Figure 7. We can see that good
specialization not only leads to better performances but also faster training.

Collapse. We evaluate all the models on the two collapse metrics outlined in Section 5. Figure
5 shows the two collapse metrics, Collapse-Avg and Collapse-Worst, for different models against

2All models are trained on single V100 GPUs, each taking a few hours.

8

varying number of rules, averaged over the different model architectures (MLP, MHA and RNN),
training settings (Classification and Regression), model capacities, tasks and seeds. First, we notice
that a Random activation baseline and the GT-Modular system do not have any collapse, which is
expected. Next, we notice that both Modular and Modular-op suffer from the problems of collapse
and this problem becomes worse with increasing number of rules. Figure 6 further shows similar
information averaged over the number of rules too, highlighting that Modular-op has less collapse
than Modular in general. However, we still see that the problem of collapse is significant whenever
back-propagation is tasked with finding the right activation patterns, especially in the regime of
large number of rules. This clearly indicates the need for investigation into different forms of
regularizations to alleviate some of the collapse problems.

Specialization. Next, we evaluate through the proposed specialization metrics in Section 5 whether
the end-to-end trained modular systems actually specialize according to the data-generating distri-
bution. Figure 5 shows the three specialization metrics, Alignment, Adaptation and Inverse Mutual
Information, for different models against varying number of rules, again averaged over different
model architectures, training settings, model capacities, tasks and seeds. As expected, we see that the
Random activation baseline has poor specialization (high metrics) while the GT-Modular system has
very good specialization. We further see that end-to-end trained Modular systems as well as Modular-
op suffer from sub-optimal specialization, as indicated by the high metrics. As with collapse, we again
see that it becomes harder to reach optimal specialization with increasing number of rules. Figure
6 shows that while Modular-op has marginally better specialization than standard Modular systems,
they are indeed quite sub-optimal when compared to a perfectly specializing system, i.e. GT-Modular.

We refer the readers to Appendix D, E and F for training details as well as additional experiments
regarding the effect of model sizes for MLP, MHA and RNN architectures respectively.

7 Conclusion and Discussion
We provide a benchmark suitable for the analysis of modular systems and provide metrics that not
only evaluate them on in-distribution and out-of-distribution performance, but also on collapse and
specialization. Through our large-scale analysis, we uncover many intriguing properties of modular
systems and highlight potential issues that could lead to poor scaling properties of such systems.

Perfect Specialization. We discover that perfect specialization indeed helps in boosting performance
both in-distribution and out-of-distribution, especially in the regime of many rules. On the contrary,
monolithic systems often do comparatively or sometimes better when there are only a few rules,
but do not rely on specialization to do so.

End-to-End Trained Modular systems. While Modular systems outperform Monolithic ones, the
margin of improvement is often small. This is because when solely relying on back-propagation
of the task-losses, these models do not discover perfect specialization. In fact, the problem of poor
specialization and high collapse becomes worse with increasing number of rules. This is slightly
mitigated by allowing contextual information from the task to be used explicitly, as is the case for
Modular-op, but the problems still persist and get worse over large number of rules.

In summary, through systematic and extensive experiments, this work shows that modularity, when
supporting good and distributed specialization (i.e. little collapse), can outperform monolithic models
both in and out of distribution testing. However, we also find that although perfectly specialized
solutions are attainable by modular networks, end-to-end training does not recover them, often even
with explicit information about task context (as in Modular-op). Since real-world data distributions
are often complex and unknown, we cannot get access to oracle networks like GT-Modular for
analysis. An important conclusion is that additional inductive biases are required to learn adequately
specialized solutions. These could include other architectural features to facilitate module routing,
or regularization schemes (e.g. load-balancing Fedus et al. (2021)) or optimization strategies (e.g.
learning rate scheduling) to promote module specialization. We refer the reader to Appendices A
and B for further discussion on these exciting prospects and extensions to real-world domains. We
believe the framework proposed in this work is ideal to drive research into such inductive biases
and a necessary stepping stone for applications of these designs at scale.

Finally, we highlight that the use of network architectures that promote contextual specialization,
such as the use of modules as studied here, could potentially promote unwanted biases when deployed
in models use by the public due to collapse or ill-distributed specialization. The framework proposed
in this work could help mitigate this potentially problematic impact on society.

9

Acknowledgments and Disclosure of Funding

SM would like to acknowledge the support of scholarships from UNIQUE and IVADO as well as
compute resources from Alliance and its regional partner organizations (ACENET, Calcul Québec,
Compute Ontario, the BC DRI Group and the Prairie DRI Group) towards his research. YB and GL
acknowledge the support from Canada CIFAR AI Chair Program, as well as Samsung Electronics
Co., Ldt. GL acknowledges NSERC Discovery Grant [RGPIN-2018-04821].

10

References
Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural module networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

Baars, B. J. In the theatre of consciousness. global workspace theory, a rigorous scientific theory of
consciousness. Journal of Consciousness Studies, 4(4):292–309, 1997.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and
translate. ICLR’2015, arXiv:1409.0473, 2015.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y. Deep learning of representations: Looking forward. In International conference on
statistical language and speech processing, pp. 1–37. Springer, 2013.

Bengio, Y. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

Bengio, Y., Deleu, T., Rahaman, N., Ke, N. R., Lachapelle, S., Bilaniuk, O., Goyal, A., and Pal,
C. A meta-transfer objective for learning to disentangle causal mechanisms. In ICLR’2020,
arXiv:1901.10912, 2019.

Csordás, R., van Steenkiste, S., and Schmidhuber, J. Are neural nets modular? inspecting functional
modularity through differentiable weight masks. arXiv preprint arXiv:2010.02066, 2020.

Cui, L. and Jaech, A. Re-examining routing networks for multi-task learning. 2020.

Dehaene, S., Lau, H., and Kouider, S. What is consciousness, and could machines have it? Science,
358(6362):486–492, 2017.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat,
O., et al. Glam: Efficient scaling of language models with mixture-of-experts. arXiv preprint
arXiv:2112.06905, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Fox, E., Sudderth, E., Jordan, M., and Willsky, A. Nonparametric bayesian learning of switching
linear dynamical systems. Advances in neural information processing systems, 21, 2008.

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. Bayesian nonparametric inference of
switching linear dynamical systems. arXiv preprint arXiv:1003.3829, 2010.

Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L., and Linderman, S. Recurrent switch-
ing dynamical systems models for multiple interacting neural populations. Advances in neural
information processing systems, 33:14867–14878, 2020.

Goyal, A. and Bengio, Y. Inductive biases for deep learning of higher-level cognition. arXiv preprint
arXiv:2011.15091, 2020.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B. Recurrent
independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin, P., Heess, N., Mozer, M., and Bengio, Y.
Neural production systems. arXiv preprint arXiv:2103.01937, 2021.

Graves, A., Wayne, G., and Danihelka, I. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.

11

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. Learning to reason: End-to-end module
networks for visual question answering. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 804–813, 2017.

Ke, N. R., Didolkar, A. R., Mittal, S., Goyal, A., Lajoie, G., Bauer, S., Rezende, D. J., Mozer,
M. C., Bengio, Y., and Pal, C. Systematic evaluation of causal discovery in visual model based
reinforcement learning. 2021.

Kim, H. and Mnih, A. Disentangling by factorising. In International Conference on Machine
Learning, pp. 2649–2658. PMLR, 2018.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for
interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Kuhn, H. W. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., and Chen,
Z. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv
preprint arXiv:2006.16668, 2020.

Linderman, S. W., Miller, A. C., Adams, R. P., Blei, D. M., Paninski, L., and Johnson, M. J. Recurrent
switching linear dynamical systems. arXiv preprint arXiv:1610.08466, 2016.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy,
A., and Kipf, T. Object-centric learning with slot attention. arXiv preprint arXiv:2006.15055,
2020.

Madan, K., Ke, R. N., Goyal, A., Schölkopf, B. B., and Bengio, Y. Fast and slow learning of recurrent
independent mechanisms. arXiv preprint arXiv:2105.08710, 2021.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts: a literature survey. Artificial Intelligence
Review, 42(2):275–293, 2014.

Maziarz, K., Kokiopoulou, E., Gesmundo, A., Sbaiz, L., Bartok, G., and Berent, J. Flexible multi-task
networks by learning parameter allocation. arXiv preprint arXiv:1910.04915, 2019.

Mittal, S., Lamb, A., Goyal, A., Voleti, V., Shanahan, M., Lajoie, G., Mozer, M., and Bengio, Y.
Learning to combine top-down and bottom-up signals in recurrent neural networks with attention
over modules. In International Conference on Machine Learning, pp. 6972–6986. PMLR, 2020.

Mittal, S., Raparthy, S. C., Rish, I., Bengio, Y., and Lajoie, G. Compositional attention: Disentangling
search and retrieval. arXiv preprint arXiv:2110.09419, 2021.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal inference: foundations and learning
algorithms. The MIT Press, 2017.

Rahaman, N., Gondal, M. W., Joshi, S., Gehler, P., Bengio, Y., Locatello, F., and Schölkopf, B.
Dynamic inference with neural interpreters. Advances in Neural Information Processing Systems,
34, 2021.

Rosenbaum, C., Cases, I., Riemer, M., and Klinger, T. Routing networks and the challenges of
modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber, T., Wierstra, D., Vinyals,
O., Pascanu, R., and Lillicrap, T. Relational recurrent neural networks. arXiv preprint
arXiv:1806.01822, 2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

12

Wang, Y., Mukherjee, S., Liu, X., Gao, J., Awadallah, A. H., and Gao, J. Adamix: Mixture-of-adapter
for parameter-efficient tuning of large language models. arXiv preprint arXiv:2205.12410, 2022.

Wulsin, D., Fox, E., and Litt, B. Parsing epileptic events using a markov switching process model for
correlated time series. In International Conference on Machine Learning, pp. 356–364. PMLR,
2013.

Yuksel, S. E., Wilson, J. N., and Gader, P. D. Twenty years of mixture of experts. IEEE transactions
on neural networks and learning systems, 23(8):1177–1193, 2012.

Zuo, S., Liu, X., Jiao, J., Kim, Y. J., Hassan, H., Zhang, R., Zhao, T., and Gao, J. Taming sparsely
activated transformer with stochastic experts. arXiv preprint arXiv:2110.04260, 2021.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix A
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Notation / Terminology
	Data Generating Process
	Models
	Metrics
	Experiments
	Conclusion and Discussion

