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Outline

The appendix is organized as follows: In §A, we first demonstrate additional audible visualizations
with anonymous URL links. In §B, we provide the complete experimental details and hyperparameter
configurations for pre-training and fine-tuning on each dataset. Then in §C, we conduct extra
experiments on ESC-50 (§C.1) with additional supervised pre-training on AudioSet to complete the
comparison with the models marked with T in Table 2 of the main paper. We then study a case how
Audio-MAE could be applied to a practical speech generation task (§C.2); and share some negative
results and insights on directions we tried that did not work well (§C.3). Finally, we discuss the
limitations (§D) of Audio-MAE.

A Additional Reconstruction Details and Results by Audio-MAE Decoder

Fig. 1 illustrates additional reconstruction results on the AudioSet-2M eval set. Audible examples
are under the anonymous links, accessible by clicking on respective 1 2 3. (1 is the ground truth
reference, 2 is the masked input for Audio-MAE, and 3 is the reconstruction output by Audio-MAE.)

We use an Audio-MAE model with a ViT-L encoder and a 16-layer decoder with local attention for
visualization. The model is trained under 80% unstructured (random) masking on AudioSet. We
inverse Mel-spectrograms and exploit the Griffin-Lim [1] algorithm to reconstruct waveform. There
could be perceivable artifacts due to imperfect phase estimation in [1]. Note that the default masking
ratio in Fig. 1 is 70% for better visualization. We also show reconstruction results under 80% masking
ratio in Fig. le-1h for comparison.

Comparing 2 and 3 under the each caption in Fig. 1, even with 70%-80% masking ratio, Audio-MAE
can still create reasonable reconstructions. Music and event sound are easier for Audio-MAE due
to their relatively predictable spectrogram patterns. For example, the repeating tempos across time
domain (e.g., the music in Fig. 1b and Fig. 11) and the harmonics across frequency domain (e.g., the
siren in Fig. 1c and the trumpeting elephant in Fig. 1d) are very well reconstructed. Speech recordings
are more challenging as shown in Fig. 1a and Fig. le.

In most cases, Audio-MAE successfully restores audio from masked/corrupted inputs. With these
encouraging results, we envision that Audio-MAE can also be applied to other speech generation
tasks and qualitatively case-study an application in §C.2.

B Experimental Details and Hyperparameter Settings

In this section we provide additional experimental details. For audio recordings in each dataset, we
pre-process all of them into mono channel under 16K sampling rate for simplicity and consistency
between pre-training and fine-tuning tasks. Note that their native sampling rate may not be 16K (there
are many 8K or higher sampling rate recordings in AudioSet. Also, video compression by YouTube
may up-samples or down-samples the audio tracks of user-uploaded videos). During data loading, we
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Figure 1: Additional spectrogram reconstruction visualizations on the AudioSet eval set. Column-
wise type: speech, music, event, others. Masking type: (a-h) unstructured (random); (i-p) structured
(time+frequency). Masking ratio: 80% for (e-h) and the rest are 70% . In each group, we show the
original spectrogram (1, top), masked input (2, middle), and Audio-MAE output (3, bottom). The
spectrogram size is 1024 x 128; patch size is 16 x 16. Each sample has 64 x 8=512 patches with either
154 (for 70% masked) or 102 (for 80% masked) patches being visible to Audio-MAE. Please click on
corresponding (1 2 3) for audible .wavs.
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pre-training fine-tuning
Configuration AS-2M PT | AS-2M AS-20K ESC [2] SPC-2[3] SPC-1 SID [4]
Optimizer AdamW [5]
Optimizer momentum B1=0.9, 2 =0.95
Weight decay 0.0001
Base learning rate 0.0002 |0.0002" 0.001  0.001 0.001  0.001 0.001
Learning rate schedule half-cycle cosine decay [6]
Minimum learning rate 0.000001
Gradient clipping None
Warm-up epochs 3 20 4 4 4 1 4
Epochs 32 100 60 60 60 10 60
Batch size 512 512 32 64 256 256 64
GPUs 64 64 4 4 4 4 4
Weighted sampling False True False False False  False® False
Weighted sampling size - 200,000 - - - - -
Augmentation R R R R R+N R+N R+N
SpecAug [7] (time/frequency) - 192/48 192/48  96/24 48/48  48/48 192/48
Drop path [8] 0.0 0.1 0.1 0.1 0.1 0.1 0.1
Dropout [9] 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mixup [10] 0.0 0.5 0.5 0.0 0.5 0.5 0.0
Multilabel n/a True True False False False  False
Loss Function MSE BCE BCE CE BCE BCE CE
Dataset Mean for Normalization -4.268 -4.268 -4.268 -6.627 -6.846  -6.702 -6.370
Dataset Std for Normalization 4.569 4569 4569  5.359 5.565 5.448 3.074

Table 1: Pre-training (PT) and Fine-tuning (FT) hyperparameters. For augmentation, R: sampling
random starting points with cyclic rolling in time; N: adding random noise (signal-to-noise ratio
(SNR): 20dB) to spectrograms. For loss functions, BCE: binary cross entropy loss (for multi-label
datasets or when using mixup [10]); CE: cross-entropy loss, MSE: mean square error loss. “: We
repeat and balance each class to 50% of the size of the unknown class. : For ViT-S, We use a
learning rate of 0.0005 on AS-2M FT and 0.002 on AS-20K FT as we find larger learning rates work
better for ViT-S encoder.

pad or trim the audio length (in seconds) on each dataset as follows: AudioSet: 10, ESC: 5, SPC-1
and SPC-2: 1, SID: 10 seconds. We use a window of 25 ms with a hop length of 10 ms to transform
waveform into 128 mel-bank features. The resulting input shapes are: AudioSet: 1 x 1024 x 128,
ESC: 1 x 512 x 128, SPC: 1 x 128 x 128, SID: 1 x 1024 x 128. With different input shapes and
audio types, we adjust the hyperparameters and data augmentation for each task respectively. We
summarize the pre-training (AS-2M PT) and fine-tuning details on each dataset in Table 1.

We adopt most of the default hyper-parameters used in MAE [11]. Note that the effective learning rate
(Irgr) depends on the base learning rate (Ir,5.) and the batch size. Precisely, {7 = [rpyge * %
When the dataset is multi-label or the mixup [10] augmentation is enabled, we use binary cross-
entropy loss (BCE) as the fine-tuning objective without label smoothing [12].We also experimented
using strong data augmentations (e.g., mixup [10], SpecAug [10], and CutMix [13]) for pre-training
but found the resulting performance similar or worse (especially for CutMix which resulted in
~0.5 mAP degrade in AudioSet-2M). Therefore we discard these strong data augmentations in the

pre-training phase by default.

To perform importance sampling when fine-tuning on the unbalanced AudioSet-2M, following prior
works, we apply a weighted sampler. We set the probability of sampling a sample proportional
to the inverse frequency of its labels, where the label frequency is estimated over the training set.
Specifically, for a instance ¢ in a dataset D with a label pool C, its sampling weight is proportional
to Zc,,ec w., where w, = % and € = 0.01 is set to avoid underflow in majority classes as
in [14]. In each fine-tuning epoch on AS-2M, we sample 200K instances (~10% of AudioSet-2M)
without replacement in avoidance of duplicated samples in a batch and repeating samples within an
epoch. We fine-tune for 100 epochs, which aggregate to ~10 full epochs of AudioSet-2M. Proper
normalization for audio is important to avoid pre-training fine-tuning discrepancy. We use the training
split of each end task to estimate dataset-wise mean and standard deviation The code, scripts, and pre-
trained models for reproducibility are at https://github.com/facebookresearch/AudioMAE.


https://github.com/facebookresearch/AudioMAE

C Additional Experiments

In this section, we extend our experimental investigation of Audio-MAE to include additional results
that are not covered in the main paper. First (§C.1), on ESC-50, we report and compare model
performance under an additional round of supervised pre-training on labeled AudioSet-2M (models
marked with T in Table 2 of the main paper). Second (§C.2), we include additional qualitative results
on packet loss concealment (PLC) as a preliminary case study on practically useful downstream tasks
for the decoder in Audio-MAE, and demonstrate its potential impact for generative applications.
Third (§C.3), we share some negative results when we tried incorporating contrastive objectives for
Audio-MAE. Our findings suggest that using reconstruction objective alone is sufficient.

C.1 ESC-50 with AudioSet-2M Supervised Pre-training

ESC-50 is designed for environmental sound classification. Besides the pre-training setup introduced
in the original paper, we further study a widely compared setup where the models are additionally
supervisedly pre-trained with AudioSet data and labels before fine-tuning on ESC-50. Table 2
summarizes the results under this setup where our Audio-MAE achieves state of the art accuracy with
the additional AudioSet-2M supervised pre-training. Note that our model is still audio-only and uses
no ImageNet data (IN-SL).

Model Backbone Pre-training ESC-50 FT
ERANN [15] CNN AS-SL 96.1
PANN [16] CNN AS-SL 94.7
AST [14] DeiT-B IN-SL, AS-SL 95.6
HTS-AT [17] Swin-B IN-SL, AS-SL  97.0
PASST [18] DeiT-B IN-SL, AS-SL. 96.8

Audio-MAE (global) ViT-B AS-SSL, AS-SL  96.9
Audio-MAE (local) ViT-B AS-SSL, AS-SL 974

Table 2: Comparison with other state-of-the-art models on ESC-50 with an additional round of
supervised pre-training on AudioSet (AS-SL). SSL: self-supervised learning. We gray-out the models
with out-of-domain pre-training on ImageNet (IN).

C.2 Qualitative Results for a practical generation task

Packet Loss Concealment (PLC) is a widely deployed technique to alleviate side effects from
missing or corrupted packets in Voice over IP (VoIP) applications (e.g., video conferencing, Bluetooth
earbuds, wireless virtual reality headset, efc.) When an encoded speech is sent as a sequence of VoIP
packets over a network, these packets may get lost or be corrupted during the transmission, resulting
in undesirable low quality speech. To this end, various PLC techniques has been developed. The
recent approaches substitute the corrupted waveform segments by either replacing the corrupted
waveform segments with other intact segments base on the acoustic pitch detected, or via inpainting
with RNN-based [19], CNN-based [20], or autoencoding-based [21, 22] reconstruction.

In this section, we qualitatively demonstrate how Audio-MAE could potentially be applied for PLC
to recover corrupted waveform segments with its encoder-decoder architecture. In Fig. 2, we simulate
two time-corrupted speech recordings by masking speech in time and perform reconstruction with
Audio-MAE. In practice, a PLC system may exploit packet checksums to identify corrupted or
missing packets and mask them. The PLC problem then can be viewed as a special case (time-only,
structured masking) of Audio-MAE. As shown in both cases, the Audio-MAE decoder produces
reasonable speech reconstruction. We leave the in-depth study and analysis of generative tasks (e.g.
PLC and speech bandwidth expansion (BWE) [23, 4]) as the future work.

C.3 Negative Results: Directions that did not work well

Additional Contrastive Objective We examined using additional contrastive objectives in the pre-
training phase but do not find them helpful empirically. Similar to SS-AST [24] and Wave2vec
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Figure 2: Qualitative Results for Packet Loss Concealment with Audio-MAE Decoder. Simula-
tions of 25% packet loss rate in time for two speech recordings. In each group, we show the original
spectrogram(left) and time(right) sequence (1, top), corrupted input with packet loss (2, middle), and
Audio-MAE restoration (3, bottom). The spectrogram size is 1024 x 128; patch size is 16 x16. Please
click (1 2 3) for audible .wavs.

2.0 [25], we apply InfoNCE [26] loss over masked tokens of an instance. Specifically, let x;,¢ =
1... N denotes the values of i-th masked spectrogram patch where N is the number of masked
patches in an instance. (e.g., rounded N = 102 under 80% masking over 64 x 8 spectrogram patches
of a 10-second audio recording.) And let c; denotes its corresponding contextualized embedding
projected by a separated decoder head. We investigate the following contrastive objective:

1 N CTX
eci *i
Le=—-=Y log—s——. (1)
N i=1 Zj:l %

Intuitively, L. draws closer patches with their contextualized embeddings (positive pairs) at each
masked position while contrasting and pushing away mismatched ones (negative pairs) from all
masked patches. For the reconstructive objective, let X;,7 = 1... N be the reconstruction of i-th
masked spectrogram patch generated by the reconstruction head of our Audio-MAE decoder. The
original reconstruction objective L,. in Audio-MAE is formally defined as:

1 N
L=+ ;(fci —x;)%. )

We consider three setups: (1) Using the reconstructive objective (L,) alone (the default setup);
(2) using the contrastive objective (L.) alone; (3) multi-tasking with both the reconstructive and
contrastive objectives (L, + aL.), where « is the hyper-parameter that balances two objectives.

Table 3 shows the results: We see that the reconstruction objective L,. alone is sufficient and yields
the best performance. Empirically, we do not observe improvement with contrastive objectives
alone or under the multi-task setup (the best « is 0.2 in our experiments). L. and L, do not work
complementarily in Audio-MAE.

Objective AS-20K AS-2M
Reconstruction (L) 371 473
Contrastive (L.) 364 46.6

Contrastive + Reconstruction (L, + aL.) 36.8  46.8
Table 3: Impact of contrastive objective.


https://www.dropbox.com/s/rl96iu6sy7aydox/demo_org.mp4?dl=0
https://www.dropbox.com/s/00ouizfitwnlbyi/demo_masked.mp4?dl=0
https://www.dropbox.com/s/b05uxgt6sg4bw0h/demo_restored.mp4?dl=0
https://www.dropbox.com/s/3b7fgzxv71tafg2/1IrYZhVhN1s_org.mp4?dl=0
https://www.dropbox.com/s/sv7lt5fzgpxrwcn/1IrYZhVhN1s_masked.mp4?dl=0
https://www.dropbox.com/s/jwz8kwgjrdrq308/1IrYZhVhN1s_restored.mp4?dl=0

D Limitations

We think there are few direct limitations of this work. The data scale is one of them. AudioSet
used by Audio-MAE is around two orders of magnitude smaller than the text corpus used in the
language [27, 28, 29] counterparts. Another limitation is duration of each sample: the 10-second
recordings in AudioSet are short and thus distant temporal dependencies in audio may not be properly
learned yet. Further, as AudioSet is unbalanced and there are many audio types beyond the 527 classes
annotated in AudioSet, Audio-MAE could be sub-optimal when transferring to tasks concerning rare
or unseen audio events. Lastly, while Audio-MAE has greatly improved the efficiency of large-scale
self-supervised learning, modeling lengthy audio and high-dimensional data with Transformers is
computationally demanding.
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