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Abstract

Internet ad auctions have evolved from a few lines of text to richer informational
layouts that include images, sitelinks, videos, etc. Ads in these new formats occupy
varying amounts of space, and an advertiser can provide multiple formats, only one
of which can be shown. The seller is now faced with a multi-parameter mechanism
design problem. Computing an efficient allocation is computationally intractable,
and therefore the standard Vickrey-Clarke-Groves (VCG) auction, while truthful
and welfare-optimal, is impractical.
In this paper, we tackle a fundamental problem in the design of modern ad auctions.
We adopt a “Myersonian” approach and study allocation rules that are monotone
both in the bid and set of rich ads. We show that such rules can be paired with
a payment function to give a truthful auction. Our main technical challenge is
designing a monotone rule that yields a good approximation to the optimal welfare.
Monotonicity doesn’t hold for standard algorithms, e.g. the incremental bang-
per-buck order, that give good approximations to “knapsack-like” problems such
as ours. In fact, we show that no deterministic monotone rule can approximate
the optimal welfare within a factor better than 2 (while there is a non-monotone
FPTAS). Our main result is a new, simple, greedy and monotone allocation rule that
guarantees a 3 approximation. In ad auctions in practice, monotone allocation rules
are often paired with the so-called Generalized Second Price (GSP) payment rule,
which charges the minimum threshold price below which the allocation changes.
We prove that, even though our monotone allocation rule paired with GSP is not
truthful, its Price of Anarchy (PoA) is bounded. Under standard no-overbidding
assumptions, we prove bounds on the a pure and Bayes-Nash PoA. Finally, we
experimentally test our algorithms on real-world data.

1 Introduction

Internet Ad Auctions, in addition to being influential in advancing auction theory and mechanism
design, are a half-a-trillion dollar industry [CF21]. A significant advertising channel is sponsored
search advertising: ads that are shown along with search results when you type a query in a search
box. These ads traditionally were a few lines of text and a link, leading to the standard abstraction
for ad auctions: multiple items for sale to a set of unit-demand bidders, where each bidder i has
a private value vi · ↵is for the ad in position s, which has click-through rate ↵is. However, when
using your favorite search engine, you might instead encounter sitelinks/extensions leading to parts
of the advertisers’ website, seller ratings indicating how other users rate this advertiser or offers for
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specific products. Advertisers can often explicitly opt in or out of showing different extensions with
their ads. In fact, some extensions require the advertiser to provide additional assets, e.g. sitelinks,
phone numbers, prices, promotion etc, and an ad cannot be shown unless this additional information
is available. All these extensions/decorations change the amount of space the ad occupies, as well as
affect the probability of a user clicking on the ad. The new and unexplored abstraction for modern ad
auctions is now to select a set of ads that fit within the given total space.

In this paper, we study the problem of designing a truthful auction to determine the best set of ads
that can be shown, with the goal of maximizing the social welfare. More formally, we consider the
Rich Ads problem. In our model, each advertiser specifies a value per click vi and set of rich ads.
Each ad has an associated probability of click ↵ij and a space wij that it would occupy if shown.
The space and click probabilities are publicly known. Crucially, advertisers’ private information is
not single-dimensional. In addition to misreporting her value, there is another strategic dimension
available: an advertiser can report only a subset of the set of ads available if the allocation under this
report improves her utility. The open problem we address in this paper is whether there exist simple,
approximately optimal and truthful mechanisms for Rich Ads.

Results and Techniques. The classic Vickrey-Clarke-Groves (VCG) mechanism is truthful and
maximizes welfare for our setting, but it is computationally intractable: maximizing welfare is
NP-complete (even without truthfulness) since our problem generalizes the KNAPSACK problem.
It is also well known that coupling an approximation algorithm for welfare with VCG payments
does not result in a truthful mechanism. And, maximal-in-range mechanisms [NR01], that optimize
social welfare over a restricted domain, even though are one way around such situations, have limited
use, since the range of possible outcomes (allocations) has to be committed to before seeing the
bidders preferences (i.e., needs to be independent of bidders reports). For single parameter problems,
Myerson’s lemma [Mye81] can be used to obtain a truthful mechanism, as long as the allocation
rule is monotone. The Rich Ads problem is not a single parameter problem, so this approach does
not immediately work. However, similar to the inter-dimensional (or “one-and-a-half” dimensional)
regime [FGKK16, DHP20, DGS+20], we can extend Myerson’s lemma to our domain. We show that
an allocation rule that is monotone in the bid and the set of rich ads1 can be paired with a payment
rule to obtain a truthful mechanism.

Incentive issues aside, the Rich Ads problem is an extension of the KNAPSACK problem, called
MULTI-CHOICE KNAPSACK: in addition to the knapsack constraint, we also have constraints that
allow to allocate (at most) one rich ad per advertiser. As an algorithmic problem, this is well
studied [SZ79, Law79]. The optimal fractional allocation can be derived using a simple greedy
algorithm using the incremental bang-per-buck order. However, it turns out that the optimal (integral
or otherwise) allocation, as well as other natural allocations, are not monotone. In fact, as we show,
no deterministic (resp. randomized) monotone allocation rule can obtain more than half (resp. 11/12
fraction) of the social welfare. In contrast, without the monotonicity constraint, there is an FPTAS for
the MULTI-CHOICE KNAPSACK problem [Law79].

Our main result is providing an integral allocation rule that is monotone and obtains at least a third
of the optimal (fractional) social welfare. Pairing with an appropriate payment function we get the
following (informal) theorem.

Informal Theorem. There exists a simple truthful mechanism, that can be computed in polynomial
time, which obtains a 3-approximation to the optimal social welfare.

To obtain this result, we first find an allocation of space amongst the advertisers. In contrast to the
optimal fractional algorithm described above which allocates greedily using the incremental bang-
per-buck order, our algorithm allocates greedily using an absolute bang-per-buck order. Crucially,
the space allocated to each advertiser in this way is monotone, even though the expected number of
clicks (i.e. the utility) of the bang-per-buck algorithm itself is not monotone. By post-processing to
utilize this space optimally for each advertiser, we obtain an integral allocation that is monotone in
the expected number of clicks. We prove that this allocation gives a two approximation to the optimal
fractional welfare, minus the largest value ad. Finally, by randomizing between this integral allocation
(with probability 2/3) and the largest value ad (with probability 1/3), we get a 3-approximation

1Here, an allocation rule is defined to be monotone in the set of rich ads if the expected clicks allocated to an
advertiser can only increase when the advertiser reports a superset of rich ads.
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to the optimal social welfare. Since the overall allocation rule is monotone, we can pair it with an
appropriate pricing to get a truthful mechanism.

We proceed to further explore the merits of our monotone allocation rule by pairing it with the
Generalized Second Price (GSP) payment rule, which charges each advertiser the minimum threshold
(on their bid) below which their allocation changes. The overall auction is not truthful. However, we
can analyze its performance by bounding its social welfare in a worst-case equilibrium. In particular,
we consider the full information pure Nash equilibrium, where bidders best-respond to a profile of
competitors bids, as well as the incomplete information Bayes-Nash equilibrium, where the bidders
best-respond to a distribution of valuation draws and bids for the competitors. The corresponding pure
Price of Anarchy (PoA) and Bayes-Nash Price of Anarchy are the ratios of the optimal social welfare
to the welfare of the worst equilibrium. In either setting, we make the standard no-overbidding
assumption, where bidders do not bid more than their value. This assumption is required as without it
the PoA of even the single-item second price auction (which is truthful) can be unbounded.2

Informal Theorem. There exists a simple mechanism with a monotone allocation rule, paired with
the GSP payment rule, which under the no-overbidding assumption guarantees a pure Price of
Anarchy (resp. Bayes-Nash PoA) of at most 6 (resp. 6

1�1/e ).

We prove our PoA bounds by identifying a suitable deviation for each advertiser, and bounding the
advertiser’s utility in this deviation relative to the social welfare of the optimal integral allocation, our
integral bang-per-buck allocation (in the equilibrium), and the largest value ad (in the equilibrium);
as opposed to single-dimensional PoA bounds, the knapsack constraint in our setting introduces a
number of technical obstacles we need to bypass. To prove a bound for the Bayes-Nash PoA, we
combine techniques from our pure PoA bound with the standard smoothness framework [Rou15a].
In particular, the smoothness part of our argument is very similar to that of [CKK+15] for the
Bayes-Nash PoA of the standard GSP position auction. Due to the specific form of the smoothness
framework that we use, our bound also applies to mixed, correlated, coarse-correlated and Bayes-Nash
with correlated valuations. Our PoA results can be found in Appendix E.

Finally, we provide an empirical evaluation of our mechanism on real world data from a large search
engine. We compare performance of our mechanism with VCG and the fractional-optimal allocation
that doesn’t account for incentives. Our empirical results show that our allocation rule obtains at least
0.4 fraction of the optimal in the worst-case. However, there are many instances where our allocation
rule is almost as good as VCG. In fact, the average approximation factor of our allocation rule is 0.97.
Furthermore, our mechanisms are significantly faster than VCG, even with the Myersonian payment
computation. We also empirically evaluate heuristic extensions of our algorithms when there is a
bound on the total number of distinct rich ads shown.

Related work. Traditional sponsored search auctions have been studied extensively [AGM06,
Var07, EOS07]. A number of recent works relax the traditional model of sponsored search auc-
tions [CMSW20, Hum16] and introduce different versions of the “rich ads” problem [DSYZ10,
CKSW17, GHLY19, HIK+18]; the specific model we study in this paper is new. [DSYZ10] are the
first to formulate a rich ad problem where ads can occupy multiple slots. They analyze VCG and GSP
variants for a special version of the rich ad problem where ads can be of only one of two possible
sizes. They leave the problem addressed in this paper as an open problem for future work.

Much of the literature focuses on GSP-like rules (e.g., because the cost of switching from existing
GSP to VCG can be high [VH14]). [CKSW17] consider the more general rich ad problem where
there are constraints on number of ads shown and position effects in the click through rate. But
their setting is still single-parameter — advertisers report a bid per click and cannot mis-report
the set of rich ads. They provide a local search algorithm that runs within polynomial time and a
generalized GSP like pricing to go with it. However, as opposed to our interest here, their auction is
not truthful, nor do they give any approximation guarantees. [GHLY19] consider the optimization
problem when the probability of click is submodular or subadditive in the size of the rich ad. They give
an LP rounding based algorithm that provides a 4 approximation for submodular and a ⌦( logm

log logm
)

approximation for subadditive, with respect to the social welfare assuming truthful bidding. They
however do not provide a truthful payment rule, or any PoA guarantees. These works also focus on a
single-dimensional setting (where the advertiser is strategic about its bid but the set of ads is publicly

2Consider, for example, the equilibrium where all bidders bid 0, except the lowest bidder, who bids infinity.
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known). In contrast, we consider a multi-dimensional setting. Our simple and truthful mechanism
also has a monotone allocation function, so we pair it with GSP as well.

The PoA of the GSP auction for text ads was studied in [CKKK11, LB10, LPL11]. Our PoA bounds
use the smoothness framework introduced in [Rou15a], and later extended by [CKK+15] to show
PoA bounds for GSP (as well as in [Rou15b] and [ST13] for more general use).

2 Preliminaries

Rich Ad Model. We introduce the following model for the rich ads auction problem. There is a set
N of n advertisers and a universe of rich ads S . Each advertiser i 2 N has a private value per click
vi and a private set of rich ads Ai ✓ S .3 We use v = (v1, v2, . . . , vn) to denote the vector of values
per click and A = (A1, A2, . . . , An) to denote the vector of sets of rich ads. For every advertiser
i 2 N , each rich ad j 2 S has a publicly known space wij and a publicly known probability of click
↵ij .4 We use vij for the value of rich ad j for advertiser i. If j /2 Ai, then the value of advertiser
i is vij = 0; otherwise, vij = ↵ijvi. An advertiser can be allocated only one of the ads from the
set S. Finally, there is a total limit W on the total space occupied by the ads. We assume without
loss of generality that for each i and each j, wij  W , as any ad that is larger than W cannot be
allocated integrally in space W . A (randomized or fractional) allocation x 2 [0, 1]n⇥|S| indicates
the probability xij that ad j is allocated to advertiser i. An allocation is feasible if each advertiser
gets at most one ad, i.e.

P
j2S xij  1 for all i 2 N , and the total space used is at most W , i.e.P

i2N ,j2S xijwij  W . An allocation is integral if xij 2 {0, 1}, for all i 2 N and j 2 S .

Our goal is to maximize social welfare. For an allocation x = Alg(v,A), SW (Alg(v,A)) =P
i,j

xi,jvij . We can write an integer program for the optimal allocation as follows, by introducing a
binary variable xij 2 {0, 1} for the allocation of advertiser i 2 N and rich ad j 2 S. The objective
is to maximize welfare

P
ij
xijvij , subject to a Knapsack constraint

P
i

P
j
wijxij  W , and

feasibility, i.e.
P

j
xij  1 for all i 2 N (expressing that each advertiser can get only one ad).

Mechanism Design Considerations. By standard revelation principle arguments, it suffices to
focus on direct revelation mechanisms. Each advertiser i 2 N reports a bid bi and a set of rich
ads Si ✓ S. Similarly to many works in the inter-dimensional regime, e.g. [MV09, DW17], we
assume that Si ✓ Ai, that is, an advertiser cannot report that they want an ad they don’t have. Let
b = (b1, b2, . . . , bn) to denote the vector of bids and S = (S1, S2, . . . , Sn) to denote the vector of
sets of rich ads. We use bij = bi · ↵ij if j 2 Si and bij = 0 otherwise, and refer to the rich ad using
a (reported value, space) tuple (bij , wij). A mechanism selects a set of ads to show, of total space
at most W , and charges a payment to each advertiser. Let xij(b,S) be the probability that ad j

is allocated to advertiser i, and pi(b,S) denote the expected payment of advertiser i. Let xi(b,S)
be the allocation vector of advertiser i. We assume that for any valid allocation rule for j /2 Si

xij(b,S) = 0. We slightly overload notation, and use xi(b,S) to denote the expected number of
clicks the advertiser will get; that is, xi(b,S) =

P
j2Si

xij(b,S)↵ij . If required we refer to the cost
per-click cpci(b,S) = pi(b,S)/xi(b,S)

Advertisers have quasi-linear utilities. An advertiser with value vi and set Ai has utility vixi(b,S)�
pi(b,S), when reports are according to b and S. Let ui(vi, Ai ! bi, Si;b�i,S�i) be the utility of
advertiser i when her true value and set of ads are vi, Ai, but reports bi, Si, and everyone else reports
according to b�i,S�i. For ease of notation we often drop b�i,S�i when it’s clear from the context.
When the profile of true types is fixed, we drop (vi, Ai) and use the notation ui(bi, Si,b�i,S�i).

A mechanism is truthful if no advertiser has an incentive to lie, i.e. for any all b�i,S�i, ui(vi, Ai !
vi, Ai;b�i,S�i) � ui(vi, Ai ! bi, Si;b�i,S�i), for all vi, Ai, bi, Si, A mechanism is individually
rational if in all of its outcomes, all agents have non-negative utility.

We are interested in auctions that are computationally tractable, truthful, individually rational, with the
goal of maximizing the social welfare SW (x(b,S)) =

P
i
vixi(b,S). Even ignoring truthfulness

3We expect the rich ads to be tailored to an advertiser, so we assume that Ai \Ai0 = ;, for all i, i0 2 N .
4Note that this safe to assume. The space consumed by a rich ad is evident when the rich ad is provided. The

probability of click can be predicted by the platform (e.g. using machine learning models).
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and individual rationality, the computational constraints rule out achieving the optimal social welfare;
therefore, we seek approximately optimal mechanisms.
Definition 1. A truthful mechanism M obtains an ↵ factor approximation to the social welfare if
SW (xM(v,A)) � SW (xOPT (v,A))/↵.

Formal definitions of the Generalized Second Price and the Price of Anarchy are deferred to Ap-
pendix A (since all the instances where they are used are also in the appendix).

Optimal fractional allocations. The algorithmic problem is a special case of a well-known varia-
tion of the KNAPSACK problem, called MULTI-CHOICE KNAPSACK [SZ79]. The integer program
for MULTI-CHOICE KNAPSACK is the same as the integer program above, except that the inequality
constraint

P
j
xij  1 is replaced with an equality. Our problem is easily reduced to the MULTI-

CHOICE KNAPSACK problem by introducing a null ad with (↵i0, wi0) = (0, 0).[SZ79] provide a
characterization of the optimal fractional solution of MULTI-CHOICE KNAPSACK and provide a fast
algorithm to compute the fractional optimal solution. As is colloquial in the KNAPSACK literature,
we refer to the ratio bik

wik
as Bang-per-Buck and the ratio bij�bik

wij�wik
with wij > wik as Incremental

Bang-per-Buck. [SZ79] show that allocating ads in the incremental bang-per-buck order gives the
optimal fractional solution. We state this standard algorithm in Appendix A. We refer to the solution
constructed by this algorithm as OPT and use it as a benchmark in our approximation guarantees. We
note a few more properties of OPT.
Fact 1 ([SZ79]). In the optimal fractional allocation constructed by the algorithm, all advertisers
except one have a rich-ad allocated integrally. Also for any advertiser i allocated space W

⇤
i

in OPT,
the allocation maximizes the value that advertiser i can obtain in that space.

This fact also implies a 2-approximate integral allocation as follows. Construct an optimal fractional
solution using the incremental bang-per-buck order. Let i0 denote the advertiser that is allocated last:
select the larger of the optimal fractional solution without i0 and the highest value ad of i0.

3 Monotonicity and Lower Bounds

Monotonicity implies truthfulness. In single-parameter domains, Myerson’s lemma provides a
handy tool for constructing truthful mechanisms. One has to only construct a monotone allocation
rule, and then the lemma provides a complementary payment rule such that the overall mechanism is
truthful. We extend this approach to our particular multi-parameter domain. If the set of ads is fixed
for each advertiser, then monotonicity in bid and Myerson-like payments imply truthfulness. We give
constraints between the allocation rules for different sets of ads and show that they imply truthfulness
everywhere using a local-to-global argument. We begin by defining monotonicity in our setting. An
allocation rule is said to be monotone if it is monotone in each dimension of the buyer’s preferences.
Definition 2. An allocation rule x(b,S) is monotone in bi, Si for each i, if (1) For all
b�i,S�i, Si, b

0
i

� bi; we have xi(b0i, Si,b�i,S�i) � xi(bi, Si,b�i,S�i), and (2) For all
b�i,S�i, bi, S

0
i
◆ Si; we have xi(bi, S0

i
,b�i,S�i) � xi(bi, Si,b�i,S�i).

As the following example shows, the optimal allocation rule is not monotone. The example also
shows that monotonicity is not necessary for truthfulness (since VCG is truthful and optimal).
Example 1. Consider two advertisers with two rich ads each. Both have value 1 and the rich ads
have (value, size) = (1, 1), (1 + ✏, 2). The space available is 3. In this case, the optimal integer
solution chooses the smaller ad from one advertiser and the larger ad from other. However, if one of
them removes their smaller option, they get the larger option deterministically.

The next lemma (proof in Appendix B) shows that monotonicity is sufficient for truthfulness.
Lemma 1. If a valid allocation rule x(b,S) is monotone in bi, Si for each i 2 N , then charging
payment pi(b,S) = bixi(b,S)�

R
bi

0 xi(b,b�i,S)db results in a truthful auction.

Lower bounds. Next, we illustrate the challenge in coming up with allocation rules which are
monotone in the set of rich ads. We also prove that monotonicity rules out approximation ratios
strictly better than 2 for deterministic mechanisms (and 12/11 for randomized mechanisms).
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As we’ve seen in Example 1, the algorithm that finds the optimal integer allocation is not monotone.
The following example shows that simple algorithms such as selecting ads in the incremental bang-
per-buck order, or the 2 approximation algorithm presented in Section 2 are not monotone either.
Recall that bang-per-buck = bij/wij and incremental bang-per-buck = bij�bik

wij�wik
with wij > wik.

Example 2. We have two advertisers A and B. A has two rich ads with (value, size) as (2,1),(3.5,3).
B has one ad with (value, size)=(3,3).

(i) Suppose W = 4. The incremental bang-per-buck algorithm picks A : (2, 1), followed by B : (3, 3).
The rich ad A : (3.5, 3) does not get picked over B : (3, 3), despite having higher bang-per-buck,
since it has smaller incremental bang-per-buck (of 0.75). On the other hand if A removes the rich ad
(2, 1), the algorithm picks A : (3.5, 3) at the very beginning, and A obtains a higher value.

(ii) Suppose W = 3.5, the optimal fraction solution is A : (2, 1) with a weight of 1.0 and B : (3, 3)
with weight 2.5/3. The 2-approximation algorithm of Section 2 compares allocating just A : (2, 1)
or just B : (3, 3), and chooses B. But if A removed (2, 1), then the optimal fraction solution is
A : (3.5, 3) with a weight of 1.0 and B : (3, 3) with weight 0.5/3. The 2-approximation algorithm
compares A : (3.5, 3) and B : (3, 3), and chooses A because it has higher value. Thus A gets a
higher value by removing (2, 1).5

The next theorem gives lower bounds on the approximation factor a monotone algorithm can achieve.
Theorem 1. No monotone and deterministic (resp. randomized) algorithm has an approximation
ratio better than 2� " (resp. 12/11� ") for any " > 0.

Proof. There are two advertisers. Each advertiser has two rich ads: (1, 1), (1 + ", 2). The total space
is 3. The optimal solution has value (2 + ✏). To obtain an approximation better than 2� ✏, we must
choose a small ad for at least one of the advertisers. Since the algorithm is monotone, when that
advertiser does not provide the small ad, the algorithm cannot give them the larger ad. Thus when the
advertiser does not provide the small ad, the algorithm must give this advertiser nothing, resulting in
welfare at most (1 + "). See Appendix B for the proof for randomized algorithms.

4 A Simple Monotone 3-Approximation

In this section we give our main result: a monotone algorithm that obtains a 3 approximation to the
optimal social welfare. First, we give a fractional algorithm for allocating space to each advertiser i.
Second, we show that optimally (and integrally) using the space given to each advertiser i gives a
monotone allocation. Finally, we show that randomizing between the former algorithm and simply
allocating the max value ad is a monotone rule that obtains a 3 approximation to OPT . Omitted
proofs (and definitions) can be found in Appendix C. We show that the truthful payment function
matching our allocation rule can be computed in polynomial time in Appendix C.3.

Monotone space allocation algorithm We start by giving a monotone algorithm for allocating
space to each advertiser. This total space allocated is monotone in bi and Si, for all i 2 N . Our
algorithm also provides an allocation of rich-ads to that space, but this allocation by itself may not be
monotone, and may not provide a good approximation. Our algorithm, which we call ALGB , works
as follows (see Appendix C for a formal description). First, we order the ads in the bang-per-buck
order. We iteratively choose the next ad in this order; let i be the corresponding advertiser, and j be
the rich ad. We replace the previous ad of i with j, if this choice results in more space allocated to i.
If there is not enough space we fractionally allocate j and terminate.

The following observation shows that any ads removed for not being-selected will not be used by the
fractional-optimal solution as well. See Appendix A for the precise definition of dominated.
Observation 1. Let j0 2 Ei be some ad removed from Ei in “step 2” of ALGB for having space at
most wij . Then either j0 = j or j0 is a “dominated” ad.

Next, we prove that ALGB allocates space that is monotone in bi and Si, for all i 2 N .

5Even though we only seek integer monotone algorithms, this example shows that even the fractional
allocation is not monotone: when A provides all ads its value is 2, but when A removes (2, 1), its value is 3.5.
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Theorem 2. Let x(ALGB) denote the allocation of ALGB . Then, for all i 2 N , bi  b
0
i
:P

j
wijxij(ALGB(b,S)) 

P
j
wijxij(ALGB(b0i,b�i,S)). Also, for all i and Si ✓ S

0
i
, the

space Wi is monotone in Si:
P

j
wijxij(ALGB(b,S)) 

P
j
wijxij(ALGB(b, Si,S�i)).

ALGB is inefficient since the bang-per-buck allocation can change the relative order in which the
advertisers are assigned space, generating sub-optimal outcomes.
Example 3. Let M be a large integer. Let W = M � 1 and consider two advertiser A and B. A
has two rich ads with (value, size) as (1, 1), (1 + ",M � 1). B has one rich ad with (value, size)
= (M�1

M
,M � 1). Fractional OPT selects A : (1, 1) fully and B : (M�1

M
,M � 1) fractionally with

weight (M � 2)/(M � 1) and obtains a social welfare 1 + M�2
M

. The bang-per-buck allocation in
ALGB selects A : (1 + ",M) fully and obtains social welfare (1 + ").

While the space allocated is monotone in the bid and rich ads, the allocation itself may not be
monotone, since ALGB may allocate an advertiser a larger ad with lower value than another option;
we provide an example in Appendix D.

Integral Monotone Allocation. The allocation generated by ALGB can be fractional for one
advertiser, and can be sub-optimal (but integer) for some of the other advertisers. In the following
algorithm, we post-process to find the best single ad that fits in Wi.
Algorithm 1 (ALGI ). First, run ALGB . Let Wi be the space allotted to advertiser i. Second,
post-process to allocate the ad j with maximum value that fits in Wi, i.e. j 2 argmaxwijWi

bij . Any
remaining space is left unallocated.

Observe that ALGI is monotone, since (1) the space allocated by ALGB is monotone, and (2) if
the space allocated by ALGB is larger, then the post-processing that allocates the highest value ad
that fits in this space will also result in same or larger value. However, ALGI alone might be an
arbitrarily bad approximation: we provide an example in Appendix D.

Main result. Our main result is the following theorem.
Theorem 3. The randomized algorithm that runs ALGI with probability 2/3, and otherwise allocates
the maximum valued ad, is monotone in bi and Si, obtains a 3-approximation to the social welfare,
and this approximation factor is tight.

Proof. Let bmax denote the value of the maximum valued ad. We will first show that
2SW (x(ALGI))+bmax � SW (xOPT ). Let Val(x, A,~s) =

P
i2A

(
P

j2S bij ·xij)·
⇣

siP
j2S wijxij

⌘

be the fraction of the social welfare of allocation x, SW (x), contributed by a subset of ad-
vertisers A for space ~s. Let x⇤ = xOPT (b,S) denote an optimal fractional allocation. Let
Wi = Wi(ALGB(b,S)) and W

⇤
i

= Wi(OPT (b,S)) denote the total space allocated to adver-
tiser i in ALGB and the optimal allocation x⇤, respectively. The space allocated in ALGI is exactly
the same as Wi. Recall Fact 1, that there is an optimal fractional allocation where at most one
advertiser is allocated fractionally. Let i0 be the advertiser whose allocation in x⇤ is fractional. There
is also at most one advertiser in ALGB whose allocation is fractional: the advertiser corresponding
to the very last ad that is included; let i00 be this advertiser. We start by giving a series of technical
claims. First, we bound the part of SW (x(OPT )) contributed by advertisers who are allocated more
space in ALGB than in OPT . Let I denote the set of advertisers i with Wi � W

⇤
i

.

Claim 1. Val(x⇤
, I \ {i0}, ~W ⇤)  Val(x(ALGI), I \ {i0}, ~W ).

Let K = N \ I be the set of advertisers k with Wk < W
⇤
k

. If K = ; then Wi = W
⇤
i

for all i. We
note that bi · xi(ALGI) = bi · x⇤

i
for all i 6= i

0 by Claim 1. Also bmax � bi · x⇤
i0 . Thus we get

SW (x(ALGI)) + bmax � SW (OPT ). So for the rest of the proof we assume K 6= ;. We bound
the portions of SW (xOPT ) contributed by k 2 K using the following claim.

Claim 2. For all k 2 K \ {i0} and i 2 N , we have bk·x⇤
k

W⇤
k

 bi·xi(ALGB)
Wi

.

That is, advertisers that are allocated less space in ALGI than in x⇤, must have lower bang-per-buck
as otherwise their rich ad would be considered by ALGI and they will be allocated more space.
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Finally we bound the contribution of i0, that is the ad allocated fractionally in OPT as follows:

Claim 3. Let (bs, s), (b`, `) with s < l be the ads used in x⇤
i0 , the optimal fractional allocation for i0.

It holds that: (i) b`�bs
`�s

 bi·xi(ALGB)
Wi

for all i 2 N , (ii) if s > Wi0 , then bs
s
 bi·xi(ALGB)

Wi
for all

i 2 N , and (iii) if s  Wi0 then bs  bi0 · xi0(ALGI).

The proof of this claim is more involved. Intuitively we can bound the smaller of i0’s allocated ads
(if it is small enough) with the value i

0 obtains in ALGI and the larger ad since it is allocated last
has the lowest incremental bang-per-buck than any other advertiser’s ad and hence the incremental
bang-per-buck is also lower than the other ad’s actual bang-per-buck.

We put all the claims together to bound Val(x⇤
,K [ {i0}, ~W ⇤). If s > Wi0 , then by Claims 2 and 3

we see that the bang-per-buck of k 2 K [ {i0} is less bi · xi(ALGB)/Wi for all i. Then the value for
K [ {i0} in OPT is less than the contribution of advertisers using the same total space in ALGB .

Val(x⇤
,K [ {i0}, ~W ⇤)  Val(x⇤

,K \ {i0}, ~W ⇤) + bi0 · x⇤
i0  Val(x(ALGB),N , ~W ) (1)

If s  Wi0 , then by Claims 2 and 3 we get that bs < bi0 · xi0(ALGI) and the bang-per-buck of the
ads in ALGB is higher than that of K \ {i0} and b`�bs

`�s
. Thus we have,

Val(x⇤
,K [ {i0}, ~W ⇤)  Val(x⇤

,K \ {i0}, ~W ⇤) + bs + (W ⇤
i0 � s)

b` � bs

`� s

 Val(x(ALGB),N , ~W ) + bi0 · xi0(ALGI) (2)

Hence by putting both I and K together we get,

SW (xOPT ) = Val(x⇤
, I \ {i0}, ~W ⇤) + Val(x⇤

,K [ {i0}, ~W ⇤)

 Val(x(ALGI), I \ {i0}, ~W ) + Val(x(ALGB),N , ~W ) + bi0 · xi0(ALGI)

 Val(x(ALGI),N , ~W ) + Val(x(ALGB),N , ~W )

 2Val(x(ALGI),N , ~W ) + bmax

where the first equality is the definition of SW (xOPT ), and the second inequality puts together
Claim 1 and Equations (1), and (2). The third inequality holds because I [ {i0} ✓ N . The final
inequality holds because bi·xi(ALGI) � bi·xi(ALGB) for all i 6= i

00, and bi00 ·xi00(ALGB)  bmax.

Thus we have that SW (xOPT )  2Val(x(ALGI),N , ~W ) + bmax. Therefore, running ALGI with
probability 2/3 and allocating bmax with probability 1/3 is a 3-approximation to SW (xOPT ). Since
our algorithm is randomizing between two monotone rules, it is monotone as well. We give an
instance which shows that the approximation of the algorithm is at least 3 in Appendix C.

5 Experiments

In this section we present some empirical results for our truthful mechanisms. The allocation rules we
use for our theoretical results can be extended to obtain higher value. First we extend ALGI to skip
past a high bang-per-buck ad that does not fit in the remaining space. More precisely, recall that ALGI

calls ALGB to get the space allocation. ALGB stops when the ad being considered cannot be fit
fully in the remaining space. The advertiser corresponding to this ad still gets allocated the remaining
space, which is filled with the highest-value ad that fits in post-processing. In our modified version,
we update ALGB to skip past this large ad. This is equivalent to dropping step (3) of ALGB (i.e.,
we keep going until we run out of ads), and running the rest of ALGI as it is. We call this modified
algorithm GreedyByBangPerBuck. For our theoretical result we also select the maximum value ad
with probability 1/3. In practice, this can be very inefficient. For our empirical evaluation, we extend
this to continues to allocate as long as space is remaining. Similar to the GreedyByBangPerBuck,
the algorithm skips past a high value but large ad that cannot fit, and continues allocating until the
space or the set of rich ads runs out. We call this algorithm GreedyByValue. It is worth noting that
these extensions do not improve the worst-case approximation ratio of Theorem 3: we include a
brief proof in Appendix F. We implement our proposed randomized algorithm by flipping a coin
with probability 2/3 for each query and selecting the result of GreedyByBangPerBuck algorithm
if it is heads and GreedyByValue otherwise. We call this RandomizedGreedy. As a baseline, we
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Algorithm ApproxECPM time-msec
GreedyByBangPerBuck 0.9493 0.7363

GreedyByValue 0.9196 0.3242
RandomizedGreedy 0.9393 ± 0.0001 0.5983 ± 0.0007

IntOPT 1.0 6.9988
Table 1: Average performance of the algorithms compared to IntOPT. We report average approxi-
mation of eCPM relative to IntOPT and average running time in miliseconds. We report confidence
intervals for the randomized algorithm by noting the average performance over all queries over 100
runs.

Figure 1: Histogram of approximation factor for IntOPT, GreedyByValue, GreedyByBangPerBuck
and RandomizedGreedy compared to Fractional Optimal.

have implemented IntOPT, that uses brute-force-search to evaluate all possible allocations and
compute the optimal integer allocation. This allocation paired with the VCG payment rule (which is
computed by computing the integer OPT with advertiser i removed, and subtracting from that the
allocation of all advertisers other than i in the optimal allocation) gives the VCG mechanism. Finally,
we implement the incremental bang-per-buck order algorithm as IncrementalBPB to compute the
fractionally optimal allocation.

We evaluated our algorithms from real world data obtained from a large search advertising company.
The data consists of a sample of approximately 11000 queries, selected to have at least 6 advertisers
each. All the space values for the rich-ads are integer. We use 500 as the space limit as that is
larger than the space of any individual rich ad. Table 1 compares the average performance of these
algorithms. Our algorithms are comparable to IntOPT, on average, but require a lot less time to run.

We first compare the approximation obtained by various algorithms to the fractional-optimal. In
Figure 1, we see that GreedyByBangPerBuck and IntOPT obtain at least a 0.55 fraction of the
fractional opt, while the approximation factor for GreedyByValue can be as low as 0.4. There is also
a substantial amount of mass in the 1.0 bucket where integer-opt and fractional-opt coincide and the
greedy algorithms also sometimes achieve that. Next we compare the approximation obtained by
various algorithms to IntOPT.

In Figure 2 we see the approximation obtained by various algorithms compared to the IntOPT
allocation. There are more queries where we obtain the optimal approximation, but the worst-
case is still 0.6 for GreedyByBangPerBuck and 0.4 for GreedyByValue. For additional insight,
we plot a heatmap to correlate the approximation factor obtained by GreedyByBangPerBuck and
GreedyByValue with IntOPT as the baseline. In Figure 2, we compare the approximation factor of

Figure 2: Histogram of approximation factor for GreedyByValue, GreedyByBangPerBuck and ran-
domized Greedy compared to IntOPT. Height of each bucket represents the fraction of queries in the
bucket. Last figure shows correlation of approximation factor relative to IntOPT for GreedyByValue,
GreedyByBangPerBuck. Color-scale in the heat-map by log(number of queries) in bucket.
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Figure 3: CDF of running time in milliseconds for for GreedyByValue, GreedyByBangPerBuck and
IntOPT algorithms.

GreedyByValue and GreedyByBangPerBuck. Blank spaces in this plot correspond to not having any
queries with a particular combination of approximation factors. We note that a lot of the queries
have the same approximation factor for GreedyByValue and GreedyByBangPerBuck — indicating
that RandomizedGreedy won’t make mistakes. But GreedyByBangPerBuck more often has better
approximation factor than GreedyByValue, so sticking to GreedyByBangPerBuck as the only heuristic
might perform better. Finally, in Figure 3 we compare the clock-time of our allocation rules with that
of the IntOPT allocation rule.

These allocation rules are monotone, so they can be paired with Myerson’s payment rule as implied
by Lemma 1. We evaluate the time required to compute the payments and relative revenue compared
to VCG in Appendix G (Table 3). Since the focus of our paper is welfare maximization we do
not consider reserve prices. A possible direction for future work is to study the trade-offs between
welfare and revenue of our mechanism under different reserve prices. Additionally, in Appendix G
we evaluate our algorithms with an added cardinality constraints and show that we obtain reasonable
approximations to the optimal allocation.
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