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Abstract

Causal mediation analysis can unpack the black box of causality and is therefore a
powerful tool for disentangling causal pathways in biomedical and social sciences,
and also for evaluating machine learning fairness. To reduce bias for estimating
Natural Direct and Indirect Effects in mediation analysis, we propose a new method
called DeepMed that uses deep neural networks (DNNs) to cross-fit the infinite-
dimensional nuisance functions in the efficient influence functions. We obtain
novel theoretical results that our DeepMed method (1) can achieve semiparametric
efficiency bound without imposing sparsity constraints on the DNN architecture
and (2) can adapt to certain low-dimensional structures of the nuisance functions,
significantly advancing the existing literature on DNN-based semiparametric causal
inference. Extensive synthetic experiments are conducted to support our findings
and also expose the gap between theory and practice. As a proof of concept, we
apply DeepMed to analyze two real datasets on machine learning fairness and
reach conclusions consistent with previous findings.

1 Introduction

Tremendous progress has been made in this decade on deploying deep neural networks (DNNs) in
real-world problems (Krizhevsky et al., 2012; Wolf et al., 2019; Jumper et al., 2021; Brown et al.,
2022). Causal inference is no exception. In semiparametric causal inference, a series of seminal
works (Chen et al., 2020; Chernozhukov et al., 2020; Farrell et al., 2021) initiated the investigation of
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statistical properties of causal effect estimators when the nuisance functions (the outcome regressions
and propensity scores) are estimated by DNNs. However, there are a few limitations in the current
literature that need to be addressed before the theoretical results can be used to guide practice:

(1) Most recent works mainly focus on total effect (Chen et al., 2020; Farrell et al., 2021). In many
settings, however, more intricate causal parameters are often of greater interests. In biomedical and
social sciences, one is often interested in “mediation analysis” to decompose the total effect into
direct and indirect effect to unpack the underlying black-box causal mechanism (Baron and Kenny,
1986). More recently, mediation analysis also percolated into machine learning fairness. For instance,
in the context of predicting the recidivism risk, Nabi and Shpitser (2018) argued that, for a “fair”
algorithm, sensitive features such as race should have no direct effect on the predicted recidivism
risk. If such direct effects can be accurately estimated, one can detect the potential unfairness of a
machine learning algorithm. We will revisit such applications in Section 5 and Appendix G.

(2) Statistical properties of DNN-based causal estimators in recent works mostly follow from
several (recent) results on the convergence rates of DNN-based nonparametric regression estimators
(Suzuki, 2019; Schmidt-Hieber, 2020; Tsuji and Suzuki, 2021), with the limitation of relying on
sparse DNN architectures. The theoretical properties are in turn evaluated by relatively simple
synthetic experiments not designed to generate nearly infinite-dimensional nuisance functions, a
setting considered by almost all the above related works.

The above limitations raise the tantalizing question whether the available statistical guarantees for
DNN-based causal inference have practical relevance. In this work, we plan to partially fill these gaps
by developing a new method called DeepMed for semiparametric mediation analysis with DNNs. We
focus on the Natural Direct/Indirect Effects (NDE/NIE) (Robins and Greenland, 1992; Pearl, 2001)
(defined in Section 2.1), but our results can also be applied to more general settings; see Remark 2.
The DeepMed estimators leverage the “multiply-robust” property of the efficient influence function
(EIF) of NDE/NIE (Tchetgen Tchetgen and Shpitser, 2012; Farbmacher et al., 2022) (see Proposition
1 in Section 2.2), together with the flexibility and superior predictive power of DNNs (see Section
3.1 and Algorithm 1). In particular, we also make the following novel contributions to deepen our
understanding of DNN-based semiparametric causal inference:

• On the theoretical side, we obtain new results that our DeepMed method can achieve semi-
parametric efficiency bound without imposing sparsity constraints on the DNN architecture
and can adapt to certain low-dimensional structures of the nuisance functions (see Section
3.2), thus significantly advancing the existing literature on DNN-based semiparametric
causal inference. Non-sparse DNN architecture is more commonly employed in practice
(Farrell et al., 2021), and the low-dimensional structures of nuisance functions can help
avoid curse-of-dimensionality. These two points, taken together, significantly advance our
understanding of the statistical guarantee of DNN-based causal inference.

• More importantly, on the empirical side, in Section 4, we designed sophisticated synthetic
experiments to simulate nearly infinite-dimensional functions, which are much more complex
than those in previous related works (Chen et al., 2020; Farrell et al., 2021; Adcock and
Dexter, 2021). We emphasize that these nontrivial experiments could be of independent
interest to the theory of deep learning beyond causal inference, to further expose the gap
between deep learning theory and practice (Adcock and Dexter, 2021; Gottschling et al.,
2020); see Remark 9 for an extended discussion. As a proof of concept, in Section 5 and
Appendix G, we also apply DeepMed to re-analyze two real-world datasets on algorithmic
fairness and reach similar conclusions to related works.

• Finally, a user-friendly R package can be found at https://github.com/siqixu/DeepMed.
Making such resources available helps enhance reproducibility, a highly recognized problem
in all scientific disciplines, including (causal) machine learning (Pineau et al., 2021; Kaddour
et al., 2022).

2 Definition, identification, and estimation of NDE and NIE

2.1 Definition of NDE and NIE

Throughout this paper, we denote Y as the primary outcome of interest, D as a binary treatment
variable, M as the mediator on the causal pathway from D to Y , and X ∈ [0, 1]p (or more generally,
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compactly supported in Rp) as baseline covariates including all potential confounders. We denote
the observed data vector as O ≡ (X,D,M, Y ). Let M(d) denote the potential outcome for the
mediator when setting D = d and Y (d,m) be the potential outcome of Y under D = d and M = m,
where d ∈ {0, 1} and m is in the support M of M . We define the average total (treatment) effect
as τtot := E[Y (1,M(1)) − Y (0,M(0))], the average NDE of the treatment D on the outcome Y
when the mediator takes the natural potential outcome when D = d as τNDE(d) := E[Y (1,M(d))−
Y (0,M(d))], and the average NIE of the treatment D on the outcome Y via the mediator M as
τNIE(d) := E[Y (d,M(1)) − Y (d,M(0))]. We have the trivial decomposition τtot ≡ τNDE(d) +
τNIE(d

′) for d ̸= d′. In causal mediation analysis, the parameters of interest are τNDE(d) and τNIE(d).

2.2 Semiparametric multiply-robust estimators of NDE/NIE

Estimating τNDE(d) and τNIE(d) can be reduced to estimating ϕ(d, d′) := E[Y (d,M(d′))] for d, d′ ∈
{0, 1}. We make the following standard identification assumptions:

i. Consistency: if D = d, then M = M(d) for all d ∈ {0, 1}; while if D = d and M = m,
then Y = Y (d,m) for all d ∈ {0, 1} and all m in the support of M .

ii. Ignorability: Y (d,m) ⊥ D|X , Y (d,m) ⊥ M |X,D, M(d) ⊥ D|X , and Y (d,m) ⊥
M(d′)|X , almost surely for all d,∈ {0, 1} and all m ∈ M. The first three conditions are,
respectively, no unmeasured treatment-outcome, mediator-outcome and treatment-mediator
confounding, whereas the fourth condition is often referred to as the “cross-world” condition.
We provide more detailed comments on these four conditions in Appendix A.

iii. Positivity: The propensity score a(d|X) ≡ Pr(D = d|X) ∈ (c, C) for some constants
0 < c ≤ C < 1, almost surely for all d ∈ {0, 1}; f(m|X, d), the conditional density (mass)
function of M = m (when M is discrete) given X and D = d, is strictly bounded between
[
¯
ρ, ρ̄] for some constants 0 <

¯
ρ ≤ ρ̄ <∞ almost surely for all m in M and all d ∈ {0, 1}.

Under the above assumptions, the causal parameter ϕ(d, d′) for d, d′ ∈ {0, 1} can be identified as
either of the following three observed-data functionals:

ϕ(d, d′) ≡ E

[
1{D = d}f(M |X, d′)Y
a(d|X)f(M |X, d)

]
≡ E

[
1{D = d′}
a(d′|X)

µ(X, d,M)

]
≡
∫
µ(x, d,m)f(m|x, d′)p(x) dmdx,

(1)

where 1{·} denotes the indicator function, p(x) denotes the marginal density ofX , and µ(x, d,m) :=
E[Y |X = x,D = d,M = m] is the outcome regression model, for which we also make the following
standard boundedness assumption:

iv. µ(x, d,m) is also strictly bounded between [−R,R] for some constant R > 0.

Following the convention in the semiparametric causal inference literature, we call a, f, µ “nuisance
functions”. Tchetgen Tchetgen and Shpitser (2012) derived the EIF of ϕ(d, d′): EIFd,d′ ≡ ψd,d′(O)−
ϕ(d, d′), where

ψd,d′(O) =
1{D = d} · f(M |X, d′)
a(d|X) · f(M |X, d) (Y − µ(X, d,M))

+

(
1− 1{D = d′}

a(d′|X)

)∫
m∈M

µ(X, d,m)f(m|X, d′)dm+
1{D = d′}
a(d′|X)

µ(X, d,M). (2)

The nuisance functions µ(x, d,m), a(d|x) and f(m|x, d) appeared in ψd,d′(o) are unknown and
generally high-dimensional. But with a sample D ≡ {Oj}Nj=1 of the observed data, based on ψd,d′(o),
one can construct the following generic sample-splitting multiply-robust estimator of ϕ(d, d′):

ϕ̃(d, d′) =
1

n

∑
i∈Dn

ψ̃d,d′(Oi), (3)

where Dn ≡ {Oi}ni=1 is a subset of allN data, and ψ̃d,d′(o) replaces the unknown nuisance functions
a, f, µ in ψd,d′(o) by some generic estimators ã, f̃ , µ̃ computed using the remaining N − n nuisance
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sample data, denoted as Dν . Cross-fit is then needed to recover the information lost due to sample
splitting; see Algorithm 1. It is clear from (2) that ϕ̃(d, d′) is a consistent estimator of ϕ(d, d′) as
long as any two of ã, f̃ , µ̃ are consistent estimators of the corresponding true nuisance functions,
hence the name “multiply-robust”. Throughout this paper, we take n ≍ N − n and assume:

v. Any nuisance function estimators are strictly bounded within the respective lower and upper
bounds of a, f, µ.

To further ease notation, we define: for any d ∈ {0, 1}, ra,d :=
{∫

δa,d(x)
2dF (x)

}1/2
, rf,d :={∫

δf,d(x,m)2dF (x,m|d = 0)
}1/2

, and rµ,d :=
{∫

δµ,d(x,m)2dF (x,m|d = 0)
}1/2

, where
δa,d(x) := ã(d|x)− a(d|x), δf,d(x,m) := f̃(m|x, d)− f(m|x, d) and δµ,d(x,m) := µ̃(x, d,m)−
µ(x, d,m) are point-wise estimation errors of the estimated nuisance functions. In defining the above
L2-estimation errors, we choose to take expectation with respect to (w.r.t.) the law F (m,x|d = 0)
only for convenience, with no loss of generality by Assumptions iii and v.

To show the cross-fit version of ϕ̃(d, d′) is semiparametric efficient for ϕ(d, d′), we shall demonstrate
under what conditions

√
n(ϕ̃(d, d′)− ϕ(d, d′))

L→ N (0,E[EIF2
d,d′ ]) (Newey, 1990). The following

proposition on the statistical properties of ϕ̃(d, d′) is a key step towards this objective.

Proposition 1. Denote Bias(ϕ̃(d, d′)) := E[ϕ̃(d, d′)−ϕ(d, d′)|Dν ] as the bias of ϕ̃(d, d′) conditional
on the nuisance sample Dν . Under Assumptions i – v, Bias(ϕ̃(d, d′)) is of second-order:

|Bias(ϕ̃(d, d′))| ≲ max

{
ra,d · rf,d, max

d′′∈{0,1}
rf,d′′ · rµ,d, ra,d · rµ,d

}
. (4)

Furthermore, if the RHS of (4) is o(n−1/2), then

√
n
(
ϕ̃(d, d′)− ϕ(d, d′)

)
=

1√
n

n∑
i=1

(ψd,d′(Oi)− ϕ(d, d′)) + o(1)
d→ N

(
0,E

[
EIF2

d,d′

])
. (5)

Although the above result is a direct consequence of the EIF ψd,d′(O), we prove Proposition 1 in
Appendix B for completeness.
Remark 2. The total effect τtot = ϕ(1, 1) − ϕ(0, 0) can be viewed as a special case, for which
d = d′ for ϕ(d, d′). Then EIFd,d ≡ EIFd corresponds to the nonparametric EIF of ϕ(d, d) ≡ ϕ(d) ≡
E[Y (d,M(d))]:

EIFd = ψd(O)− ϕ(d) with ψd(O) =
1{D = d}
a(d|X)

Y +

(
1− 1{D = d}

a(d|X)

)
µ(X, d),

where µ(x, d) := E[Y |X = x,D = d]. Hence all the theoretical results in this paper are applicable
to total effect estimation. Our framework can also be applied to all the statistical functionals that
satisfy a so-called “mixed-bias” property, characterized recently in Rotnitzky et al. (2021). This
class includes the quadratic functional, which is important for uncertainty quantification in machine
learning.

3 Estimation and inference of NDE/NIE using DeepMed

We now introduce DeepMed, a method for mediation analysis with nuisance functions estimated by
DNNs. By leveraging the second-order bias property of the multiply-robust estimators of NDE/NIE
(Proposition 1), we will derive statistical properties of DeepMed in this section. The nuisance function
estimators by DNNs are denoted as â, f̂ , µ̂.

3.1 Details on DeepMed

First, we introduce the fully-connected feed-forward neural network with the rectified linear units
(ReLU) as the activation function for the hidden layer neurons (FNN-ReLU), which will be used to
estimate the nuisance functions. Then, we will introduce an estimation procedure using a V -fold
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cross-fitting with sample-splitting to avoid the Donsker-type empirical-process assumption on the
nuisance functions, which, in general, is violated in high-dimensional setup. Finally, we provide the
asymptotic statistical properties of the DNN-based estimators of τtot, τNDE(d) and τNIE(d).

We denote the ReLU activation function as σ(u) := max(u, 0) for any u ∈ R. Given vectors x, b, we
denote σb(x) := σ(x− b), with σ acting on the vector x− b component-wise.

Let Fnn denote the class of the FNN-ReLU functions

Fnn :=
{
f : Rp → R; f(x) =W (L)σb(L) ◦ · · · ◦W (1)σb(1)(x)

}
,

where ◦ is the composition operator, L is the number of layers (i.e. depth) of the network, and
for l = 1, · · · , L, W (l) is a Kl+1 × Kl-dimensional weight matrix with Kl being the number of
neurons in the l-th layer (i.e. width) of the network, with K1 = p and KL+1 = 1, and b(l) is a
Kl-dimensional vector. To avoid notation clutter, we concatenate all the network parameters as
Θ = (W (l), b(l), l = 1, · · · , L) and simply take K2 = · · · = KL = K. We also assume Θ to be
bounded: ∥Θ∥∞ ≤ B for some universal constant B > 0. We may let the dependence on L, K, B
explicit by writing Fnn as Fnn(L,K,B).

DeepMed estimates τtot, τNDE(d), τNIE(d) by (3), with the nuisance functions a, f, µ estimated using
Fnn with the V -fold cross-fitting strategy, summarized in Algorithm 1 below; also see Farbmacher
et al. (2022). DeepMed inputs the observed data D ≡ {Oi}Ni=1 and outputs the estimated total
effect τ̂tot, NDE τ̂NDE(d) and NIE τ̂NIE(d), together with their variance estimators σ̂2

tot, σ̂
2
NDE(d) and

σ̂2
NIE(d).

Algorithm 1 DeepMed with V -fold cross-fitting

1: Choose some integer V (usually V ∈ {2, 3, · · · , 10})
2: Split the N observations into V subsamples Iv ⊂ {1, · · · , N} ≡ [N ] with equal size n = N/V ;
3: for v = 1, · · · , V : do
4: Fit the nuisance functions by DNNs using observations in [N ] \ Iv
5: Compute the nuisance functions in the subsample Iv using the estimated DNNs in step 4
6: Obtain {ψ̂d(Oi), ψ̂d,d′(Oi)}i∈Iv for the subsample Iv based on (2), respectively, with the nuisance

functions replaced by their estimates in step 5
7: end for

8: Estimate average potential outcomes by ϕ̂(d) := 1
N

N∑
i=1

ψ̂d(Oi), ϕ̂(d, d′) := 1
N

N∑
i=1

ψ̂d,d′(Oi)

9: Estimate causal effects by τ̂tot, τ̂NDE(d) and τ̂NIE(d) with ϕ̂(d) and ϕ̂(d, d′)
10: Estimate the variances of τ̂tot, τ̂NDE(d) and τ̂NIE(d) by:

σ̂2
tot :=

1
N2

N∑
i=1

(ψ̂1(Oi)− ψ̂0(Oi))
2 − 1

N
τ̂2tot; σ̂2

NDE(d) :=
1

N2

N∑
i=1

(ψ̂1,d(Oi)− ψ̂0,d(Oi))
2 − 1

N
τ̂2NDE(d);

σ̂2
NIE(d) :=

1
N2

N∑
i=1

(ψ̂d,1(Oi)− ψ̂d,0(Oi))
2 − 1

N
τ̂2NIE(d)

Output: τ̂tot, τ̂NDE(d), τ̂NIE(d), σ̂2
tot, σ̂

2
NDE(d) and σ̂2

NIE(d)

Remark 3 (Continuous or multi-dimensional mediators). For binary treatment D and continuous or
multi-dimensional M , to avoid nonparametric/high-dimensional conditional density estimation, we
can rewrite f(m|x,d′)

a(d|x)f(m|x,d) as 1−a(d|x,m)
a(d|x,m)(1−a(d|x)) by the Bayes’ rule and the integral w.r.t. f(m|x, d′)

in (2) as E[µ(X, d,M)|X = x,D = d′]. Then we can first estimate µ(x, d,m) by µ̂(x, d,m) and
in turn estimate E[µ(X, d,M)|X = x,D = d′] by regressing µ̂(X, d,M) against (X,D) using
the FNN-ReLU class. We mainly consider binary M to avoid unnecessary complications; but see
Appendix G for an example in which this strategy is used. Finally, the potential incompatibility
between models posited for a(d|x) and a(d|x,m) and the joint distribution of (X,A,M, Y ) is not of
great concern under the semiparametric framework because all nuisance functions are estimated
nonparametrically; again, see Appendix G for an extended discussion.

3.2 Statistical properties of DeepMed: Non-sparse DNN architecture and low-dimensional
structures of the nuisance functions

According to Proposition 1, to analyze the statistical properties DeepMed, it is sufficient to control
the L2-estimation errors of nuisance function estimates â, f̂ , µ̂ fit by DNNs. To ease presentation,
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we first study the theoretical guarantees on the L2-estimation error for a generic nuisance function
g :W ∈ [0, 1]p → Z ∈ R, for which we assume:

vi. Z = g(W ) + ξ, with ξ sub-Gaussian with mean zero and independent of W .

Note that when g corresponds to a, f, µ, (W,Z) corresponds to (X,1(D = 1)), ((X,D),1(M = 1))
and ((X,D,M), Y ), respectively.

We denote the DNN output from the nuisance sample Dν as ĝ. For theoretical results, we consider ĝ
as the following empirical risk minimizer (ERM):

ĝ := arg min
ḡ∈Fnn(L,K,B)

∑
i∈Dν

(Zi − ḡ(Wi))
2
. (6)

To avoid model misspecification, one often assumes g ∈ G, where G is some infinite-dimensional
function space. A common choice is G = Hp(α;C), the Hölder ball on the input domain [0, 1]p,
with smoothness exponent α and radius C. Hölder space is one of the most well-studied function
spaces in statistics and it is convenient to quantify its complexity by a single smoothness parameter
α; see Appendix C for a review. It is well-known that estimating Hölder functions suffers from
curse-of-dimensionality (Stone, 1982). One remedy is to consider the following generalized Hölder
space, by imposing certain low-dimensional structures on g:

H†
k(α;C) :=

{
g(w) = h(Γw) : h ∈ Hk(α;C),Γ ∈ Rk×p unknown, k ≤ p

}
.

Remark 4. The above definition contains g(w) = h(wI), where I ⊂ {1, · · · , p}, as a special case,
in which g is assumed to only depend on a subset of the feature vector w. One can easily generalize
the above definition to additive models g(w) =

∑p
j=1 hj(wj) where hj ∈ Hkj (αj ;Cj), allowing

even more modeling flexibility. To avoid complications, we only consider the above simpler model.

We can show that the ERM estimator ĝ (6) from the FNN-ReLU class Fnn(L,K,B) attains the
optimal estimation rate over H†

k(α;C) up to log factors, by choosing the depth and width appropriately
without assuming sparse neural nets.

Lemma 5. Under Assumptions iii – vi, if g ∈ H†
k(α;C) for k ≤ p, with LK ≍ n

k
2(k+2α) , we have

supg∈H†
k(α;C)

{
E
[
(g(W )− ĝ(W ))2

]}1/2
≲ n−

α
2α+k (log n)3.

Lemma 5, together with Proposition 1, implies the main theoretical result of the paper.

Theorem 6. Under Assumptions i – vi and the following condition on a, f, µ: a ∈ H†
k(αa;C), f ∈

H†
k(αf ;C), µ ∈ H†

k(αµ;C), with

min

{
αa

2αa + k
+

αf

2αf + k
,

αf

2αf + k
+

αµ

2αµ + k
,

αa

2αa + k
+

αµ

2αµ + k

}
>

1

2
+ ϵ, (7)

for k ≤ p and some arbitrarily small ϵ > 0, if â, f̂ , µ̂ are respectively the ERM (6) from FNN-ReLU
classes Fnn(La,Ka, B), Fnn(Lf ,Kf , B), Fnn(Lµ,Kµ, B), of which the product of the depth and

width satisfies LgKg ≍ n
k

2(k+2αg) for g ∈ {a, f, µ}, then the DeepMed estimators τ̂tot, τ̂NDE(d) and
τ̂NIE(d) computed by Algorithm 1 are semiparametric efficient:

σ̂−1
tot(τ̂tot − τtot), σ̂

−1
NDE(d)(τ̂NDE(d)− τNDE(d)), σ̂

−1
NIE(d)(τ̂NIE(d)− τNIE(d))

L−→ N (0, 1), with

Nσ̂2
tot

p→ E[(EIF1 − EIF0)
2], Nσ̂2

NDE(d)
p→ E[(EIF1,d − EIF0,d)

2], and Nσ̂2
NIE(d)

p→ E[(EIFd,1 −
EIFd,0)

2], i.e. σ̂2
tot, σ̂

2
NDE and σ̂2

NIE are consistent variance estimators.
Remark 7. To unload notation in the above theorem, consider the special case where the smoothness
of all the nuisance functions coincides, i.e. αa = αf = αµ = α. Then Condition (7) reduces to
α > k/2 + ϵ for some arbitrarily small ϵ > 0. For example, if the covariates X have dimension
p = 2 and no low-dimensional structures are imposed on the nuisance functions (i.e. k ≡ p), one
needs α > 1 to ensure semiparametric efficiency of the DeepMed estimators.

We emphasize that Lemma 5 and Theorem 6 do not constrain the network sparsity S, better reflecting
how DNNs are usually used in practice. Theorem 6 advances results on total and decomposition effect
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estimation with non-sparse DNNs (Farrell et al., 2021, Theorem 1) in terms of (1) weaker smoothness
conditions and (2) adapting to certain low-dimensional structures of the nuisance functions. The
proof of Lemma 5 follows from a combination of the improved DNN approximation rate obtained
in Lu et al. (2021); Jiao et al. (2021) and standard DNN metric entropy bound (Suzuki, 2019). We
prove Lemma 5 and Theorem 6 in Appendix C for completeness. One weakness of Lemma 5 and
Theorem 6, as well as in other contemporary works (Chen et al., 2020; Farrell et al., 2021), is the
lack of algorithmic/training process considerations (Chen et al., 2022); see Remark 10 and Appendix
E for extended discussions.

Remark 8 (Explicit input-layer regularization). Training DNNs in practice involves hyperparameter
tuning, including the depth L and width K in Theorem 6 and others like epochs. In the synthetic
experiments, we consider the nuisance functions only depending on a k-subset of p-dimensional
input. A reasonable heuristic is to add L1-regularization in the input-layer of the DNN. Then the
regularization weight λ is also a hyperparameter. In practice, we simply use cross-validation to select
the hyperparameters that minimize the validation loss. We leave its theoretical justification and the
performance of other alternative approaches such as the minimax criterion (Robins et al., 2020; Cui
and Tchetgen Tchetgen, 2019) to future works.

4 Synthetic experiments

In this section and Appendix E, we showcase five synthetic experiments. Since ground truth is rarely
known in real data, we believe synthetic experiments play an equally, if not more, important role as
real data. Before describing the experimental setups, we garner the following key take-home message:

(a) Compared with the other competing methods, DeepMed exhibits better finite-sample perfor-
mance in most of our experiments;

(b) Cross-validation for DNN hyperparameter tuning works reasonably well in our experiments;

(c) We find DeepMed with explicit regularization in the input layer improves performance
(see Table A2) when the true nuisance functions have certain low-dimensional structures
in their dependence on the covariates. Farrell et al. (2021) warned against blind explicit
regularization in DNNs for total effect estimation. Our observation does not contradict
Farrell et al. (2021) as (1) the purpose of the input-layer regularization is not to control the
sparsity of the DNN architecture and (2) we do not further regularize hidden layers;

(d) Experimental setups for Cases 3 to 5 generate nuisance functions that are nearly infinite-
dimensional and close to the boundary of a Hölder ball with a given smoothness exponent
(Liu et al., 2020; Li et al., 2005). Thus these synthetic experiments should be better
benchmarks than Cases 1 and 2 or settings in other related works such as Farrell et al. (2021).
We hope that these highly nontrivial synthetic experiments are helpful to researchers beyond
mediation analysis or causal inference. We share the code for generating these functions as
a part of the DeepMed package.

We consider a sample with 10,000 i.i.d. observations. The covariates X = (X1, ..., Xp)
⊤ are

independently drawn from uniform distribution Uniform([−1, 1]). The outcome Y , treatment D and
mediator M are generated as follows:

D ∼ Bernoulli(s(d(X))),M ∼ 0.2D +m(X) +N (0, 1), Y ∼ 0.2D +M + y(X) +N (0, 1),

where s(x) := (1 + e−x)
−1, and we consider the following three cases to generate the nonlinear

functions d(x),m(x) and y(x) in the main text:

• Case 1 (simple functions):

d(x) = x1x2 + x3x4x5 + sinx1,m(x) = 4

5∑
i=1

sin 3xi, y(x) = (x1 + x2)
2 + 5 sin

5∑
i=1

xi.
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• Case 2 (composition of simple functions): we simulate more complex interactions among covariates
by composing simple functions as follow:

d(x) = d2 ◦ d1 ◦ d0(x1, · · · , x5), with d0(x1, · · · , x5) =

(
2∏

i=1

xi,

5∏
i=3

xi,

2∏
i=1

sinxi,

5∏
i=3

sinxi

)
,

d1(a1, · · · , a4) = (sin(a1 + a2), sin a2, a3, a4) , and d2(b1, · · · , b4) = 0.5 sin(b1 + b2) + 0.5(b3 + b4),

m(x) = m1 ◦m0(x1, . . . , x5),with m0(x1, · · · , x5) = (sinx1, · · · , sinx5) ,m1(a1, · · · , a5) = 5 sin

5∑
i=1

ai

and y(x) = y2 ◦ y1 ◦ y0(x1, · · · , x5), with y0(x1, · · · , x5) =

(
sin

2∑
i=1

xi, sin

5∑
i=3

xi, sin

5∑
i=1

xi

)
,

y1(a1, a2, a3) = (sin(a1 + a2), a3) , and y2(b1, b2) = 10 sin(b1 + b2).

• Case 3 (Hölder functions): we consider more complex nonlinear functions as follows:

d(x) = x1x2 + x3x4x5 + 0.5η(0.2x1;α),m(x) =

5∑
i=1

η (0.5xi;α) , y(x) = x1x2 + 3η

(
0.2

5∑
i=1

xi;α

)

where η(x;α) =
∑

j∈J,l∈Z 2
−j(α+0.25)wj,l(x) with J = {0, 3, 6, 9, 10, 16} and wj,l(·) is the D6

father wavelet functions dilated at resolution j shifted by l. By construction, η(x;α) ∈ H1(α;B) for
some known constant B > 0 following Härdle et al. (1998, Theorem 9.6). Here we set α = 1.2 and
the intrinsic dimension k = 1. Thus we expect the DeepMed estimators are semiparametric efficient.
It is indeed the case based on the columns corresponding to Case 3 in Table 1, suggesting that DNNs
can be adaptive to certain low-dimensional structures.
Remark 9. The nuisance functions in Cases 3 – 5 (see Appendix E) are less smooth than what have
been considered elsewhere, including Farrell et al. (2021), Chen et al. (2020), and even Adcock
and Dexter (2021), a paper dedicated to exposing the gap between theoretical approximation rates
and DNN practice. These nuisance functions are designed to be near the boundary of a Hölder ball
with a given smoothness exponent as we add wavelets at very high resolution in η(x;α). This is the
assumption under which most of the known statistical properties of DNNs are developed.

Table 1: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the
estimated τtot, τNDE(1) and τNIE(1), and the coverage probabilities (CP) of their corresponding 95%
confidence intervals. p = 5 (no irrelevant covariates). The simulation is based on 200 replicates. The
full table including τ̂NDE(0) and τ̂NIE(0) can be found in Table A1 in the Appendix.

Case 1 Case 2 Case 3
Method Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

τtot DeepMed -0.001 0.032 0.032 0.945 -0.004 0.032 0.032 0.955 0.008 0.037 0.038 0.920
Lasso 0.192 0.089 0.212 0.460 -0.304 0.116 0.325 0.215 0.346 0.079 0.355 0.010

RF 0.067 0.042 0.079 0.775 -0.078 0.056 0.096 0.950 -0.009 0.042 0.043 0.985
GBM -0.015 0.036 0.039 0.940 -0.044 0.055 0.070 0.850 0.019 0.041 0.045 0.930
Oracle -0.001 0.029 0.029 0.955 -0.003 0.029 0.029 0.925 -0.001 0.032 0.032 0.935

τNDE(1) DeepMed 0.000 0.027 0.027 0.945 -0.007 0.023 0.024 0.955 0.000 0.026 0.026 0.965
Lasso 0.130 0.043 0.137 0.220 -0.375 0.059 0.380 0.000 0.226 0.064 0.235 0.050

RF 0.048 0.029 0.056 0.700 -0.188 0.044 0.193 0.005 0.030 0.038 0.048 0.980
GBM -0.040 0.031 0.051 0.770 -0.164 0.046 0.170 0.040 0.011 0.042 0.043 0.920
Oracle 0.000 0.022 0.022 0.945 -0.002 0.020 0.020 0.985 0.001 0.022 0.022 0.955

τNIE(1) DeepMed -0.001 0.025 0.025 0.960 0.005 0.029 0.029 0.915 0.008 0.031 0.032 0.905
Lasso 0.058 0.077 0.096 0.875 0.069 0.094 0.117 0.905 0.120 0.045 0.128 0.220

RF 0.066 0.037 0.076 0.665 0.108 0.059 0.123 0.860 -0.045 0.038 0.059 0.765
GBM 0.023 0.031 0.039 0.890 0.120 0.064 0.136 0.485 -0.001 0.037 0.037 0.935
Oracle -0.001 0.020 0.020 0.975 0.000 0.021 0.021 0.930 -0.002 0.022 0.022 0.920

In all the above cases, τtot = 0.4 and τNDE(d) = τNIE(d) = 0.2 for d ∈ {0, 1}. We also consider
the cases where the total number of covariates p = 20 and 100 but only the first five covariates are
relevant to Y , M and D. All simulation results are based on 200 replicates. The sigmoid function is
used in the final layer when the response variable is binary. For comparison, we also use the Lasso,
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random forest (RF) and gradient boosted machine (GBM) to estimate the nuisance functions, and
use the true nuisance functions (Oracle) as the benchmark. The Lasso is implemented using the R
package “hdm” with a data-driven penalty. The DNN, RF and GBM are implemented using the
R packages “keras”, “randomForest” and “gbm”, respectively. We adopt a 3-fold cross-validation
to choose the hyperparameters for DNNs (depth L, width K, L1-regularization parameter λ and
epochs), RF (number of trees and maximum number of nodes) and GBM (numbers of trees and
depth). We use a completely independent sample for the hyperparameter selection. In this paper,
we only use one extra dataset to conduct the cross-validation for hyperparameter selection, so our
simulation results are conditional on this extra dataset. We use the cross-entropy loss for the binary
response and the mean-squared loss for the continuous response. We fix the batch-size as 100 and the
other hyperparameters for the other methods are set to the default values in their R packages. See
Appendix E for more details.

We compare the performances of different methods in terms of the biases, empirical standard errors
(SE) and root mean squared errors (RMSE) of the estimates as well as the coverage probabilities (CP)
of their 95% confidence intervals. When p = k = 5 (all covariates are relevant or no low-dimensional
structures), DeepMed has smaller bias and RMSE than the other competing methods, and is only
slightly worse than Oracle. Lasso has the largest bias and poor CP as expected since it does not capture
the nonlinearity of the nuisance functions. RF and GBM also have substantial biases, especially in
Case 2 with compositions of simple functions. Overall, DeepMed performs better than the competing
methods (Table 1). From the empirical distributions, we can also see that they are nearly unbiased
and normally distributed in Cases 1-3 (Figures A1-A3). When p = 20 or 100 but only the first
five covariates are relevant (k = 5), L1-regularization in the input-layer drastically improves the
performance of DeepMed (Table A2). DeepMed with L1-regularization in the input-layer also has
smaller bias and RMSE than the other competing methods (Tables A3 and A4).

As expected, more precise nuisance function estimates (i.e., smaller validation loss) generally lead
to more precise causal effect estimates. The validation losses of nuisance function estimates from
DeepMed are generally much smaller than those using Lasso, RF and GBM (Tables A5-A7).

Remark 10. Due to space limitations, we defer Cases 4, 5 to Appendix E, in which DeepMed fails
to be semiparametric efficient, compared to the Oracle; see an extended discussion in Appendix E.
We conjecture this may be due to the implicit regularization of gradient-based training algorithm
such as SGD (Table A11) or adam (Kingma and Ba, 2015) (all simulation results except Table A11),
which is used to train the DNNs to estimate the nuisance parameters, instead of actually solving
the ERM (6). Most previous works focus on the benefit of implicit regularization (Neyshabur, 2017;
Bartlett et al., 2020) on generalization. Yet, implicit regularization might inject implicit bias into
causal effect estimates, which could make statistical inference invalid. Such a potential curse of
implicit regularization has not been documented in the DNN-based causal inference literature before
and exemplify the value of our synthetic experiments. We believe this is an important open research
direction for theoretical results to better capture the empirical performance of DNN-based causal
inference methods such as DeepMed.

5 Real data analysis on fairness

As a proof of concept, we use DeepMed and other competing methods to re-analyze the COMPAS
algorithm (Dressel and Farid, 2018). In particular, we are interested in the NDE of race D on the
recidivism risk (or the COMPAS score) Y with the number of prior convictions as the mediator
M . For race, we mainly focus on the Caucasians population (D = 0) and the African-Americans
population (D = 1), and exclude the individuals of other ethnicity groups. The COMPAS score (Y )
is ordinal, ranging from 1 to 10 (1: lowest risk; 10: highest risk). We also include the demographic
information (age and gender) as covariates X .

All the methods find significant positive NDE of race on the COMPAS score at α-level 0.005 (Table
2; all p-values < 10−7), consistent with previous findings (Nabi and Shpitser, 2018). Thus the
COMPAS algorithm tends to assign higher recidivism risks to African-Americans than to Caucasians,
even when they have the same number of prior convictions. The validation losses of nuisance function
estimates by DeepMed are smaller than the other competing methods (Table A8), possibly suggesting
smaller biases of the corresponding NDE/NIE estimators.
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We emphasize that research in machine learning fairness should be held accountable (Bao et al., 2021).
Our data analysis is merely a proof-of-concept that DeepMed works in practice and the conclusion
from our data analysis should not be treated as definitive. We defer the comments on potential issues
of unmeasured confounding to Appendix F and another real data analysis to Appendix G.

Table 2: Results for real data application to COMPAS algorithm fairness.

Method Effect Estimate SE Method Effect Estimate SE

τtot 1.136 0.069 τtot 1.083 0.111
τNDE(1) 0.564 0.068 τNDE(1) 0.589 0.070

DeepMed τNDE(0) 0.524 0.062 RF τNDE(0) 0.569 0.103
τNIE(1) 0.612 0.042 τNIE(1) 0.514 0.049
τNIE(0) 0.572 0.051 τNIE(0) 0.494 0.065
τtot 1.150 0.068 τtot 1.180 0.068

τNDE(1) 0.575 0.063 τNDE(1) 0.550 0.063
Lasso τNDE(0) 0.587 0.062 GBM τNDE(0) 0.526 0.061

τNIE(1) 0.563 0.032 τNIE(1) 0.654 0.041
τNIE(0) 0.575 0.040 τNIE(0) 0.630 0.044

6 Conclusion and Discussion

In this paper, we proposed DeepMed for semiparametric mediation analysis with DNNs. We estab-
lished novel statistical properties for DNN-based causal effect estimation that can (1) circumvent
sparse DNN architectures and (2) leverage certain low-dimensional structures of the nuisance func-
tions. These results significantly advance our current understanding of DNN-based causal inference
including mediation analysis.

Evaluated by our extensive synthetic experiments, DeepMed mostly exhibits improved finite-sample
performance over the other competing machine learning methods. But as mentioned in Remark 10,
there is still a large gap between statistical guarantees and empirical observations. Therefore an
important future direction is to incorporate the training process while investigating the statistical
properties to have a deeper theoretical understanding of DNN-based causal inference. It is also of
future research interests to enable DeepMed to handle unmeasured confounding and more complex
path-specific effects (Malinsky et al., 2019; Miles et al., 2020), and incorporate other hyperparameter
tuning strategies that leverage the multiply-robustness property, such as the minimax criterion (Robins
et al., 2020; Cui and Tchetgen Tchetgen, 2019).

Finally, we warn readers that all causal inference methods, including DeepMed, may have negative
societal impact if they are used without carefully checking their working assumptions.
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Appendix

A More comments on the Ignorability conditions

It is well known that NDE/NIE is not nonparametrically identifiable without assuming the four ignorability conditions
listed in Assumption ii: for all d, d′ ∈ {0, 1} and m ∈ M

No unmeasured treatment-outcome confounding : Y (d,m) ⊥ D|X;

No unmeasured treatment-mediator confounding : Y (d,m) ⊥M |X,D;

No unmeasured treatment-mediator confounding :M(d) ⊥ D|X;

Cross-world condition : Y (d,m) ⊥M(d′)|X.

The first three are standard ignorability conditions; but the fourth one involves “cross-world” potential outcomes Y (d,m)
and M(d′) when d ̸= d′. The cross-world assumption is often criticized by researchers who are “interventionists”
(Robins et al., 2022) because this condition cannot be empirically verified even by conducting randomized trials. To
resolve this issue, many other direct/indirect effects are developed that are identifiable without assuming the cross-world
condition, e.g. the interventional direct/indirect effect (IDE/IIE) (VanderWeele et al., 2014). We decided to focus on the
more standard NDE/NIE in this paper because the identification formulae of NDE and NIE as in (1) are the same as
those of IDE and IIE. It is beyond the scope of this paper to discuss the conceptual (dis)advantages of different types of
direct/indirect effects for mediation analysis.

B The bias of generic sample-splitting multiply-robust estimators of NDE/NIE

In this section, we prove Proposition 1, which is a consequence of the Proposition below.

Proposition 11. Conditional on the nuisance sample data Dν , the bias of ϕ̃(d, d′) as an estimator of ϕ(d, d′) is of the
following second-order form:

E
[
ϕ̃(d, d′)− ϕ(d, d′)|Dν

]
= EX

 ∫
m∈M

(
1− a(d′|X)

ã(d′|X)

)(
f̃(m|X, d′)
f(m|X, d′)

− 1

)
µ̃(X, d,m)f(m|X, d′)dm


+ EX

 ∫
m∈M

(
1− f(m|X, d)

f̃(m|X, d)
f̃(m|X, d′)
f(m|X, d′)

)
(µ̃(X, d,m)− µ(X, d,m)) f(m|X, d′)dm


+ EX

 ∫
m∈M

(
1− a(d|X)

ã(d|X)

)
f̃(m|X, d′)
f̃(m|X, d)

(µ̃(X, d,m)− µ(X, d,m)) f(m|X, d)dm

 .
Consequently, one obtains the following upper bound of the bias:

Bias(ϕ̃(d, d′)) ≡
∣∣∣E [ϕ̃(d, d′)− ϕ(d, d′)|Dν

]∣∣∣
≲ ra,d · rf,d + max

d′′∈{0,1}
rf,d′′ · rµ,d + ra,d · rµ,d.

(8)

Proof. The first statement on the bias follows directly from sample-splitting and the form of the EIF ψd,d′(o)−ϕ(d, d′).
The second statement is obtained by the application of triangle inequality and Cauchy-Schwarz inequality.

It is worth noting that the upper bound in (8) by Cauchy-Schwarz inequality is by no means the only analysis strategy.
For instance, one could also upper bound the bias by Hölder inequality if convergence rates of DNN-based nuisance
function estimators are available in general Lp-norms beyond p = 2. Proposition 1 is a generalization of the results in
Robins et al. (2008); Chernozhukov et al. (2018) to mediation analysis.
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C Hölder functions, their ERM DNN-based estimators and statistical properties

As in the main text, we denote Hp(α;C) as the Hölder balls of functions from Rp to R, with smoothness exponent α
and radii C (Triebel, 2010; Giné and Nickl, 2016), formally defined below:

Hp(α;C) :=



g : [0, 1]p → R;

max
m∈Zp

≥0
,|m|1<⌊α⌋

∥∂mg∥∞ ≤ C

and max
m∈Zp

≥0
,|m|1=⌊α⌋

sup
w,w′∈[0,1]p,w ̸=w′

|∂mg(w)− ∂mg(w′)|
∥w − w′∥α−⌊α⌋

∞
≤ C

 α ≥ 1,

{
g : [0, 1]p → R; sup

w,w′∈[0,1]p,w ̸=w′

|g(w)− g(w′)|
∥w − w′∥α∞

≤ C

}
0 < α < 1.

It is well-known (Stone, 1982) that the minimax optimal convergence rate of estimating g ∈ Hp(α;C) in L2-norm
is n−

α
2α+p , suffering from curse-of-dimensionality. As mentioned in the main text, one possibility is to consider

the function space H†
k(α;C) by assuming that the nuisance functions only depend on the covariates w ∈ Rp via a

k-dimensional linear subspace Γw, where Γ ∈ Rk×p and is unknown.

There exist many estimators attaining the optimal rate: e.g. wavelet projection estimators, kernel estimators, etc. In
particular, sparse DNN-based estimators have also shown to attain the optimal rate up to a log-factor (Schmidt-Hieber,
2020; Suzuki, 2019). However, since sparse DNNs are computationally demanding to search over Fnn, we prefer
results that avoid such sparsity constraints. To this end, it is easy to show the following by adapting the proof of
Theorem 1.1 of Lu et al. (2021):

Lemma 12. Given g ∈ H†
k(α;C), for large enough depth and width L,K ∈ Z>0 and some known constant B > 0,

there exists g̃ ∈ Fnn(L,K,B) such that

∥g − g̃∥∞ ≲

(
L

logL

K

logK

)−2α/k

.

The proof is straightforward by simply taking the parameter of the input layer to be W (1) = (Γ,−Γ) ∈ R2k×p and
b(1) = 0 and the second layer parameters chosen appropriately such that the input becomes Γx before the ReLU
activation function. The rest of the proof then follows directly by applying Theorem 1.1 of Lu et al. (2021).

Next, we invoke the metric entropy bound of Fnn(L,K,B) established by Lemma 3 of Suzuki (2019):

Lemma 13 (Metric entropy bound of Fnn(L,K,B)). Denote the covering number (van der Vaart and Wellner, 1996)
of Fnn(L,K,B) w.r.t. L∞-norm as N(ϵ,Fnn(L,K,B), ∥ · ∥∞). Then for any ϵ > 0, for large enough L,K ∈ Z>0

and B > 0, we have

logN(ϵ,Fnn(L,K,B), ∥ · ∥∞) ≲ (LK)2 log

(
LK

ϵ

)
.

Combining the above two lemmas, we are now ready to prove Lemma 5.

Proof of Lemma 5. Following Lemma 3.2 of Jiao et al. (2021) or standard M -estimation and empirical process theory
(van der Vaart and Wellner, 1996), under sub-Gaussian assumption of the noise ξ, for the ERM estimator ĝ given in (6),
we have

sup
g∈H†

k(α;C)

E
[
(ĝ(W )− g(W ))2

]
≲

(log n)2 logN(1/n,Fnn(L,K,B), ∥ · ∥∞)

n
+ inf

g̃∈Fnn(L,K,B)
∥g̃ − g∥2∞

≲
(log n)3(LK)2 log(LK)

n
+

(
L

logL

K

logK

)−4α/k

,

where the second inequality follows from Lemma 12 and 13.

Finally, with a simple bias-variance trade-off argument, we can choose LK ≍ n
k

2(k+2α) to obtain the desired rate.

Before proceeding, we make the following remark regarding the optimality of the results in Theorem 6.
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Remark 14. We believe the conditions in Theorem 6 are not tight. For example, when the nuisance functions belong to
certain Hölder balls, the sufficient and necessary Hölder-type condition for the existence of semiparametric efficient
estimator of τtot is αa+αµ

2k > 1
4 . The infinite-order U -statistic estimator of Mukherjee et al. (2017) is the only known

semiparametric efficient estimator under the above minimal Hölder-type condition. Yet, their estimators require delicate
regularity properties of the estimated nuisance functions, which are difficult to verify for DNNs. It is an interesting open
theoretical problem how to achieve semiparametric efficiency under minimal Hölder-type condition even simply for τtot,
when the nuisance functions are estimated by DNNs.

It is possible to generalize Hölder balls in several directions: e.g. assuming different smoothness exponents in different
dimensions of the input (Suzuki, 2019) or composing Hölder functions hierarchically to mimick the composition
structure of DNNs (Schmidt-Hieber, 2020) (e.g. Case 5 in Appendix E).

Proof of Theorem 6. Theorem 6 is an immediate consequence of Lemma 5 and Proposition 1.

D Tables and figures related to the main text

In this section, we collect tables and figures that are related to Cases 1 – 3 of the simulated experiments and real data
analysis of the COMPAS dataset, including Table A1 to Table A8 and Figure A1 to Figure A3.

Figure A1: (Case 1) The empirical distributions of the estimated total effects, NIE and NDE by DeepMed. The results
are based on 1000 simulation replicates and the number of covariates p = 5. The red vertical lines indicate the true
effects. The blue curves represent the normal density with the means at the true effects and the estimated standard
errors.
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Figure A2: (Case 2) The empirical distributions of the estimated total effects, NIE and NDE by DeepMed. The results
are based on 1000 simulation replicates and the number of covariates p = 5. The red vertical lines indicate the true
effects. The blue curves represent the normal density with the means at the true effects and the estimated standard
errors.

Figure A3: (Case 3) The empirical distributions of the estimated total effects, NIE and NDE by DeepMed. The results
are based on 1000 simulation replicates and the number of covariates p = 5. The red vertical lines indicate the true
effects. The blue curves represent the normal density with the means at the true effects and the estimated standard
errors.
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Table A1: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the estimated average
total effects, NDE, and NIE, and the coverage probabilities (CP) of their corresponding 95% confidence intervals. p = 5
(no irrelevant covariates). The simulation is based on 200 replicates.

Case 1 Case 2 Case 3
Method Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

τtot DeepMed -0.001 0.032 0.032 0.945 -0.004 0.032 0.032 0.955 0.008 0.037 0.038 0.920
Lasso 0.192 0.089 0.212 0.460 -0.304 0.116 0.325 0.215 0.346 0.079 0.355 0.010

RF 0.067 0.042 0.079 0.775 -0.078 0.056 0.096 0.950 -0.009 0.042 0.043 0.985
GBM -0.015 0.036 0.039 0.940 -0.044 0.055 0.070 0.850 0.019 0.041 0.045 0.930
Oracle -0.001 0.029 0.029 0.955 -0.003 0.029 0.029 0.925 -0.001 0.032 0.032 0.935

τNDE(1) DeepMed 0.000 0.027 0.027 0.945 -0.007 0.023 0.024 0.955 0.000 0.026 0.026 0.965
Lasso 0.130 0.043 0.137 0.220 -0.375 0.059 0.380 0.000 0.226 0.064 0.235 0.050

RF 0.048 0.029 0.056 0.700 -0.188 0.044 0.193 0.005 0.030 0.038 0.048 0.980
GBM -0.040 0.031 0.051 0.770 -0.164 0.046 0.170 0.040 0.011 0.042 0.043 0.920
Oracle 0.000 0.022 0.022 0.945 -0.002 0.020 0.020 0.985 0.001 0.022 0.022 0.955

τNDE(0) DeepMed 0.000 0.025 0.025 0.940 -0.009 0.026 0.028 0.915 -0.001 0.027 0.027 0.940
Lasso 0.134 0.043 0.141 0.170 -0.373 0.058 0.377 0.000 0.227 0.064 0.236 0.045

RF 0.001 0.030 0.030 0.970 -0.186 0.047 0.192 0.020 0.036 0.036 0.051 0.950
GBM -0.037 0.030 0.048 0.800 -0.164 0.049 0.171 0.055 0.020 0.044 0.048 0.920
Oracle 0.000 0.022 0.022 0.955 -0.002 0.019 0.019 0.985 0.001 0.022 0.022 0.950

τNIE(1) DeepMed -0.001 0.025 0.025 0.960 0.005 0.029 0.029 0.915 0.008 0.031 0.032 0.905
Lasso 0.058 0.077 0.096 0.875 0.069 0.094 0.117 0.905 0.120 0.045 0.128 0.220

RF 0.066 0.037 0.076 0.665 0.108 0.059 0.123 0.860 -0.045 0.038 0.059 0.765
GBM 0.023 0.031 0.039 0.890 0.120 0.064 0.136 0.485 -0.001 0.037 0.037 0.935
Oracle -0.001 0.020 0.020 0.975 0.000 0.021 0.021 0.930 -0.002 0.022 0.022 0.920

τNIE(0) DeepMed -0.001 0.028 0.028 0.940 0.003 0.027 0.027 0.930 0.008 0.029 0.030 0.910
Lasso 0.062 0.078 0.100 0.870 0.071 0.095 0.119 0.905 0.120 0.045 0.128 0.220

RF 0.019 0.037 0.042 0.935 0.110 0.058 0.124 0.835 -0.038 0.036 0.052 0.845
GBM 0.025 0.031 0.040 0.910 0.120 0.059 0.134 0.495 0.008 0.037 0.038 0.935
Oracle -0.001 0.019 0.019 0.980 0.000 0.022 0.022 0.920 -0.001 0.023 0.023 0.930

E Additional information on synthetic experiments

In all the synthetic experiments, we adopt a 3-fold cross-validation to choose the hyperparameters of DNN, RF and
GBM over a grid of candidate values. For DNN, we fix the batch-size as 100, and choose depth L from 1 to 3, width
K from 10 to 500, L1-regularization parameter λ from 0 to 0.4, and epochs from 100 to 500. For RF, we choose the
number of trees from 1 to 20, and maximum number of nodes from 10 to 1000. For GBM, we choose the number
of trees from 1 to 20, and depth from 10 to 1000. The other hyperparameters are set to the default values in the R
packages. As mentioned in the main text, we leave its theoretical justification and other alternative approaches such as
the minimax criterion (Robins et al., 2020; Cui and Tchetgen Tchetgen, 2019) or CTMLE (van der Laan and Gruber
(2010); also see Chapter 2 of Liu (2018)) to future works.

Case 4 (Hölder functions): we repeat the simulation in Case 3 but set α = 0.6 to further decrease the smoothness of the
Hölder functions. In particular, α = 0.6 is close to the limit (α = 0.5 + ϵ for arbitrarily small ϵ > 0) for DeepMed
estimators to be semiparametric efficient based on Theorem 6. Thus we can examine whether surpassing this limit for
nuisance function estimates computed by ERM (6) without considering the DNN training process actually translates to
practical success of DeepMed. Unfortunately, the results in Table A9 show otherwise. In general, DeepMed still has
superior performance than the other competing methods for p = 5, 20, 100. However, even at p = 5, the biases of the
DeepMed estimators are close to their standard errors. As a result, their CPs undercover the true causal parameters
(though the CP is not very far from 95%). However, based on Lemma 5, one should be able to estimate all the nuisance
functions at rate O(n−1/4) as α > 0.5 if the nuisance function estimates are solutions to ERM (6), which should in
turn leads to the semiparametric efficiency of DeepMed NDE/NIE estimators and valid inference.

There are several possible explanations for the DeepMed estimators failing to be semiparametric efficient: (1) it
is entirely possible that gradient-based training algorithms such as adam (used in our paper) or SGD could find
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nuisance function estimators from the FNN-ReLU class that are close to the ERM (6) but we just failed to do so in our
implementation; or (2) it is a manifestation of a certain “low-frequency-bias” (Rahaman et al., 2019; Hu et al., 2020;
Xu et al., 2020) of DNNs trained by gradient-based algorithms or the computational hardness of learning DNNs by
gradient-based algorithms (Goel et al., 2020; Chen et al., 2022), which predicts that DNNs trained by off-the-shelf
algorithms bias towards functions with lower complexity. We conjecture that (2) is indeed the reason. It suggests that in
future works, to fully establish the practically relevant statistical guarantees of DNN-based nonparametric regression or
DNN-based causal inference method such as DeepMed, it is important to take the effect of training algorithms into
consideration.

Remark 15. As we have discussed, most established convergence rates of DNNs in the nonparametric statistics
literature do not take the potential implicit regularization effect or bias of the training algorithms into account. In this
remark, we suggest several possible directions to explore in future works. The so-called Barron space (E et al., 2021)
was recently shown to be a natural function space describing the class of neural network functions trained with SGD. If
the nuisance functions lie in a Barron space, then the rate of convergence is dimension-independent (E et al., 2021;
Chen et al., 2021), which seems to be consistent with the observation that DNNs overcome curse-of-dimensionality
in practice. However, as shown in E et al. (2021), the complexity of Barron functions is extremely small, thus casting
doubt on if the theoretical claim under Barron spaces is “too good to be true” in fields such as biomedical and social
sciences or algorithmic fairness, in which model misspecification bias might have catastrophic consequences. Recent
results (Siegel and Xu, 2021) trying to generalize Barron spaces to model more complex functions might be a useful
direction to consider in problems related to semiparametric causal inference.

Case 5 (composition Hölder functions): In the last setting, we consider composition Hölder functions by composing
η(x;α) ∈ H1(α;B) hierarchically for some constant B > 0 as follows:

d(x) = 0.2η

(
3∑

i=1

xi;α

)
+ 0.2η

(
3∑

i=1

η(xi;α);α

)
,

m(x) = 0.5η

(
3∑

i=1

xi;α

)
+ 0.2η

(
3∑

i=1

η(xi;α);α

)
,

y(x) = 0.2η

(
3∑

i=1

xi;α

)
+ 0.5η

(
3∑

i=1

η(xi;α);α

)
,

where we set α = 1.5. We choose the “depth” of compositions as 2 for simplicity. The nuisance functions a, f, µ in
Case 5 correspond to the composition Hölder functions studied in the seminal work by Schmidt-Hieber (2020). For
such function spaces, Schmidt-Hieber (2020) showed that linear estimators cannot achieve minimax optimal estimation
rate, yet nonlinear DNN-based estimators can. As shown in Table A10, the DeepMed estimators do exhibit superior
performance compared with the other competing methods but they are far from being semiparametric efficient. When
α = 1.5, at least based on Schmidt-Hieber (2020), the ERM-based DNN regression estimators should converge to the
true function in L2-norm at a rate faster than n−1/4. Then using Proposition 1, the DeepMed estimators should have
been semiparametric efficient. But as in Table A10, our empirical results suggest otherwise. This is another instance
that suggests the necessity of developing more refined theoretical properties of DeepMed.

In results shown previously, adam (Kingma and Ba, 2015) was used to train the DNN weights. Finally, in Table A11, we
also display the simulation results when DNN weights were trained by vanilla SGD. Again, as expected, the DeepMed
causal effect estimates with DNN weights trained by SGD are not semiparametric efficient.

Remark 16. DeepMed has the option of estimating nuisance functions by other types of machine learning methods,
such as those mentioned in Section 4. It is important to develop statistical methodology that can help practitioners
decide which method one should use, especially when different methods output qualitatively different results. This is an
important research question to pursue as mediation analysis is often followed with critical decision making; a recent
proposal can be found in Liu et al. (2020).

F A comment on the potential issue of unmeasured confounding in applications related to
algorithmic fairness

Finally, we briefly comment on the potential issue of unmeasured confounding in applications related to algorithmic
fairness. It is definitely possible to have unmeasured treatment-mediator confounding in real data analysis. But
unmeasured treatment-outcome and mediator-outcome confounding may not be huge issues in mediation analysis
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related to algorithmic fairness because in most cases we have access to all the features used to fit the prediction map,
which is the outcome Y in our notation. However, they could be violated when some of the features used to fit the
model are concealed to protect data privacy. We did not consider these issues in the real data application but we admit
that the final results might be biased due to these unmeasured confounding biases. But the same caveat also applies to
most of the other works using mediation analysis in algorithmic fairness.

For fields such as epidemiology or social sciences, more often than not, we do not have the luxury of having access to all
important features for the mediator, exposure, and outcome. Thus in general, it is important to incorporate instrumental
variables (Frölich and Huber, 2017), valid proxies (Dukes et al., 2021) or other identification strategies (Sun and Ye,
2022) into DeepMed to handle unmeasured confounding.

G Real data analysis (continued)

This section is a continuation of Section 5 of the main text.

In this section, we apply DeepMed to a second dataset and study whether gender has direct effect on personal annual
income not mediated by occupation. We use the Adult dataset (https://archive.ics.uci.edu/ml/datasets/adult) from the
1994 Census database in U.S., which includes 48,842 individuals (Kohavi, 1996). We set D = 1 for male and D = 0
for female. Occupation (M ) is a categorical variable containing 14 general types of occupations. The personal annual
income is a binary variable, with Y = 1 (or Y = 0) indicating that an individual makes more (or less) than $50,000
annually. We also include age, race, education level and employment status as covariates. After removing observations
with missing values, the remaining sample size is 45,997.

In this example, since M is multi-dimensional, we utilize the alternative parameterization strategy described in Remark
3 and estimate the propensity scores a(d|x) and a(d|x,m) before and after conditioning on the mediators M , together
with regressing µ̂(x, d,m) against (x, d), all using DNNs. One may be concerned with the potential incoherence
between the posited models for the propensity scores a(d|x,m) and a(d|x) and the joint distribution of the observed
data (X,A,M, Y ). This incoherence could be problematic when parametric models are posited. However, under the
semiparametric framework, it is of secondary concern to correctly model the joint distribution of the observed data,
which is indeed a very difficult problem. More emphasis is put on how well the target causal parameters such as
NDE/NIE are estimated. As long as the nonparametric estimates â(d|x) and â(d|x,m) converge to the true nuisance
functions at sufficiently fast rates, the estimates of the target causal parameters should be sufficiently accurate.

All the methods find significant NDE of gender on personal annual income (see Table A12). This positive NDE
suggests that males tend to have higher income than females, and this cannot be explained by the indirect effect through
occupation. In this dataset, the DeepMed estimators again have smaller validation errors than the other competing
methods, possibly suggesting smaller biases of the corresponding NDE/NIE estimators (see Table A13).
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Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models, volume 40.
Cambridge University Press, 2016.

Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans. Superpolynomial lower bounds
for learning one-layer neural networks using gradient descent. In International Conference on Machine Learning,
pages 3587–3596. PMLR, 2020.

Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the early-time learning
dynamics of neural networks. arXiv preprint arXiv:2006.14599, 2020.

Yuling Jiao, Guohao Shen, Yuanyuan Lin, and Jian Huang. Deep nonparametric regression on approximately low-
dimensional manifolds. arXiv preprint arXiv:2104.06708, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

Ron Kohavi. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, pages 202–207, 1996.

Lin Liu. Contributions to Evolutionary Dynamics and Causal Inference. PhD thesis, 2018.

Lin Liu, Rajarshi Mukherjee, and James M Robins. On nearly assumption-free tests of nominal confidence interval
coverage for causal parameters estimated by machine learning. Statistical Science, 35(3):518–539, 2020.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth functions. SIAM
Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

Rajarshi Mukherjee, Whitney K Newey, and James M Robins. Semiparametric efficient empirical higher order influence
function estimators. arXiv preprint arXiv:1705.07577, 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks. In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019.

James Robins, Lingling Li, Eric Tchetgen Tchetgen, and Aad van der Vaart. Higher order influence functions and
minimax estimation of nonlinear functionals. In Probability and Statistics: Essays in Honor of David A. Freedman,
pages 335–421. Institute of Mathematical Statistics, 2008.

James Robins, Mariela Sued, Quanhong Lei-Gomez, and Andrea Rotnitzky. Double-robust and efficient methods for
estimating the causal effects of a binary treatment. arXiv preprint arXiv:2008.00507, 2020.

22



James M Robins, Thomas S Richardson, and Ilya Shpitser. An interventionist approach to mediation analysis. In
Probabilistic and Causal Inference: The Works of Judea Pearl, pages 713–764. ACM, 2022.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU activation function. Annals
of Statistics, 48(4):1875–1897, 2020.

Jonathan W Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow
neural networks. arXiv preprint arXiv:2101.12365, 2021.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The Annals of Statistics, 10(4):
1040–1053, 1982.

BaoLuo Sun and Ting Ye. Semiparametric causal mediation analysis with unmeasured mediator-outcome confounding.
Statistica Sinica, 2022.

Taiji Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate
and curse of dimensionality. In International Conference on Learning Representations, 2019.

Hans Triebel. Theory of Function Spaces. Modern Birkhäuser Classics. Springer Basel, 2010.
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Table A2: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the total effects, NDE
and NIE, and the coverage probabilities (CP) of their corresponding 95% confidence intervals. There exist irrelevant
covariates in this setup (p = 100). The simulation is based on 200 replicates.

Input-layer L1 regularization No regularization
Bias SE RMSE CP Bias SE RMSE CP

Case 1 τtot 0.008 0.046 0.047 0.955 0.155 0.086 0.177 0.540
τNDE(1) 0.009 0.043 0.044 0.920 0.061 0.044 0.075 0.745
τNDE(0) 0.006 0.040 0.040 0.920 0.002 0.049 0.049 0.920
τNIE(1) 0.002 0.050 0.050 0.930 0.152 0.090 0.177 0.550
τNIE(0) -0.001 0.044 0.044 0.945 0.094 0.081 0.124 0.800

Case 2 τtot -0.018 0.033 0.038 0.895 -0.033 0.035 0.048 0.875
τNDE(1) -0.025 0.036 0.044 0.855 -0.266 0.045 0.270 0.000
τNDE(0) -0.018 0.036 0.040 0.855 -0.306 0.051 0.310 0.000
τNIE(1) 0.000 0.036 0.036 0.950 0.273 0.060 0.280 0.000
τNIE(0) 0.007 0.037 0.038 0.920 0.233 0.055 0.239 0.005

Case 3 τtot 0.019 0.043 0.047 0.915 0.224 0.055 0.231 0.015
τNDE(1) 0.013 0.035 0.037 0.920 0.075 0.051 0.091 0.600
τNDE(0) 0.016 0.033 0.037 0.925 0.089 0.054 0.104 0.515
τNIE(1) 0.003 0.038 0.038 0.940 0.135 0.064 0.149 0.340
τNIE(0) 0.006 0.036 0.036 0.960 0.149 0.051 0.157 0.155

Table A3: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the estimated total
effects, NDE, and NIE, and the coverage probabilities (CP) of their corresponding 95% confidence intervals. There
exist irrelevant covariates in this setup (p = 20). The simulation is based on 200 replicates.

Case 1 Case 2 Case 3
Method Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

τtot DeepMed 0.001 0.041 0.041 0.950 -0.019 0.030 0.036 0.920 0.010 0.036 0.037 0.945
Lasso 0.191 0.091 0.212 0.510 -0.318 0.108 0.336 0.155 0.334 0.077 0.343 0.010

RF 0.035 0.049 0.060 0.955 -0.187 0.076 0.202 0.475 0.100 0.052 0.113 0.545
GBM -0.020 0.039 0.044 0.910 -0.139 0.063 0.153 0.445 0.050 0.050 0.071 0.800
Oracle -0.002 0.032 0.032 0.925 -0.003 0.029 0.029 0.925 -0.003 0.030 0.030 0.950

τNDE(1) DeepMed 0.001 0.033 0.033 0.915 -0.021 0.026 0.033 0.875 0.003 0.028 0.028 0.955
Lasso 0.129 0.048 0.138 0.205 -0.378 0.060 0.383 0.000 0.216 0.062 0.225 0.065

RF 0.033 0.037 0.050 0.890 -0.213 0.043 0.217 0.000 0.088 0.047 0.100 0.545
GBM -0.054 0.036 0.065 0.675 -0.228 0.049 0.233 0.005 0.038 0.049 0.062 0.905
Oracle -0.002 0.023 0.023 0.925 -0.002 0.020 0.020 0.985 -0.002 0.020 0.020 0.970

τNDE(0) DeepMed 0.010 0.037 0.038 0.900 -0.019 0.028 0.034 0.890 -0.001 0.029 0.029 0.945
Lasso 0.133 0.048 0.141 0.185 -0.376 0.060 0.381 0.000 0.216 0.064 0.225 0.075

RF 0.007 0.038 0.039 0.955 -0.212 0.044 0.217 0.000 0.081 0.046 0.093 0.605
GBM -0.054 0.038 0.066 0.675 -0.233 0.051 0.239 0.000 0.044 0.051 0.067 0.860
Oracle -0.002 0.023 0.023 0.930 -0.002 0.019 0.019 0.985 -0.002 0.020 0.020 0.960

τNIE(1) DeepMed -0.009 0.032 0.033 0.915 0.000 0.028 0.028 0.955 0.011 0.035 0.037 0.885
Lasso 0.059 0.078 0.098 0.890 0.058 0.093 0.110 0.920 0.118 0.042 0.125 0.270

RF 0.028 0.040 0.049 0.965 0.025 0.079 0.083 0.965 0.019 0.033 0.038 0.895
GBM 0.034 0.035 0.049 0.870 0.093 0.075 0.119 0.755 0.006 0.041 0.041 0.925
Oracle 0.000 0.021 0.021 0.950 0.000 0.021 0.021 0.930 0.000 0.023 0.023 0.935

τNIE(0) DeepMed 0.002 0.037 0.037 0.915 0.002 0.027 0.027 0.940 0.008 0.031 0.032 0.935
Lasso 0.062 0.079 0.100 0.870 0.060 0.094 0.112 0.915 0.119 0.042 0.126 0.220

RF 0.002 0.039 0.039 0.980 0.025 0.078 0.082 0.965 0.012 0.032 0.034 0.920
GBM 0.033 0.035 0.048 0.855 0.088 0.075 0.116 0.795 0.012 0.040 0.042 0.935
Oracle 0.000 0.021 0.021 0.940 0.000 0.022 0.022 0.920 -0.001 0.023 0.023 0.925
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Table A4: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the estimated total
effects, NDE, and NIE, and the coverage probabilities (CP) of their corresponding 95% confidence intervals. There
exist irrelevant covariates in this setup (p = 100). The simulation is based on 200 replicates.

Case 1 Case 2 Case 3
Method Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

τtot DeepMed 0.008 0.046 0.047 0.955 -0.018 0.033 0.038 0.895 0.019 0.043 0.047 0.915
Lasso 0.195 0.093 0.216 0.440 -0.306 0.107 0.324 0.185 0.337 0.079 0.346 0.015

RF 0.187 0.052 0.194 0.095 -0.205 0.095 0.226 0.560 0.206 0.057 0.214 0.040
GBM -0.016 0.035 0.038 0.965 -0.155 0.072 0.171 0.440 0.082 0.053 0.098 0.620
Oracle 0.000 0.030 0.030 0.945 0.000 0.030 0.030 0.960 0.001 0.031 0.031 0.935

τNDE(1) DeepMed 0.009 0.043 0.044 0.920 -0.025 0.036 0.044 0.855 0.013 0.035 0.037 0.920
Lasso 0.129 0.050 0.138 0.275 -0.369 0.055 0.373 0.000 0.215 0.067 0.225 0.095

RF 0.104 0.040 0.111 0.305 -0.216 0.048 0.221 0.000 0.155 0.054 0.164 0.150
GBM -0.022 0.038 0.044 0.925 -0.235 0.055 0.241 0.010 0.051 0.056 0.076 0.790
Oracle 0.001 0.022 0.022 0.950 0.000 0.021 0.021 0.935 0.002 0.022 0.022 0.930

τNDE(0) DeepMed 0.006 0.040 0.040 0.920 -0.018 0.036 0.040 0.855 0.016 0.033 0.037 0.925
Lasso 0.132 0.050 0.141 0.270 -0.368 0.056 0.372 0.000 0.215 0.067 0.225 0.085

RF 0.063 0.038 0.074 0.690 -0.213 0.047 0.218 0.005 0.139 0.056 0.150 0.255
GBM -0.032 0.037 0.049 0.870 -0.241 0.054 0.247 0.005 0.059 0.057 0.082 0.765
Oracle 0.001 0.022 0.022 0.940 0.000 0.021 0.021 0.935 0.002 0.022 0.022 0.940

τNIE(1) DeepMed 0.002 0.050 0.050 0.930 0.000 0.036 0.036 0.950 0.003 0.038 0.038 0.940
Lasso 0.063 0.080 0.102 0.885 0.062 0.089 0.108 0.915 0.122 0.044 0.130 0.200

RF 0.124 0.050 0.134 0.335 0.008 0.099 0.099 0.945 0.068 0.036 0.077 0.395
GBM 0.016 0.040 0.043 0.905 0.086 0.084 0.120 0.835 0.023 0.036 0.043 0.905
Oracle -0.001 0.021 0.021 0.930 0.000 0.021 0.021 0.950 -0.001 0.021 0.021 0.950

τNIE(0) DeepMed -0.001 0.044 0.044 0.945 0.007 0.037 0.038 0.920 0.006 0.036 0.036 0.960
Lasso 0.066 0.081 0.104 0.870 0.063 0.090 0.110 0.915 0.123 0.044 0.131 0.215

RF 0.084 0.047 0.096 0.645 0.011 0.098 0.099 0.945 0.051 0.034 0.061 0.615
GBM 0.007 0.038 0.039 0.940 0.080 0.082 0.115 0.845 0.031 0.034 0.046 0.890
Oracle -0.001 0.021 0.021 0.935 0.000 0.021 0.021 0.935 -0.001 0.021 0.021 0.960

Table A5: The validation loss of the nuisance functions. The cross-entropy loss is used for fitting a(d|x,m) and a(d|x),
and mean squared loss is used for fitting the other nuisance functions. There exist no irrelevant covariates in this setup.

a(1|x,m) a(1|x) µ(x, 1,m) E0(µ1)
∗ µ(x, 1) µ(x, 0,m) E1(µ0)

∗ µ(x, 0)

Case 1 DeepMed 0.646 0.647 1.151 1.353 2.290 1.172 1.275 2.304
Lasso 0.660 0.660 5.677 14.889 20.725 5.634 15.099 20.705

RF 0.662 0.664 3.284 6.322 6.189 3.777 5.618 6.909
GBM 0.651 0.651 2.344 3.003 3.290 2.383 2.819 3.370
Oracle 0.639 0.642 1.057 1.031 2.100 1.063 1.033 2.108

Case 2 DeepMed 0.680 0.681 1.309 1.434 2.318 1.305 1.213 2.311
Lasso 0.694 0.694 8.285 23.037 31.239 8.275 23.117 31.278

RF 0.694 0.697 5.046 19.915 16.393 4.924 19.291 16.568
GBM 0.688 0.689 4.587 11.961 8.089 4.441 11.592 7.918
Oracle 0.670 0.676 1.055 1.037 2.109 1.061 1.039 2.116

Case 3 DeepMed 0.647 0.649 1.35 1.388 2.572 1.376 1.36 2.568
Lasso 0.662 0.664 9.31 4.612 13.935 8.945 4.584 13.35

RF 0.657 0.664 4.966 2.728 5.388 5.101 2.647 5.425
GBM 0.648 0.649 4.087 3.136 4.162 4.131 2.946 4.172
Oracle 0.637 0.643 1.031 1.019 2.11 1.033 1.02 2.111

∗E0(µ1) = E[µ(X,D = 1,M)|X,D = 0] and E1(µ0) = E[µ(X,D = 0,M)|X,D = 1].
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Table A6: The validation loss of the nuisance functions. The cross-entropy loss is used for fitting a(d|x,m) and a(d|x),
and mean squared loss is used for fitting the other nuisance functions. There exist irrelevant covariates in this setup
(p = 20).

a(1|x,m) a(1|x) µ(x, 1,m) E0(µ1)
∗ µ(1, x) µ(x, 0,m) E1(µ0)

∗ µ(0, x)

Case 1 DeepMed 0.657 0.659 1.316 2.943 3.241 1.454 2.709 3.319
Lasso 0.666 0.667 5.583 14.84 20.663 5.541 15.25 20.65

RF 0.662 0.661 4.449 8.407 8.078 4.958 7.619 8.628
GBM 0.657 0.658 2.987 3.24 3.976 3.11 3.265 3.992
Oracle 0.64 0.645 1.014 1.019 2.097 1.009 1.02 2.087

Case 2 DeepMed 0.692 0.691 1.42 1.822 2.432 1.543 1.793 2.533
Lasso 0.694 0.694 7.98 22.882 31.023 8.003 23.34 30.977

RF 0.692 0.692 5.708 25.493 22.644 5.618 26.092 21.803
GBM 0.693 0.693 5.176 17.787 12.627 5.187 18.722 12.227
Oracle 0.672 0.677 1.014 1.017 2.095 1.01 1.018 2.083

Case 3 DeepMed 0.653 0.652 1.448 2.456 3.214 1.504 2.512 3.172
Lasso 0.655 0.657 9.581 4.161 13.785 8.699 4.663 13.162

RF 0.649 0.651 6.626 2.824 6.42 6.789 2.924 6.591
GBM 0.646 0.647 6.344 3.372 5.14 6.49 3.619 5.426
Oracle 0.635 0.638 1.021 1.034 2.059 1.025 1.037 2.061

∗E0(µ1) = E[µ(X,D = 1,M)|X,D = 0] and E1(µ0) = E[µ(X,D = 0,M)|X,D = 1].

Table A7: The validation loss of the nuisance functions. The cross-entropy loss is used for fitting a(d|x,m) and a(d|x),
and mean squared loss is used for fitting the other nuisance functions. There exist irrelevant covariates in this setup
(p = 100).

a(1|x,m) a(1|x) µ(x, 1,m) E0(µ1)
∗ µ(x, 1) µ(x, 0,m) E1(µ0)

∗ µ(x, 0)

Case 1 DeepMed 0.672 0.672 1.769 4.154 4.071 1.692 4.723 4.138
Lasso 0.667 0.667 5.438 14.828 20.607 5.478 15.592 20.607

RF 0.667 0.668 4.964 9.123 8.836 5.487 8.794 9.530
GBM 0.664 0.663 3.266 3.659 4.112 3.469 3.684 4.147
Oracle 0.648 0.652 1.001 1.025 2.069 1.001 1.027 2.066

Case 2 DeepMed 0.695 0.694 1.81 2.583 2.909 1.926 2.615 2.936
Lasso 0.695 0.695 8.006 22.765 31.272 8.005 23.63 31.239

RF 0.692 0.692 5.708 25.493 22.644 5.618 26.092 21.803
GBM 0.688 0.689 4.587 11.961 8.089 4.441 11.592 7.918
Oracle 0.677 0.68 1.003 1.022 2.067 1.003 1.023 2.065

Case 3 DeepMed 0.679 0.677 2.416 4.563 4.643 2.500 5.098 4.621
Lasso 0.660 0.662 9.784 4.858 14.364 8.523 4.360 13.000

RF 0.661 0.663 8.124 3.102 7.808 7.973 2.970 7.586
GBM 0.653 0.653 7.906 3.320 6.205 7.252 3.101 6.159
Oracle 0.635 0.641 1.011 1.039 2.144 1.014 1.042 2.144

∗E0(µ1) = E[µ(X,D = 1,M)|X,D = 0] and E1(µ0) = E[µ(X,D = 0,M)|X,D = 1].

Table A8: The validation losses of nuisance functions in real data application to the COMPAS algorithm fairness.
DeepMed Lasso RF GBM

a(1|x,m) 0.622 0.626 0.638 0.625
a(1|x) 0.648 0.650 0.699 0.650
µ(x, 1,m) 4.924 5.480 5.436 5.064
E[µ(X,D = 1,M)|X = x,D = 0] 1.636 0.993 0.832 1.579
µ(x, 1) 7.265 7.392 7.393 7.378
µ(x, 0,m) 3.710 4.108 4.266 3.928
E[µ(X,D = 0,M)|X = x,D = 1] 7.582 2.443 0.993 2.012
µ(x, 0) 5.197 5.299 5.414 5.269
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Table A9: Simulation Case 4 (α = 0.6): The biases, empirical standard errors (SE) and root mean squared errors
(RMSE) of the estimated average treatment effects and coverage probabilities (CP) of 95% confidence intervals. The
simulation is based on 200 replicates.

p = 5 p = 20 p = 100
Method Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

τtot DeepMed 0.027 0.047 0.054 0.880 0.035 0.047 0.059 0.880 0.062 0.051 0.080 0.740
Lasso 0.353 0.087 0.364 0.010 0.335 0.082 0.345 0.020 0.343 0.087 0.354 0.020

RF 0.004 0.051 0.051 0.995 0.080 0.058 0.099 0.780 0.202 0.065 0.212 0.095
GBM 0.020 0.050 0.054 0.930 0.055 0.056 0.078 0.830 0.088 0.061 0.107 0.650
Oracle -0.002 0.031 0.031 0.955 -0.003 0.031 0.031 0.950 0.002 0.031 0.031 0.930

τNDE(1) DeepMed 0.004 0.038 0.038 0.925 -0.006 0.041 0.041 0.940 0.003 0.047 0.047 0.945
Lasso 0.227 0.071 0.238 0.095 0.211 0.066 0.221 0.120 0.217 0.073 0.229 0.115

RF 0.022 0.045 0.050 0.980 0.087 0.054 0.102 0.690 0.175 0.060 0.185 0.140
GBM 0.017 0.051 0.054 0.905 0.044 0.057 0.072 0.845 0.073 0.062 0.096 0.750
Oracle 0.000 0.022 0.022 0.965 -0.003 0.022 0.022 0.920 0.002 0.022 0.022 0.940

τNDE(0) DeepMed 0.005 0.034 0.034 0.945 0.005 0.038 0.038 0.960 0.014 0.047 0.049 0.925
Lasso 0.229 0.069 0.239 0.090 0.213 0.066 0.223 0.115 0.217 0.073 0.229 0.125

RF 0.032 0.047 0.057 0.960 0.081 0.051 0.096 0.730 0.158 0.061 0.169 0.210
GBM 0.023 0.050 0.055 0.930 0.049 0.056 0.074 0.865 0.075 0.061 0.097 0.715
Oracle 0.000 0.022 0.022 0.965 -0.003 0.023 0.023 0.925 0.002 0.021 0.021 0.950

τNIE(1) DeepMed 0.021 0.039 0.044 0.865 0.030 0.042 0.052 0.865 0.047 0.044 0.064 0.830
Lasso 0.124 0.051 0.134 0.295 0.123 0.048 0.132 0.280 0.126 0.049 0.135 0.260

RF -0.029 0.040 0.049 0.895 -0.002 0.039 0.039 0.935 0.044 0.038 0.058 0.760
GBM -0.003 0.042 0.042 0.935 0.006 0.045 0.045 0.905 0.013 0.039 0.041 0.935
Oracle -0.002 0.024 0.024 0.940 0.000 0.023 0.023 0.930 -0.001 0.023 0.023 0.950

τNIE(0) DeepMed 0.023 0.040 0.046 0.875 0.041 0.041 0.058 0.815 0.059 0.047 0.075 0.730
Lasso 0.126 0.052 0.136 0.270 0.124 0.048 0.133 0.250 0.126 0.049 0.135 0.250

RF -0.019 0.042 0.046 0.935 -0.007 0.035 0.036 0.955 0.027 0.036 0.045 0.885
GBM 0.004 0.042 0.042 0.920 0.012 0.041 0.043 0.930 0.015 0.039 0.042 0.930
Oracle -0.001 0.024 0.024 0.945 0.000 0.023 0.023 0.925 -0.001 0.023 0.023 0.955
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Table A10: Simulation Case 5: The biases, empirical standard errors (SE) and root mean squared errors (RMSE) of the
estimated average treatment effects and coverage probabilities (CP) of 95% confidence intervals. The simulation is
based on 200 replicates.

Method Bias SE RMSE CP

τtot DeepMed 0.225 0.032 0.227 0.000
Lasso 0.369 0.032 0.370 0.000
RF 0.277 0.035 0.279 0.000
GBM 0.368 0.032 0.369 0.000
Oracle -0.003 0.028 0.028 0.960

τNDE(1) DeepMed 0.040 0.023 0.046 0.570
Lasso 0.113 0.023 0.115 0.005
RF 0.087 0.029 0.092 0.170
GBM 0.114 0.024 0.116 0.005
Oracle -0.001 0.020 0.020 0.965

τNDE(0) DeepMed 0.044 0.023 0.050 0.470
Lasso 0.112 0.023 0.114 0.005
RF 0.083 0.029 0.088 0.200
GBM 0.114 0.024 0.116 0.005
Oracle -0.002 0.020 0.020 0.960

τNIE(1) DeepMed 0.181 0.027 0.183 0.000
Lasso 0.257 0.026 0.258 0.000
RF 0.193 0.033 0.196 0.000
GBM 0.255 0.027 0.256 0.000
Oracle -0.001 0.021 0.021 0.955

τNIE(0) DeepMed 0.184 0.028 0.186 0.000
Lasso 0.256 0.027 0.257 0.000
RF 0.190 0.034 0.193 0.000
GBM 0.255 0.027 0.256 0.000
Oracle -0.002 0.021 0.021 0.940

Table A11: The simulation results under Cases 4-5 for DeepMed with DNN weights trained by SGD. The biases,
empirical standard errors (SE) and root mean squared errors (RMSE) of the estimated average treatment effects and
coverage probabilities (CP) of 95% confidence intervals. The simulation is based on 200 replicates.

Bias SE RMSE CP

Case 4 p = 5 τtot 0.033 0.049 0.059 0.870
τNDE(1) 0.007 0.037 0.038 0.955
τNDE(0) 0.004 0.039 0.039 0.940
τNIE(1) 0.028 0.041 0.050 0.825
τNIE(0) 0.026 0.040 0.048 0.815

p = 20 τtot 0.060 0.050 0.078 0.770
τNDE(1) 0.006 0.045 0.045 0.925
τNDE(0) 0.011 0.044 0.045 0.910
τNIE(1) 0.049 0.043 0.065 0.710
τNIE(0) 0.054 0.048 0.072 0.715

p = 100 τtot 0.073 0.050 0.088 0.655
τNDE(1) 0.026 0.059 0.064 0.835
τNDE(0) 0.027 0.055 0.061 0.865
τNIE(1) 0.046 0.051 0.069 0.775
τNIE(0) 0.047 0.059 0.075 0.745

Case 5 τtot 0.229 0.034 0.232 0.000
τNDE(1) 0.043 0.024 0.049 0.495
τNDE(0) 0.040 0.024 0.047 0.590
τNIE(1) 0.190 0.027 0.192 0.000
τNIE(0) 0.186 0.027 0.188 0.000
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Table A12: Real data application to income fairness. The estimated NDE/NIE of gender (D) on income (Y ) with
occupation (M ) as the mediator.

Method Effect Estimate SE P value

DeepMed τtot 0.155 0.004 < 10−16

τNDE(1) 0.161 0.007 < 10−16

τNDE(0) 0.148 0.004 < 10−16

τNIE(1) 0.007 0.002 0.003
τNIE(0) -0.005 0.005 0.343

Lasso τtot 0.171 0.004 < 10−16

τNDE(1) 0.165 0.006 < 10−16

τNDE(0) 0.155 0.004 < 10−16

τNIE(1) 0.016 0.002 3× 10−11

τNIE(0) 0.006 0.004 0.160
RF τtot 0.092 0.005 < 10−16

τNDE(1) 0.153 0.003 < 10−16

τNDE(0) 0.114 0.006 < 10−16

τNIE(1) -0.022 0.003 5× 10−12

τNIE(0) -0.060 0.003 < 10−16

GBM τtot 0.157 0.004 < 10−16

τNDE(1) 0.152 0.006 < 10−16

τNDE(0) 0.146 0.004 < 10−16

τNIE(1) 0.011 0.002 5× 10−6

τNIE(0) 0.005 0.004 0.247

Table A13: The validation losses of nuisance functions in real data application to income fairness.
DeepMed Lasso RF GBM

a(1|x,m) 0.501 0.516 0.560 0.502
a(1|x) 0.600 0.612 0.631 0.600
µ(x, 1,m) 0.465 0.493 0.681 0.467
E[µ(X,D = 1,M)|X = x,D = 0] 0.010 0.011 0.024 0.007
µ(x, 1) 0.479 0.510 1.040 0.480
µ(x, 0,m) 0.285 0.300 0.478 0.287
E[µ(X,D = 0,M)|X = x,D = 1] 0.003 0.005 0.002 0.002
µ(x, 0) 0.288 0.306 0.711 0.291
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