
A Proofs

Lemma 1. For the mixed imaged opponent policy (IOP) π̃omix(·|s) =
M−1∑
m=0

αmπ̃
o
m(·|s;φm), the total

error satisfies the following inequality:

εtotal ≤
M−1∑
m=0

δm

M−1∑
i=m

αi.

Proof. By the definitions of δm and εm, it is clear that

εm = |V̂m − V | ≤ |V̂m − V̂m−1|+ · · ·+ |V̂1 − V̂0|+ |V̂0 − V |
= δm + · · ·+ δ1 + δ0

Then, we can derive the following inequality,

εtotal =

M−1∑
m=0

αmεm ≤
M−1∑
m=0

αm

m∑
k=0

δk

=

M−1∑
m=0

δm

M−1∑
i=m

αi

Lemma 2. Suppose the value function is Lipschitz continuous on the state space S , K is the Lipschitz
constant, M̂i(s, a)

.
= Γ(s, a, ao; ζ) · π̃oi (ao|s;φi) is the transition distribution given s and a, then∣∣∣V̂i − V̂j∣∣∣ ≤ γK

1− γ
· E
s,a∼π,M̂j

∥∥∥M̂i(s, a)− M̂j(s, a)
∥∥∥ .

Proof. Lemma 2 is a directly cited theorem in [22], and we make some modifications to fit our
context.

Theorem 1. Define the error between the approximated value function of the Bayesian mixing IOP
and the true value function as εtrue

.
=
∣∣∣V̂ − V ∣∣∣. For the Bayesian mixing IOP, the true error satisfies

the following inequality:

εtrue ≤ εtotal ≤
∑
s,ao

γKd(s, ao)

1− γ
·

M−1∑
m=0

E
s,a∼π,M̂m−1

∥∥∥M̂m − M̂m−1

∥∥∥M−1∑
i=m

π̃oi (ao|s;φi) p(i)

M−1∑
j=0

π̃oj (ao|s;φj) p(j)
.

Proof. It is clear that

εtrue
.
=
∣∣∣V̂ − V ∣∣∣ =

∣∣∣∣∣
M−1∑
m=0

αmV̂m − V

∣∣∣∣∣
≤
M−1∑
m=0

αm

∣∣∣V̂m − V ∣∣∣
=

M−1∑
m=0

αmεm = εtotal

Then, we can derive the following inequality,
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εtrue ≤ εtotal ≤
M−1∑
m=0

δm

M−1∑
i=m

αi =

M−1∑
m=0

δm

M−1∑
i=m

∑
s,ao

d(s, ao)
π̃oi (ao|s;φi) p(i)

M−1∑
j=0

π̃oj (ao|s;φj) p(j)

=
∑
s,ao

d(s, ao)

M−1∑
m=0

δm
M−1∑
i=m

π̃oi (ao|s;φi) p(i)

M−1∑
j=0

π̃oj (ao|s;φj) p(j)

=
∑
s,ao

γKd(s, ao)

1− γ
·

M−1∑
m=0

E
s,a∼π,M̂m−1

∥∥∥M̂m − M̂m−1

∥∥∥M−1∑
i=m

π̃oi (ao|s;φi) p(i)

M−1∑
j=0

π̃oj (ao|s;φj) p(j)
,

where d(s, ao) is the stationary distribution of pairs of state and action of opponent and M̂−1 denotes
P(·|s, a, ao) · πo(ao|s).

Lemma 3. Assume that the true opponent policy πo has a probability distribution over the given set
of IOPs {π̃o0, . . . , π̃oM−1}, and a probability Pr{πo = π̃om} = pm for each π̃om, then the maximum
expectation of ηM can be achieved if and only if αm = pm,∀m ∈ [0,M − 1].

Proof.

E[ηM ] = −E‖(α0π̃
o
0 + · · ·+ αM−1π̃

o
M−1)− π‖

= −
M−1∑
m=0

pm‖(α0π̃
o
0 + · · ·+ αM−1π̃

o
M−1)− π̃om‖

≥ −
M−1∑
m=0

‖αj π̃om − pmπ̃om‖

Since E[ηM ] is a negative distance function, it is clear that

E[ηM ] ≤ 0,

and when αm = pm,∀m ∈ [0,M − 1],

E[ηM ] ≥ −
M−1∑
m=0

‖pmπ̃om − pmπ̃om‖ = 0

Therefore, the maximum expectation of ηM can be achieved if and only if αm = pm,∀m ∈
[0,M − 1].

Theorem 2. Given the action trajectory of opponent {ao0, ao1, . . . , aot}, the posterior probability
updated by Bayesian mixing approximates the true probability of opponent as the length of the
trajectory grows, i.e.,

P (m|aot , · · · , ao1, ao0)→ Ptrue(m), t→∞.

Then the maximum expectation of ηM can be achieved with αm = E[P (m|aot , · · · , ao1, ao0)].

16



Proof. According to Bayes’ theorem, as we update the posterior probability as (7), we have the
following posterior probabilities

p(m|ao0) =
p(ao0|m)p(m)∑M−1
i=0 p(ao0|i)p(i)

p(m|ao1, ao0) =
p(ao1|ao0,m)p(ao0|m)p(m)[∑M−1

i=0 p(ao1|, ao0, i)p(i)
]
·
[∑M−1

i=0 p(ao0|i)p(i)
]

...

p(m|aot , · · · , ao0) =
p(aot |aot−1, · · · , ao0,m) · · · p(ao0|m)p(m)[∑M−1

i=0 p(aot |aot−1, · · · , ao0, i)p(i)
]
· · ·
[∑M−1

i=0 p(ao0|i)p(i)
]

Obviously, with sufficient samples,

P (m|aot , · · · , ao0)→ Ptrue(m)
.
= pm, t→∞.

This can also be expressed as
E[P (m|aot , · · · , ao1, ao0)] = pm

When αm = E[P (m|aot , · · · , ao1, ao0)], we have αm = pm. Considering Lemma 3, the maximum
expectation of ηM is achieved.
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Figure 5: The change of α during the adaptation, colored from red (initial α) to green (end), in
Triangle Game. In each subplot, the top left number is the opponent index, and from left to right are
shown the agent plays against fixed policy, naïve learner, reasoning learner.

In Bayesian mixing, α is the weights to mix IOPs,

α = (α0, . . . , αM−1) = softer-softmax(Ψ0, . . . ,ΨM−1).

Ψt
m of level-m IOP at timestep t is

Ψt
m =

t−1∑
l=t−H

λt−lp(m|aol ),

where λ is the decay factor, H is the horizon, p(m|aot ) can be calculated using (7). Moreover, p(m)
at timestep t is the moving average of p(m|a) over the horizon H as

p(m) =

t−1∑
l=t−H

p(m|aol )/H.

Figure 5 and 6 depict the change of α (M = 3) during the adaptation when the agent plays against
different test opponents in Triangle Game and One-one-One, respectively. In each subplot, the top
left number is the opponent index, and from left to right are fixed policy, naïve learner, reasoning
learner. The changing trends of α are diverse when against different opponents.

As the level-0 IOP is finetuned during interaction, when playing against fixed policy, α0 should
be large. When playing against reasoning learner, intuitively α1 should be large. However, the
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Figure 6: The change of α during the adaptation, colored from red (initial α) to green (end), in
One-on-One. In each subplot, the top left number is the opponent index, and from left to right are
shown the agent plays against fixed policy, naïve learner, reasoning learner.

naïve learner’s policy is updated only with reward, thus it does not have a counterpart in the IOPs.
As illustrated in Figure 5 and 6, α does not always converge to the corresponding level of IOP
when against fixed policy and reasoning learner. The reason is two-fold. First, as the level-0 IOP
is pre-trained against training opponents that are different from test opponents (will be discussed
in Appendix E), the level-0 IOP can be largely different from the opponent policy. Thus, the small
number of samples obtained during online interaction may not be enough to finetune the level-0
IOP to accurately model the opponent policy. This is referred to as the error of opponent modeling,
Thus, α does not always converge to α0 when testing against fixed policy. Second, due to such
an inaccurate level-0 IOP and the error of the environment model, higher-level IOPs may also be
inaccurate, thus α does not always converge to α1 when testing against reasoning learner. Essentially,
α is a mapping from IOPs reasoned by the agent to the true policy generated by the opponent’s
learning method. When testing against different types of opponents, the mixed IOP according to
α may already be capable to well represent the true opponent policy and capture its update, which
offsets the errors of opponent modeling and environment model and makes MBOM almost intact and
outperform the baselines.
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C Ablation on Hyperparameters
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(a) Triangle Game, versus fixed policy
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(b) Triangle Game, versus naïve learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.3

0.2

0.1

0.0

0.1

sc
or

e

(c) Triangle Game, versus reasoning learner

• k = 1 • k = 2 • k = 3
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(d) One-on-One, versus fixed policy
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(e) One-on-One, versus naïve learner
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(f) One-on-One, versus reasoning learner

• k = 1 • k = 3 • k = 5

Figure 7: Performance against different types of opponents, i.e., fixed policy, naïve learner, and
reasoning learner with different rollout planning horizon k as in (4). The selection of k is a tradeoff
between the error of the environment model error and the estimate accuracy of rollout. The results are
plotted using mean and 95% confidence intervals with five different random seeds (x-axis is opponent
index).
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(a) Triangle Game, versus fixed policy
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(b) Triangle Game, versus naïve learner
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(c) Triangle Game, versus reasoning learner
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(d) One-on-One, versus fixed policy
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(e) One-on-One, versus naïve learner
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(f) One-on-One, versus reasoning learner
• M = 1 • M = 2 • M = 3 • M = 4

Figure 8: Performance against different types of opponents, i.e., fixed policy, naïve learner, and
reasoning learner with different M (number of recursive imagination levels). The results are plotted
using mean and 95% confidence intervals with five different random seeds (x-axis is opponent index).
Higher M improves the representative capability of the opponent model, but also accumulates errors.
Thus, M is a tradeoff between these two. M = 1, 2, 3, 4 are performed in Triangle Game, while
M = 1, 2, 3 are performed in One-on-One. In general, M ≥ 2 performs similarly, which verifies M
is robust. Note that M = 1 is MBOM w/o IOPs.

Figure 7 shows the performance of MBOM with different rollout planning horizon k. The selection of
k is a tradeoff between the environment model error and the accuracy of value estimation. In addition,
the computational complexity of IOPs increases exponentially with k. In a sparse reward environment,
appropriately increasing k makes the algorithm robust. While in a dense reward environment, a
smaller k works well.

Figure 8 shows the performance of MBOM with different recursive imagination levels M . From
our theoretical analysis, we know higher M improves the representation capability of the opponent
model, but also accumulates the model error. As illustrated in Figure 8, except M = 1 (i.e., MBOM
w/o IOPs), M = 2, 3, 4 perform similarly. This indicates that M ≥ 2 is robust. Larger M increases
the representation capability of IOPs, but does not always improve the performance, i.e., the gain is
vanishing when M increases due to the compounding error. Moreover, in practice M also linearly
increases the computational cost, thus in general smaller M are preferred, e.g., 2 or 3.
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D Detailed Results on Predator-Prey
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(a) versus fixed policy
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(b) versus naïve learner
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(c) versus reasoning learner
• Meta-MAPG • Meta-PG • PPO • LOLA-DiCE • MBOM

Figure 9: Performance against different types of opponents, i.e., fixed policy, naïve learner, and
reasoning learner in Predator-Prey, where x-axis is joint opponent index. Smaller touch number
means better performance.

Figure 9 shows the performance when against different types of opponents compared with the
baselines. For each type, there are ten test joint opponent policies. The results show MBOM
substantially outperforms the baselines against reasoning learners. LOLA-DiCE, Meta-PG and
Meta-MAPG underperform PPO when against multiple reasoning learners, indicating their adaptation
may induce a negative effect on the agent performance. The reasons may be as follows. LOLA-DiCE
exploits the opponent model to estimate the learning gradient of opponent policy. However, when
against multiple reasoning learners, the estimated gradient of their joint policy can hardly be accurate
enough to capture the change of their individual policies as each opponent learns conditioned on the
agent’s policy. Meta-PG and Meta-MAPG both update the agent’ policy to accommodate the future
policy of opponent. However, the future joint policy of multiple reasoning opponents is much harder
to anticipate than in single-opponent cases.

E Experiment Settings

(a) Triangle Game (b) One-on-One (c) Coin Game

Figure 10: Illustrations of the scenarios.

The experiment environments are detailed as follows:

Triangle Game. As shown in Figure 10(a), there are two moving players, player 1 and 2, and three
fixed landmarks, L1− L3, in a square field. The landmarks are located at the three vertexes of an
equilateral triangle with a side length 0.6. When the distance between a player and a landmark is less
than 0.15, the agent touches the landmark and has the state T . T1 indicates that the player touches
the landmark L1, and so on. If the player does not touch any landmark, the player state is F . The
payoff matrix of the two players is shown in Table 3, where player 2 has inherent disadvantages
since the optimal solution of player 2 always strictly depends on the state of player 1. When facing
different policies of player 1, player 2 has to adjust its policy to adapt to player 1 for higher reward.
We control player 2 as the agent and take player 1 as the opponent.

One-on-One. As shown in Figure 10(b), there is a goalkeeper and a shooter who controls the ball in
the initial state and could dribble or shoot the ball. At the end of an episode, if the shooter shoots
the ball into the goal, the shooter will get a reward +1, and the goalkeeper will get a reward −1.
Otherwise, the shooter will get a reward−1, and the goalkeeper will get a reward +1. The goalkeeper
could only passively react to the strategies of the shooter and makes policy adaptation when the
shooter strategy changes. We control the goalkeeper as the agent and take the shooter as the opponent.
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Table 3: Payoff matrix of Triangle Game.

Player 2

F T1 T2 T3

Pl
ay

er
1

F 0/ 0 −0.5/ +0.5 −0.5/ +0.5 −0.5/ +0.5

T1 +0.5/ −0.5 +1/ −1 +1/ −1 −1/ +1

T2 +0.5/ −0.5 −1/ +1 +1/ −1 +1/ −1

T3 +0.5/ −0.5 +1/ −1 −1/ +1 +1/ −1

Predator-Prey. We follow the setting in MPE [21]. In each game, the agent plays against three
opponents (predators), and the episode length is 200 timesteps.

Coin Game. As shown in Figure 10(c), there are two players, red and blue, moving on a 3× 3 grid
field, and two types of coins, red and blue, randomly generated on the grid field. If the player moves
to the position of the coin, the player collects the coin and receives a reward of +1. However, if the
color of the collected coin is different from the player’s color, the other player receives a reward of
−2. The length of the game is 150 timesteps.

Preparing opponents. For the two types of opponents, fixed policy and naïve learner, we run
independent PPO [32] algorithm for 10 times. During each run, we store 20 opponent policies in the
training set, 3 opponent policies in the validation set, and 3 opponent policies in the test set. So the
sizes of the training set, validation set, and test set are 200, 30, and 30, respectively. The validation
set is only required by Meta-PG and Meta-MAPG. The reasoning learner learns a model to predict
the action of the agent and a policy conditioned on the predicted action. Since the initial parameters
of the reasoning learner should not be shared with the first two types of opponents, we train additional
30 reasoning learners in the same way aforementioned and add them to the test set.

To increase the diversity of the opponent policy, the method [37] can be adopted, but here we use
some tricks to increase the diversity without incurring too much training cost. For the Triangle Game,
we trained the opponent set with a modified reward, so that we could get the opponent that commuting
between T1 and T2. Other types of opponents, such as hovering around a landmark, commuting
between 2 landmarks, or rotating among 3 landmarks, are obtained in a similar way. For One-on-One,
we set a barrier in front of the goal (invisible, but can block the ball) and only keep a gap so that the
ball can enter the goal. We trained opponents with such gaps in different positions.

Pre-training and Test. In the pre-training phase, all methods are well trained with ν learning
opponents of training set. The data during this phase is collected to fit the environment model and
the level-0 IOP for MBOM. In the test phase, the agent interacts with the opponents in the test set to
evaluate the ability to adapt to various opponents. The test phase lasts for 100 episodes, during which
the environment model is no longer trained and the agent continuously finetunes parameters. Fixed
policy, naïve learner, and reasoning learner use the test set to initialize parameters and continuously
learn by respective learning ways. All methods use the same training set, validation set, and test set.
There are enough opponents with different policies for testing to ensure that experimental results are
unbiased.

The hyperparameters of MBOM are summarized in Table 4.

The code is available at https://github.com/PKU-RL/MBOM.
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Table 4: Hyperparameters
Triangle Game One-on-One Predator-prey Coin Game

PPO

policy hidden units MLP[64,32] LSTM[64,32] MLP[64,32] MLP[64,32]
value hidden units MLP[64,32] MLP[64,32] MLP[64,32] MLP[64,32]
activation function ReLU ReLU ReLU ReLU
optimizer Adam Adam Adam Adam
learning rate 0.001 0.001 0.001 0.001
num. of updates 10 10 10 10
value discount factor 0.99 0.99 0.99 0
GAE parameter 0.99 0.99 0.99 0
clip parameter 0.115 0.115 0.115 0.115

Opponent model

hidden units MLP[64,32] MLP[64,32] MLP[64,32] MLP[64,32]
learning rate 0.001 0.001 0.001 0.001
batch size 64 64 64 64
num. of updates 10 10 10 10

IOPs

num. of levels M 3 3 2 2
learning rate 0.005 0.005 0.005 0.005
update times 3 3 3 3
rollout horizon 2 5 1 1
decayed factor of Ψ 0.9 0.9 0.9 0.9
horizon of Ψ 10 10 10 10
s-softmax parameter 1 1.1/e 1 1
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