
A Cheeger Constant

Our empirical convergence rate analysis for the proof of Theorem 1 relies on controlling the Cheeger
(isoperimetric) constant of the projected distributions. This section collects basic definitions and facts
about Cheeger constants.

For µ ∈ P(Rd), define the boundary measure of a Borel subset A ⊂ Rd as

µ+(∂A) := lim inf
ϵ↓0

µ(Aϵ)− µ(A)

ϵ
,

where Aϵ = {x ∈ Rd : d(x,A) ≤ ϵ} is the ϵ-blowup of A, with d(x,A) := inf{∥x− y∥ : y ∈ A}.
The Cheeger constant h(µ) of µ is defined as

h(µ) := inf
A⊂Rd

µ+(∂A)

min{µ(A), µ(Ac)}
,

which serves as a measure of bottleneckedness for µ. Indeed, a small h(µ) indicates the existence
of a measurable A ⊂ Rd whose boundary measure is much smaller than the measure of A and Ac
themselves. If µ has density f , then we also write h(f) = h(µ).

If d = 1 and µ has density f with distribution function F , then the Cheeger constant admits the
simplified expression [7, Theorem 1.3]

h(µ) = essinfx∈R
f(x)

min{F (x), 1− F (x)}
.

Furthermore, if F is strictly increasing around x, then for t = F (x), we have

f(x)

min{F (x), 1− F (x)}
=

f(F−1(t))

min{t, 1− t}

The numerator on the right-hand side (RHS) is denoted by I(t) := f(F−1(t)); lower bounding this
function plays a key role in our empirical convergence rate analysis. The main observation in that
regard is that if f is log-concave in d = 1, then {x : 0 < F (x) < 1} is an interval and f is positive
on the interval, which implies I(t) ≥ h(f)min{t, 1− t} for t ∈ (0, 1).

Consequently, lower bounding I(t) reduces to controlling h(f) from below. In general, it is known
from [26] that if f is a log-concave density on Rd with covariance matrix Σ, then there exists a
constant cd > 0 that depends only on d such that

h(f) ≥ cd

∥Σ∥1/2op

. (3)

The KLS conjecture [26, 33] states that cd can be chosen to be independent of d. The best available
result up to date is due to [13], which shows that cd = 1/dod(1) as d→ ∞.

The proof of the concentration inequalities in Proposition 7 below requires another property of
log-concave distributions, namely the fact that they satisfy Poincaré inequalities. A probability
measure µ ∈ P(Rd) is said to satisfy a Poincaré inequality with constant Mµ > 0 if

Varµ(f) ≤MµE[∥∇f∥2] (4)

for any function f : Rd → R such that both sides of the above display are finite. The Maz’ya-
Cheeger theorem (Theorem 1.1 in [39]) yields that 1/Mµ ≥ h(µ)/2 > 0, so that any (nondegenerate)
log-concave distribution automatically satisfies a Poincaré inequality.

B Concentration Inequalities

We present concentration bounds for the empirical sliced distances as a corollary of Theorem 1. This
result is utilized to provide global guarantees for computing Wp via the LIPO algorithm [36] (cf.
Proposition 8 in Appendix C).
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Proposition 7 (Concentration inequalities). Let 1 ≤ p <∞ and n ≥ 2, and assume that µ ∈ P(Rd)
is log-concave with non-singular covariance matrix Σ. Then, for any t > 0,

P

(
Wp(µ̂n, µ) ≥

(
∥Σ∥op(log n)1{p=2}

)1/2
n1/(2∨p)

+ t

)
≤ 2 exp

(
−Kmin

{
n1/pt, n2/(2∨p)t2

})
,

(5a)

P

(
Wp(µ̂n, µ) ≥ αn,µ + t

)
≤ 2 exp

(
−Kmin

{
n1/pt, n2/(2∨p)t2

})
, (5b)

where K ≲ dod(1) max{∥Σ∥1/2op , ∥Σ∥op} and αn,µ is defined by the RHS of (2b) with k = d.

The proof of Proposition 7 combines the expectation bounds from Theorem 1 with the concentration
inequality for empirical sliced Wasserstein distances from [35, Theorem 3.8]. The latter result holds
under a Poincaré inequality assumption on the population distribution, which is always satisfied for
log-concave measures (cf. [39, Theorem 1.1]), and is hence applicable for our setting.

The proof proceeds by lower bounding the Poincaré constant of µ, and then using a concentration
result with expectation centering in [35] that relies on the Poincaré constant, combined with our
expectation bounds (Theorem 1). By assumption, µ is log-concave with covariance matrix Σµ. This,
in particular, implies that (3) holds, with cd = dod(1) (cf. Theorem 1 in [13]). Combined with the
Maz’ya-Cheeger inequality (Theorem 1.1 in [39]), this gives the following bound for the Poincaré
constant Mµ of µ:

1

Mµ
≥ h(µ)

2
≥ 1

2dod(1)∥Σ∥op
.

Now, by Theorem 3.8 in [35], we have

P
(
|ρ(µ̂n, µ)− E[ρ(µ̂n, µ)]| ≥ t

)
≤ 2 exp

(
−Kmin

{
n1/pt, n2/(2∨p)t2

})
, t > 0,

where ρ = Wp or Wp, and K depends only on Mµ. A careful review of the proof of Theorem 3.8 and
intermediate results in [31] yields that 1/min{2

√
Mµ, 6e

5Mµ} is a valid choice of K in the above
display, so that K ≲ dod(1) max{∥Σ∥1/2op , ∥Σ∥op}. Plugging (2a) and (2b) into the above display
completes the proof.

C Global Guarantees for Max-Sliced Wp Computation via LIPO

We can compute Wp(µ̂n, ν̂n) = maxθ∈Bd Wp(p
θ
♯ µ̂n, p

θ
♯ ν̂n) itself via the LIPO algorithm [36], which

performs global optimization of Lipschitz functions over convex domains based on function eval-
uations. LIPO sequentially chooses the next evaluation point only if it can increase the function
value, based on the Lipschitz condition. Setting ŵp(θ) := Wp

(
pθ♯ µ̂n, p

θ
♯ ν̂n
)

and tuning LIPO to the
(empirical) Lipschitz constant L̂n := supθ∈Sd−1

[
(µ̂n|θ⊺x|p)1/p + (ν̂n|θ⊺x|p)1/p

]
(see Lemma 1),

if Θ1, . . . ,Θt are the t previous evaluation points, the next evaluation will be at Θt+1 provided that

min
1≤i≤t

{
ŵp(Θi) + L̂pn∥Θt+1 −Θi∥

}
≥ max

1≤i≤t
ŵp(Θi).

The output after k steps is max1≤i≤k ŵp(Θi). See [36, Figure 1] for the full pseudo-algorithm. We
have the following global guarantee for the performance of LIPO.
Proposition 8 (LIPO error bound). Let 1 ≤ p <∞ and assume that µ, ν ∈ Pp(Rd) are log-concave
with non-singular covariance matrices Σµ and Σν , respectively. Let Θ1, . . .Θk be a sequence of
points generated by the LIPO for computing maxθ∈Sd−1 ŵp(θ). Then for any t > 0 and n ≥ Cpd

p/2,
we have

P

(∣∣∣Wp(µ, ν)− max
1≤i≤k

ŵp(Θi)
∣∣∣ ≤ 2Lµ,ν

(
log(1/δ)

k

)1/d

+ αn + 2t

)
≥ 1− δ − β − γn(t)

where αn = αn,µ + αn,ν with αn,µ given by the RHS of (2b) with k = d, αn,ν defined analogously,

Lµ,ν = (∥Σµ∥1/2op + ∥Σν∥1/2op )

(
(2p)1/p ∨ 2 +

1

2

)
+ ∥µx∥+ ∥νx∥,
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β = exp(−cp
√
d), and

γn(t) = 2 exp
(
−Kµmin

(
n1/pt, n2/(2∨p)t2

))
+ 2 exp

(
−Kν min

(
n1/pt, n2/(2∨p)t2

))
,

with Kµ ≲ dod(1) max{∥Σµ∥1/2op , ∥Σµ∥op} and Kν ≲ dod(1) max{∥Σν∥1/2op , ∥Σν∥op}.

The proof of Proposition 8 is given in Appendix D.11. The analysis separately bounds the empirical
approximation error of the max-sliced objective and the error due to LIPO. The empirical error
is treated using the concentration inequality from Proposition 7. For the LIPO analysis, we first
argue that the (random) Lipschitz constant L̂pn concentrated about its mean and bound the latter by
the population Lipschitz constant Lpµ,ν . With this deterministic bound, the result follows from [36,
Corollary 13]. Evidently, while Proposition 8 provides a global optimality guarantee, the resulting
rate depends exponentially on dimension, which is too conservative in high-dimensional settings.

D Proofs of Results in the Main Text

Additional notation: We use N(ϵ,F , d) to denote the ϵ-covering number of a function class or set
F with respect to (w.r.t.) a metric d on F , and N[ ](ϵ,F , d) denotes the corresponding bracketing
number.

D.1 Proof of Theorem 1

The proof relies on [8, Theorem 6.6], restated below, that bounds empirical convergence rates for Wp

between distributions on R.

Lemma 2 (Theorem 6.6 in [8]). Fix 1 ≤ p <∞ and n ≥ 2. Let µ ∈ P(R) have log-concave density
f with distribution function F . Set I(t) = f

(
F−1(t)

)
for t ∈ (0, 1), where F−1 is the quantile

function of F . Then,

E
[
Wp
p(µ̂n, µ)

]
≤
(
Cp2

n

)p/2 ∫ n/(n+1)

1/(n+1)

(
t(1− t)

)p/2
Ip(t)

dt, (6)

where C is a universal constant.

We will apply Lemma 2 to Wp(p
θ
♯ µ̂n, p

θ
♯µ) and bound the corresponding I-function from below

uniformly over the projection parameter θ ∈ Sd−1. Recall that the distribution function of pθ♯µ is
denoted by Fµ(·; θ), which we abbreviate as Fθ throughout this proof and denote the corresponding
density by fθ. We first observe that since µ ∈ P(Rd) is log-concave, then so is pθ♯µ for any θ ∈ Sd−1.

Let hθ := h(pθ♯µ) denote the Cheeger constant of the projected distribution. From the discussion
in Appendix A, we know that 1/

(
fθ
(
F−1
θ (t)

))
≥ hθmin{t, 1 − t} for t ∈ (0, 1). Given that, the

proof for the Wp case is relatively straightforward from Lemma 2. Bounding E[Wp(µ̂n, µ)], however,
requires extra work to treat the supremum over θ that appears inside the expectation.

Wp case. Suppose that θ ∈ Sd−1 is such that θ⊺Σθ = 0. Then, pθ♯µ degenerates to a point mass, so
that Wp

p

(
pθ♯ µ̂n, p

θ
♯µ
)
= 0.

Suppose θ⊺Σθ > 0. Then, pθ♯µ is nondegerate log-concave, so it has a log-concave density. Observe
that hθ ≳ 1/(θ⊺Σθ)1/2. If 1 ≤ p < 2, then∫ 1

0

(
t(1− t)

)p/2
tp ∧ (1− t)p

dt <∞,

so that by Lemma 2, we have

E
[
Wp
p

(
pθ♯ µ̂n, p

θ
♯µ
)]

≲

(
θ⊺Σθ

n

)p/2
.
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If 2 ≤ p < ∞, then by Lemma 2, dividing
∫ n/(n+1)

1/(n+1)
into

∫ 1/2

1/(n+1)
+
∫ n/(n+1)

1/2
and using the

symmetry, we have

E
[
Wp
p

(
pθ♯ µ̂n, p

θ
♯µ
)]

≲

(
θ⊺Σθ

n

)p/2 ∫ 1/2

1/(n+1)

t−p/2 dt.

Here ∫ 1/2

1/(n+1)

t−p/2 dt =

{[
log(n+ 1)− log 2

]
p = 2

1
p/2−1

[
(n+ 1)p/2−1 − 2p/2−1

]
p > 2

,

so that

E
[
Wp
p

(
pθ♯ µ̂n, p

θ
♯µ
)]

≲
(θ⊺Σθ)p/2(log n)1{p=2}

n
.

The result follows by noting that θ⊺Σθ ≤ ∥Σ∥op, integrating the display over θ ∈ Sd−1 and applying
Fubini’s theorem.
Remark 11 (Better bound for W2). The above calculation actually yields the slightly better bound

E[W2
2(µ, ν)] ≲

k∥Σ∥op log n
nd

for p = 2 by using the spectral decomposition Σ =
∑k
i=1 λiaia

⊺
i , as follows:∫

Sd−1

θ⊺Σθ dσ(θ) =

k∑
i=1

∫
Sd−1

(a⊺i θ)
2 dσ(θ) =

1

d

k∑
i=1

λi ≤
k∥Σ∥op

d
.

Wp case. We divide the proof into two steps. In Step 1, we will prove the claim of the theorem
when k = d, i.e., Σ is of full rank. In Step 2, we reduce the general case to the d = k case.

Step 1. Assume k = rank(Σ) = d. The main idea is to approximate E
[
Wp(µ̂n, µ)

]
=

E
[
supθ∈Sd−1 Wp

(
pθ♯ µ̂n, p

θ
♯µ
)]

by the maximum expected projected distance (roughly speaking,
switch the expectation and the supremum). To that end we will employ a covering argument of
the unit sphere along with Lipschitz continuity of Wp

(
pθ♯ µ̂n, p

θ
♯µ
)

w.r.t. the samples and θ. These
technical results are collected in the following lemma.
Lemma 3. The following hold:

(i) For any ϵ ∈ (0, 1), we have N(ϵ,Sd−1, ∥ · ∥) ≤ (5/ϵ)d.

(ii) For any γ ∈ Pp(R), the map u 7→ Wp(n
−1
∑n
i=1 δui

, γ) with u = (u1, . . . , un) is
n−1/(2∨p)-Lipschitz. Further, it is partially differentiable a.e. w.r.t. each ui, and its
partial derivative w.r.t. ui is bounded by n−1/p

(iii) The map θ 7→ Wp(p
θ
♯ µ̂n, p

θ
♯µ) is L-Lipschitz with L = (supθ µ̂n|θ⊺x|p)1/p +

(supθ µ|θ⊺x|p)1/p. If µ ∈ P(Rd) is centered and log-concave with non-singular covariance
matrix Σ, then

E[L] ≤ 2p∥Σ∥1/2op

√
d

Proof of Lemma 3. (i) Follows from an elementary volumetric argument, which is omitted for brevity.

(ii) By the triangle inequality and definition of Wp, we have∣∣∣Wp

(
n−1

∑n

i=1
δui
, γ
)
−Wp

(
n−1

∑n

i=1
δu′

i
, γ
)∣∣∣ ≤ (n−1

∑n

i=1
|ui − u′i|p

)1/p
.

To bound the RHS by n−1/(2∨p)∥u− u′∥ we apply Jensen’s inequality when p ≤ 2, and using the
fact that

∑n
i=1 a

p/2
i ≤ (

∑n
i=1 ai)

p/2 when p ≥ 2.

The second statement follows from the fact that when coordinates other than ui are kept fixed, the
RHS of the above display is bounded by ∥ui − u′i∥.
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(iii) A simpler version is proven in [47, Lemma 2], but we include the argument for com-
pleteness. Applying Lemma 1 with ν = µ̂n, we obtain Lipschitz continuity with constant
L :=

(
supθ µ|θ⊺x|p

)1/p
+
(
supθ µ̂n|θ⊺x|p

)1/p ≤ (µ∥x∥p)1/p + (µ̂n∥x∥p)1/p so that E[L] ≤
2(µ∥x∥p)1/p

Since µ is centered and log-concave with covariance matrix Σ, in particular

(µ∥x∥p)1/p ≤ p(E[∥X1∥2])1/2 = p
√
tr(Cov(X1)) ≤ p

√
d∥Σ∥1/2op .

See, for example, Remark 1 after Theorem 3.1 in [1].

We are ready to prove the empirical convergence rate of the max-sliced distance. For the remainder
of the proof we will assume, without loss of generality, that µ has mean 0, since Wp(t

v
♯µ, t

v
♯ ν) =

Wp(µ, ν) for any location shift tv : x 7→ x + v and any probability measures µ and ν, and any
location shifted log-concave distribution is also log-concave with the same covariance matrix. Let
w̃p(θ) = Wp(p

θ
♯ µ̂n, p

θ
♯µ) and observe that

E
[
Wp(µ̂n, µ)

]
≤ sup
θ∈Sd−1

E[w̃p(θ)] + E
[

sup
θ∈Sd−1

(
w̃p(θ)− E

[
w̃p(θ)

])]
.

From the proof for the average-sliced case, we have

sup
θ∈Sd−1

E
[
w̃p(θ)

]
≲p

(
∥Σ∥op(log n)1{p=2}

)1/2
n1/(2∨p)

. (7)

Let θ1, . . . , θNϵ be a minimal ϵ-net of Sd−1, where Nϵ = N(ϵ,Sd−1, ∥ · ∥). Using Lemma 3, we have

E
[

sup
θ∈Sd−1

(
w̃p(θ)− E

[
w̃p(θ)

])]
≤ inf
ϵ>0

E
[

max
1≤j≤Nϵ

(
w̃p(θj)− E

[
w̃p(θj)

])
+ 2ϵL

]
, (8)

where L is a random variable with E[L] ≤ cp∥Σ∥1/2op d1/2.

To control the maximum inside the expectation on the RHS of (8), we use an approach based on
maximal inequalities for sub-exponential random variables, similar to Theorem 3.5 in [35]. Briefly,
we will first show that for each θ, w̃p(θ) is a Lipschitz function of the projected observations
(θ⊺X1, . . . , θ

⊺Xn), with bounded gradient in each coordinate, which will imply sub-exponential
concentration for each w̃p(θ). The term max1≤j≤Nϵ

(
w̃p(θj)− E

[
w̃p(θj)

])
will then be bounded

via a maximal inequality as a direct consequence of this concentration (cf. Exercise 2.8 in [57]).

We will use the following refined concentration inequality for Lipschitz functions of random variables
satisfying a Poincaré inequality, stated in [31]. Since explicit constants are not derived there, a proof
is provided in Appendix D.3,

Lemma 4 (Concentration from Poincaré inequality; Corollary 4.6 in [31]). Let µ ∈ P(Rd) satisfy the
Poincaré inequality (4) with constant Mµ and f : Rnd → R be α-Lipschitz. For x1, . . . , xn ∈ Rd,
define the functions

fi(·|x1, . . . , xi−1, xi+1, . . . , xn) := f(x1, . . . , xi−1, ·, xi+1, . . . , xn), i = 1, . . . , n,

and assume that max1≤i≤n supx∈Rd ∥∇fi(x|X1, . . . , Xi−1, Xi+1, . . . , Xn)
∥∥ ≤ β a.s. Then,

µ⊗n(f ≥ µ⊗nf + t) ≤ exp

(
−min

{
t

2βM
1/2
µ

,
t2

6e5α2Mµ

})
, t > 0.

The random vector (θ⊺X1, . . . , θ
⊺Xn) in Rn has i.i.d. coordinates with law (pθ♯µ)

⊗n. The dis-
tribution pθ♯µ is log-concave with variance θ⊺Σθ > 0, which is bounded above by ∥Σ∥op. This
yields that hθ := h(pθ♯µ) ≳ ∥Σ∥−1

op for each θ ∈ Sd−1. By item (ii) in Lemma 3, the partial deriva-
tives of w̃p(θ) w.r.t. θ⊺Xi, denoted ∇iw̃p(θ), satisfy maxi ∥∇iw̃p(θ)∥ ≤ n−1/p a.s., and w̃p(θ) is
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n−1/(2∨p)-Lipschitz in (θ⊺X1, . . . , θ
⊺Xn). By the Maz’ya-Cheeger Theorem (cf. Theorem 1.1 in

[39]), M−1
pθ
♯µ

≥ hθ/2 ≥ ∥Σµ∥−1
op /2. Combining these facts and applying Lemma 4, we have

P
(
w̃p(θ)− E[w̃p(θ)] > t

)
≤ exp

(
−min

(
t

√
2n−1/p∥Σ∥1/2op

,
t2

3e5n−2/(2∨p)∥Σ∥op

))

≤ exp

(
− t2

√
2n−1/p∥Σ∥1/2op t+ 3e5n−2/(2∨p)∥Σ∥op

)
, t > 0.

A simple union bound then gives

P
(

max
1≤j≤Nϵ

(
w̃p(θj)−E

[
w̃p(θj)

])
> t
)
≤ Nϵ exp

(
− t2
√
2n−1/p∥Σ∥1/2op t+ 3e5n−2/(2∨p)∥Σ∥op

)
,

which, by an expectation bound for sub-exponential random variables (cf. Exercise 2.8 in [57]),
yields

E
[

max
1≤j≤Nϵ

(
w̃p(θj)− E

[
w̃p(θj)

])]
≤
√
6e5n−2/(2∨p)∥Σ∥op(

√
π +

√
logNϵ) + 2

√
2n−1/p∥Σ∥1/2op (1 + logNϵ)

≲ ∥Σ∥1/2op n
−1/(2∨p)(1 +

√
logNϵ) + ∥Σ∥1/2op n

−1/p(1 + logNϵ). (9)

By Lemma 3 (i), logNϵ ≤ d log(5/ϵ). Thus, setting ϵ = n−1/2 and plugging (9) into (8), we have

E
[
Wp(µ̂n, µ)

]
≲p ∥Σ∥1/2op

(
(log n)1{p=2}

n1/(2∨p)
+

(1 +
√
d log n)

n1/(2∨p)
+

(1 + d log n)

n1/p
+
d1/2

n1/2

)
.

The last term on the RHS of the above display is of smaller order in n and d than the other two terms.
Further, for n ≥ 2, we have (1 +

√
d log n) ≲

√
d log n and (1 + d log n) ≲ d log n. This leads to

the bound stated in Theorem 1 when k = d.

Step 2. Suppose now that 1 ≤ k < d. Again assume without loss of generality that the mean of µ
is zero. Observe that Wp is invariant under common orthogonal transformations, i.e., for any d× d

orthogonal matrix Q, Wp(Q♯µ,Q♯ν) = Wp(µ, ν). With this in mind, we see that we may assume
without loss of generality that Σ is diagonal whose first k diagonal entries are nonzero. Then, for
X = (X1, . . . , Xd)

⊺ ∼ µ and θ = (θ1, . . . , θd)⊺ ∈ Sd−1, θ⊺X =
∑k
j=1 θ

jXj a.s. Thus, we have

sup
θ∈Sd−1

Wp(p
θ
♯ µ̂n, p

θ
♯µ) = sup

θ=(θ1,...,θd)⊺∈Sd−1

θk+1=···=θd=0

Wp(p
θ
♯ µ̂n, p

θ
♯µ) a.s.

The bound stated in Theorem 1 follows by the argument in Step 1 with d replaced by k.

D.2 Proof of Proposition 1

Upper bound for Wp
p. Let Fµ(t, θ) = P(θ⊺X ≤ t) for X ∼ µ, and analogously define Fν(t, θ).

Then,

E
[∣∣Wp

p(µ̂n, ν̂n)−Wp
p(µ, ν)

∣∣] ≤ E
[∫

Sd−1

∣∣∣Wp
p(p

θ
♯ µ̂n, p

θ
♯ ν̂n)−Wp

p(p
θ
♯µ, p

θ
♯ν)
∣∣∣ dσ(θ)]

≤ Cp,R E
[∫

Sd−1

(
W1(p

θ
♯ µ̂n, p

θ
♯µ) +W1(p

θ
♯ ν̂n, p

θ
♯ν)
)
dσ(θ)

]
≤ Cp,R√

n

(∫
Sd−1

∫ ∞

−∞

√
Fµ(t, θ)(1− Fµ(t, θ)) dt dσ(θ)

+

∫
Sd−1

∫ ∞

−∞

√
Fν(t, θ)(1− Fν(t, θ)) dt dσ(θ)

)
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≤ RCp,R√
n

,

where the second inequality follows from a comparison between Wp and W1 for compactly supported
distributions (Lemma 4 in [21]), the third from the integral representation of W1, and the final
inequality from truncating the inner integrals to [−R,R] and observing that p(1 − p) ≤ 1/4 for
p ∈ [0, 1].

Upper bound for W
p

p. As earlier, observe that

E
[∣∣Wp

p(µ̂n, ν̂n)−W
p

p(µ, ν)
∣∣] ≤ E

[
sup

θ∈Sd−1

∣∣∣Wp
p(p

θ
♯ µ̂n, p

θ
♯ ν̂n)−Wp

p(p
θ
♯µ, p

θ
♯ν)
∣∣∣]

≤ Cp,R E
[

sup
θ∈Sd−1

(
W1(p

θ
♯ µ̂n, p

θ
♯µ) +W1(p

θ
♯ ν̂n, p

θ
♯ν)
)]

≤ Cp,R

(
E
[

sup
θ∈Sd−1

W1(p
θ
♯ µ̂n, p

θ
♯µ)

]
+E
[

sup
θ∈Sd−1

W1(p
θ
♯ ν̂n, p

θ
♯ν)

])
.

Now, E
[
supθ∈Sd−1 W1(p

θ
♯ µ̂n, p

θ
♯µ)
]

admits the following dual representation via KR duality:

E
[

sup
θ∈Sd−1

W1(p
θ
♯ µ̂n, p

θ
♯µ)

]
= E

[
sup

f∈Lip1,0(R), θ∈Sd−1

(µ̂n − µ)(f ◦ pθ)

]
, (10)

where Lip1,0(R) = {f : R → R : |f(x)− f(y)| ≤ |x− y| ∀x, y ∈ R, f(0) = 0}. By Lemma 8 in
[21], the function class G = {f ◦ pθ : θ ∈ Sd−1, f ∈ Lip1,0(R)} is µ-Donsker, and we have

logN[ ](ϵ,G, L2(µ)) ≲ R5/3ϵ−3/2 + 5d log(R/ϵ),

which, by the global maximal inequality (Theorem 2.14.2 in [56]), gives,

E

[
sup

f∈Lip1,0(R), θ∈Sd−1

(µ̂n − µ)(f ◦ pθ)

]
≲
R5/4 + d logR√

n
. (11)

Combining this with (10), and repeating the same argument for ν, we have the second statement.

The final statement of the theorem on Wp and Wp follows from the first two upper bounds combined
with the elementary inequality |a− b| ≤ b1−p|ap − bp| for a ≥ 0, b > 0, p ≥ 1.

D.3 Proof of Lemma 4

The proof of this lemma essentially recovers constants in Corollary 4.6 in [31], but a full argument is
included for completeness. With some abuse of notation, let ∥∇f∥∞ = supx ∥∇f(x)∥. By Theorem
4.5 in [31], for any λ-Lipschitz function f with λ ≤ 2/

√
Mµ, we have

Entµ(e
f ) ≤ B(λ)E

[
∥∇f∥2∞ef

]
, (12)

where Entµ(f) := E[f log f ] is the entropy functional of f , and

B(λ) ≤ Mµ

2

(
2 + λ

√
Mµ

2− λ
√
Mµ

)
e
√

5Mµλ.

Each function fi in the statement of the proposition is β-Lipschitz. From (12) together with the
tensorization property of the entropy functional (cf. Proposition 2.2 in [31]), we obtain

Entµ⊗n

(
λf

β

)
≤ λ2

β2

n∑
i=1

E
[
Entµ

(
λfi
β

)]
≤ λ2B(λ)

β2

n∑
i=1

E
[
∥∇fi∥2∞ef

]
, ∀λ ∈

(
0, 2/

√
Mµ

]
.

Further, we have B(λ) ≤ 3e5Mµ

2 for λ ≤ 1/
√
Mµ and

∑n
i=1 ∥∇fi∥2∞ ≤ β µ⊗n-a.e. by assumption.

Therefore

Entµ⊗n

(
λf

β

)
≤ 3e5Mµα

2

2β2
λ2E

[
e

λf
β

]
, ∀λ ∈

(
0, 1/

√
Mµ

]
.
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By Corollary 2.11 in [31], this yields

µ⊗n
(
f

β
> µ

(
f

β

)
+ r

)
≤ exp

(
−min

{
r

2
√
Mµ

,
r2β2

6Mµe5α2

})
, r > 0,

from which the result follows by replacing r with r/β.

D.4 Proof of Theorem 2

Denoting by ∧ the setwise minimum of two measures, we first recall some useful facts. Throughout
we write Θ ∼ Unif(Sd−1) for a random direction on the sphere sampled independently of any other
randomness.

Fact 1. For µ, ν ∈ P(Rd) and p ≥ 1, we have Wp(µ, ν) ≤ Wp(µ− µ ∧ ν, ν − µ ∧ ν).

This follows by infimizing over transport plans which leave the shared mass µ ∧ ν unmoved.

Fact 2. For µ, ν ∈ P(Rd), p ≥ 1, and c ≥ 0, we have Wp(cµ, cν) = c1/pWp(µ, ν).

It is easy to check that these properties extend to Wp and Wp. We also employ the following.

Lemma 5. Fixing p ≥ 1 and µ = Unif(Sd−1), we have

(µ|x1|p)1/p ≍
√
1 ∧ p/d.

Lemma 6. Fixing p ≥ 1 and µ ∈ Pp(Rd), we have

µ(∥x∥p)1/p = Wp(µ, δ0) ≍
√
1 ∨ d/p Wp(µ, δ0).

We defer proofs of the previous lemmas to Appendix D.4.4. In what follows, we will refer to any
D : P(Rd)2 → [0,∞] as a statistical distance, specifying additional properties as needed. Our risk
bounds use the following standard lemma (see e.g. [20]), with a proof provided for completeness.

Lemma 7. For any statistical distance D, corruption fraction ϵ ∈ [0, 1], and clean family G ⊆ P(Rd),
define the modulus of continuity

m(D,G, ϵ) = sup
µ,ν∈G

∥µ−ν∥TV≤ϵ

D(µ, ν). (13)

We then have
1

2
m(D,G, ϵ) ≤ R(D,G, ϵ) ≤ m(D,G, 2ϵ).

Proof. For the lower bound, take any µ, ν feasible for (13). Then, if the statistician observes ϵ-
contaminated measure κ̃ = µ, the clean measure could potentially be either κ = µ or κ = ν.
Hence any estimate T (κ̃) for the clean measure κ must incur error at least D(µ, ν)/2 in the worst
case. For the upper bound, consider T which projects κ̃ onto G in TV. Then, ∥T (κ̃) − κ∥TV ≤
∥T (κ̃)− κ̃∥TV + ∥κ̃− κ∥TV ≤ 2ϵ, and so D(T (κ̃), κ) ≤ m(D,G, 2ϵ) by definition.

By rescaling Rd appropriately, it is easy to check that m(D,Gq(σ), ϵ) = σm(D,Gq(1), ϵ) for our
choices of D, so we will assume σ = 1 and write Gq = Gq(1) from now on.

D.4.1 Lower bounds

Immediately, we can apply Lemma 7 to obtain the lower bounds of Theorem 2.

Proposition 9. Fix 1 ≤ p < q and corruption fraction ϵ ∈ [0, 1/2]. Then we have

R(Wp,Gq, ϵ) ≳
√

(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q

R(Wp,Gq, ϵ) ≳ ϵ1/p−1/q.
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Proof. For Wp, we consider µ = δ0 and ν = (1 − ϵ)δ0 + ϵδy where ∥y∥ = (2ϵ)−1/q. Trivially,
µ ∈ Gq , and

sup
θ∈Sd−1

ν|θ⊺(x− νy)|q = sup
θ∈Sd−1

(1− ϵ)ϵq|θ⊺y|q + ϵ(1− ϵ)q|θ⊺y|q

= ∥y∥q [(1− ϵ)ϵq + ϵ(1− ϵ)q]

≤ 1

2
ϵ−12ϵ(1− ϵ)q ≤ 1,

so ν ∈ Gq as well. Moreover, we have

Wp(µ, ν) = ϵ1/pWp(δ0, δy) = 2−1/qϵ1/p−1/q ≥ 1

2
ϵ1/p−1/q,

and so Lemma 7 gives the desired risk bound for Wp.

For Wp, we fix µ = δ0 and set ν = (1−ϵ)δ0+ϵUnif(rSd−1) with r = ϵ−1/qWq(Unif(Sd−1), δ0)
−1.

As before µ, ν ∈ Gq , since

Wq(ν, δνx) = ϵ1/qWq(Unif(rSd−1), δ0)

= rϵ1/qWq(Unif(Sd−1), δ0) = 1.

Furthermore, we have
Wp(µ, ν) = ϵ1/pWp(Unif(rSd−1), δ0)

= ϵ1/p−1/qWq(Unif(Sd−1), δ0)
−1 Wp(δ0,Unif(Sd−1))

≍
√
(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q,

where the last relation uses Lemma 5. Again, we obtain the desired risk bound via Lemma 7.

D.4.2 Upper bounds

Next, we introduce an important notion of (generalized) resilience [55, 61]. We say that a distribution
µ ∈ P(Rd) is (ρ, ϵ)-resilient w.r.t. a statistical distance D if D(µ, ν) ≤ ρ for all distributions
ν ≤ 1

1−ϵµ (i.e. for all ϵ-deletions of µ). Standard (mean) resilience refers to resilience w.r.t.
Dmean(µ, ν) = ∥µx − νx∥. Writing GD

ρ,ϵ ⊂ P(Rd) for the family of µ ∈ P(Rd) which are
(ρ, ϵ)-resilient w.r.t. D, we have the following standard result.
Proposition 10. Fix 0 ≤ ϵ < 1/2, ρ ≥ 0, and D satisfying the triangle inequality. Then, we have
R(D,GD

ρ,2ϵ, ϵ) ≤ 2ρ.

Proof. Fix µ, ν ∈ GD
ρ,2ϵ with ∥µ− ν∥TV ≤ 2ϵ. We consider the midpoint γ = 1

1−∥µ−ν∥TV
µ ∧ ν ∈

P(Rd) and compute
D(µ, ν) ≤ D(µ, γ) + D(ν, γ) ≤ 2ρ,

implying the desired risk bound via Lemma 7.

We will also use the following standard result for one-dimensional (mean) resilience (see e.g. [55,
Proposition 23]), which is a consequence of Markov’s inequality.
Lemma 8. Fix 0 ≤ ϵ ≤ 1/2 and µ ∈ P(R) with µ|x− x0|p ≤ σp for some x0 ∈ R. Then, for all
distributions ν ≤ 1

1−ϵµ, we have |µx− νx| ≲ σϵ1−1/p.

Next, for D ∈ {Wp,Wp}, we show that it suffices to prove resilience with respect to the simpler
distances defined by

Dp(µ, ν) = Dp(µ− ν) :=
∣∣E[(µ− ν)(|Θ⊺x|p)]

∣∣ = |Wp
p(µ, δ0)−Wp

p(ν, δ0)|
and Dp(µ, ν) = Dp(µ− ν) := sup

θ∈Sd−1

∣∣(µ− ν)(|θ⊺x|p)
∣∣,

respectively. These distances encode a certain similarity of moment tensors, with D2(µ, ν) =
∥Σµ + (µx)(µx)⊺ − Σν − (νx)(νx)⊺∥op.

Recall that D = DF is an integral probability metric (IPM) w.r.t. a class F of measurable functions
on Rd if D(µ, ν) = supf∈F (µ− ν)(f). By design, we have the following.
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Lemma 9. The statistical distances Dp and Dp are IPMs w.r.t. the function classes Fp = {x 7→
cps∥x∥p : s ∈ {±1}} and Fp = {x 7→ s|θ⊺x|p : s ∈ {±1}, θ ∈ Sd−1}, respectively, where
cp = E[|Θ1|p] ≍

√
1 ∧ p/d. Moreover, Dp(µ, δ0) = Wp

p(µ, δ0) and Dp(µ, δ0) = W
p

p(µ, δ0).

Proof. For Dp, we compute

Dp(µ, ν) =
∣∣E[(µ− ν)(|Θ⊺x|p)]

∣∣
=
∣∣(µ− ν)(E|Θ⊺x|p)

∣∣
=
∣∣(µ− ν)(cp∥x∥p)

∣∣
= sup
s∈{±1}

(µ− ν)(cps∥x∥p).

Likewise, for Dp, we check

Dp(µ, ν) = sup
θ∈Sd−1

∣∣(µ− ν)(|θ⊺x|p)
∣∣

= sup
s∈{±1},θ∈Sd−1

(µ− ν)(s|θ⊺x|p).

Computations when ν = δ0 are trivial, since there is a single coupling between µ and ν.

The third property is particularly relevant to resilience.
Lemma 10. Let D = DF be an IPM. Then µ is (ρ, ϵ)-resilient w.r.t. D if and only if µ is (ϵ(1 −
ϵ)−1ρ, 1− ϵ)-resilient w.r.t. D.

Proof. Writing µ = (1− ϵ)ν + ϵα for some ν, α ∈ P(Rd), we have

D(ν, µ) = D′(ϵ−1[µ− (1− ϵ)α]− µ)

=
1− ϵ

ϵ
D(µ, α) (homogeneity).

We now formally translate resilience w.r.t. Dp and Dp to that which we desire.

Proposition 11. Fix 0 ≤ ϵ < 1, ρ ≥ 0, and (D,D′) ∈ {(Wp,Dp), (Wp,Dp)}. If µ ∈ P(Rd) with
µx = 0 is (ρ, ϵ)-resilient w.r.t. D′, then µ is (2ρ1/p + 2ϵ1/pD(µ, δ0), ϵ)-resilient w.r.t. D.

Proof. Fixing such µ and taking ν ≤ 1
1−ϵµ, write µ = (1− ϵ)ν + ϵα for some α ∈ P(Rd) and write

τ = ϵ ∧ (1− ϵ), so that ν, α ≤ τ−1µ. Then, we bound

D(µ, ν)p = D((1− ϵ)ν + ϵα, ν)p

≤ ϵD(α, ν)p (Facts 1 and 2)
≤ 2pϵ sup

κ≤τ−1µ

D(κ, δ0)
p (triangle inequality for D)

= 2pϵ sup
κ≤τ−1µ

D′(κ, δ0) (Lemma 9)

≤ 2pϵ sup
κ≤τ−1µ

D′(κ, µ) + 2pϵD(µ, δ0)
p (triangle inequality for D′)

≤ 2pρ+ 2pϵD(µ, δ0)
p, (Lemma 10)

giving the desired bound after taking pth roots.

Equipped with this result, we are prepared to prove the upper bounds of Theorem 2. Given µ ∈ Gq,
we must provide bounds on D(µ, δ0) as well as the resilience of µ w.r.t. D′.
Lemma 11. Fixing 1 ≤ p < q and µ ∈ Gq with µx = 0, we have

Wp(µ, δ0) ≲
√

(1 ∨ d/q)(1 ∧ p/d)
Wp(µ, δ0) ≲ 1.
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Lemma 12. Fix 1 ≤ p < q, corruption fraction 0 ≤ ϵ ≤ 1/2, and µ ∈ Gq with µx = 0. Then, µ

is (C
√

(1 ∨ d/q)(1 ∧ p/d)ϵ1/p−1/q, ϵ)-resilient w.r.t. D1/p
p and (Cϵ1/p−1/q, ϵ)-resilient w.r.t. D

1/p

p ,
for some absolute constant C > 0.

Together, these give the desired risk bounds.
Proposition 12. Fix 1 ≤ p < q and corruption fraction 0 ≤ ϵ ≤ 0.49. Then we have

R(Wp,Gq, ϵ) ≲
√

(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q

R(Wp,Gq, ϵ) ≲ ϵ1/p−1/q.

Proof. Fixing µ ∈ Gq, it suffices by Proposition 10 to prove that µ is (Cϵ1/p−1/q, ϵ)-resilient w.r.t.
Wp and (C

√
(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q, ϵ)-resilient w.r.t. Wp for all 0 ≤ ϵ ≤ 0.98, where C > 0

is some absolute constant. Since these distances are translation invariant, we can assume without loss
of generality that µx = 0. By Lemmas 11 and 12, we know that µ is (Cϵ1/p−1/q, ϵ)-resilient w.r.t.

D
1/p

p and (C
√
(1 ∨ d/q)(1 ∧ p/d) ϵ1/p−1/q, ϵ)-resilient w.r.t. D1/p

p for all 0 ≤ ϵ ≤ 1/2 and some
absolute constant C > 0. For 1/2 ≤ ϵ ≤ 0.98, the same resiliency bounds are implied by Lemma 10,
since 1− ϵ ≥ 0.02 ≥ ϵ/49. Finally, we apply Proposition 11 to obtain the desired risk bounds.

We now prove the preceding lemmas.

Proof of Lemma 11. Fixing µ ∈ Gq with µx = 0, we bound

Wp(µ, δµx) ≍
√
1 ∧ p/dWp(µ, δµx) (Lemma 6)

≤
√
1 ∧ p/dWq(µ, δµx) (q > p)

=
√
1 ∧ p/d Wq(µ, δµx)

Wq(µ, δµx)
Wq(µ, δµx)

≍
√
(1 ∧ p/d)(1 ∨ d/q)Wq(µ, δµx) (Lemma 6)

≤
√
(1 ∧ p/d)(1 ∨ d/q) µ ∈ Gq. (14)

Similarly, we obtain
Wp(µ, δµx) ≤ Wq(µ, δµx) ≤ 1.

Proof of Lemma 12. By Lemma 9, Dp and Dp are IPMs with respect to the stated function classes
Fp and Fp, respectively. Note that if D = DF is an IPM for any symmetric F = −F , then µ is
(ρ, ϵ)-resilient w.r.t. D if and only if f♯µ is (ρ, ϵ)-resilient (in mean) for all f ∈ F .

Now, fix µ ∈ Gq with µx = 0. For Dp, we observe that

µ((∥x∥p)q/p) = µ(∥x∥q)
≲ Cq(1 ∨ d/q)q/2 sup

θ∈Sd−1

µ(|θ⊺x|q) (Lemma 6)

≤ Cq(1 ∨ d/q)q/2 (µ ∈ Gq)

=
[
Cp(1 ∨ d/q)p/2

]q/p
,

for some absolute constant C > 0. For f ∈ Fp, we then have that f♯µ has q/p-th moments bounded
by O(Cp(1∧p/d)p/2(1∨d/q)p/2), and is thus (O(Cp(1∧p/d)p/2(1∨d/q)p/2ϵ1−p/q), ϵ)-resilient,
by Lemma 8. Taking pth roots gives the claim.

For Dp, note that for θ ∈ Sd−1, we have

µ((|θ⊺x|p)q/p) = µ(|θ⊺x|q) ≤ 1.

For f ∈ Fp, we then have that f♯µ has q/p-th moments bounded by 1 and is thus O(ϵ1−p/q, ϵ)-
resilient. Taking pth roots gives the claim.
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D.4.3 Higher-dimensional slicing

We now extend Proposition 12 to the k-dimensional sliced distances defined by

Wp,k(µ, ν) :=

[∫
Grk(Rd)

Wp
p(p

E
♯ µ, p

E
♯ ν)dσk(E)

]1/p
and Wp,k(µ, ν) := sup

E∈Grk(Rd)

Wp(p
E
♯ µ, p

E
♯ ν),

where Grk(Rd) is the Grassmannian of k-dimensional linear subspaces of Rd, σk is its standard Haar
measure, and pE is the orthogonal projection onto E ∈ Grk(Rd). These coincide with Wp and Wp

when k = 1, and both equal Wp when k = d. We focus here on Wp, with Wp inheriting the same risk
bound, although stronger guarantees can be obtained in a similar manner to the proof of Proposition
12. First, we extend Dp to this regime as

Dp,k := sup
U∈Rd×k

U⊺U=Ik

∣∣(µ− ν)(∥U⊺x∥p)
∣∣,

and observe that all of the properties from Lemma 9 still hold. Moreover, for µ ∈ Gq with µx = 0,
we obtain the needed analog of Lemma 11, bounding

Wp,k(µ, δ0)
1/p = sup

U∈Rd×k

U⊺U=Ik

µ(∥U⊺x∥p)1/p

≤ sup
U∈Rd×k

U⊺U=Ik

µ(∥U⊺x∥q)1/q (q > p)

≤
√
1 ∨ k/q sup

U∈Rd×k

U⊺U=Ik

sup
θ∈Sk−1

µ(|θ⊺U⊺x|q)1/q (Lemma 6)

≤
√

1 ∨ k/q sup
θ∈Sd−1

µ(|θ⊺x|q)1/q (Sk−1 ⊂ Sd−1)

≤
√

1 ∨ k/q (µ ∈ Gq).

In the same way, we can extract this factor of
√

1 ∨ k/q for the resiliency of µ w.r.t. D
1/p

p,k to prove the
needed analog of Lemma 12. Combining these results gives that R(Wp,k,Gq, ϵ) ≤ R(Wp,k,Gq, ϵ) ≲√
1 ∨ k/q R(Wp,Gq, ϵ) ≍

√
1 ∨ k/q ϵ1/p−1/q for 0 ≤ ϵ ≤ 0.49, as desired.

D.4.4 Proofs of auxiliary lemmas

Proof of Lemma 5. Let Θ ∼ Unif(Sd−1). When d = 1, we have E[|Θ1|p] = 1. Otherwise, we
use that the probability density function of Θ1 at s ∈ [−1, 1] is proportional to (1 − s2)

d−3
2 [52].

Equivalently, (Θ1 + 1)/2 ∼ Beta
(
d−1
2 , d−1

2

)
. We will first prove the desired statement for even

integer p = 2m, where

E
[
|Θ1|2m

]
=

(2m)!

22mm!

Γ(d− 1)Γ(d−1
2 +m)

Γ(d−1
2 )Γ(d− 1 + 2m)

(see, e.g., [38]). Simplifying, we obtain

E
[
|Θ1|2m

]
=

Γ(2m+ 1)

22mΓ(m+ 1)

Γ(d− 1)Γ(d−1
2 +m)

Γ(d−1
2 )Γ(d− 1 + 2m)

=
Γ(d/2)Γ(m+ 1/2)√
π22mΓ(m+ d/2)

.

Employing Stirling’s formula, we compute

22m E
[
|Θ1|2m

]
≍ Γ(d/2)Γ(m+ 1/2)

Γ(m+ d/2)

≍ (d/2)d/2−1/2e−d/2(m+ 1/2)me−m−1/2

(m+ d/2)m+d/2−1/2e−m−d/2
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≍ (d/2)d/2−1/2(m+ 1/2)m

(m+ d/2)m+d/2−1/2

=

(
d/2

m+ d/2

) d−1
2
(
m+ 1/2

m+ d/2

)m
.

Consequently, we have

E
[
|Θ1|2m

]1/2m ≍
(
1 +

m

d/2

)− d−1
4m

√
m+ 1/2

m+ d/2

≍

√
m+ 1/2

m+ d/2

≍ 1 ∧
√
m/d,

as desired. When p ≥ 2 is not an even integer, we use that E [|Θ1|p] is monotonically increasing in p
to obtain matching bounds by rounding p up and down to the nearest even integers. To obtain the
needed lower bound when p ∈ [1, 2), we derive

E [|Θ1|] =
4Γ(d− 1)

Γ
(
d−1
2

)2
(
d−1
2

)d−1

(d− 1)d
,

using the formula for the mean absolute deviation of the beta distribution [23]. Applying Stirling’s
formula once more, we obtain

E [|Θ1|] ≍
(d− 1)d−3/2

(
d−1
2

)d−1

(d−1
2 )d−2(d− 1)d

=
(d− 1)/2

(d− 1)3/2
≍ d−1/2,

as desired.

Proof of Lemma 6. Taking X ∼ µ and Θ ∼ Unif(Sd−1), we use rotational symmetry of the sphere
to compute

E [|Θ⊺X|p] = E [|Θ1|p] E [∥X∥p] ,
giving the first equality via Lemma 5. The inequality follows by comparing an average to a supremum,
and the inequality is tight when these coincide, i.e. when µ is rotationally symmetric about 0.

D.5 Proof of Proposition 2

The high-level structure of our proof follows a standard template for finite-sample robust mean and
covariance estimation (see, e.g., [55, 61]). We first prove Proposition 2 under bounded support and
then extend our result to the general setting. Throughout, we write Br := {x ∈ Rd : ∥x∥ ≤ r} for
the Euclidean ball of radius r ≥ 0.

Bounded Support: For ease of presentation, we slightly extend our notion of resilience in a
standard way. We say that µ ∈ P(Rd) is (ρ, ϵ)-resilient w.r.t. D about κ ∈ P(Rd) if D(ν, κ) ≤ ρ for
all ν ≤ 1

1−ϵµ. Namely, we will consider the resilience of an empirical measure κ = µ̂n about its
population measure µ. If D = DF is an IPM for symmetric F = −F , note that µ is (ρ, ϵ)-resilient
w.r.t. D about κ if and only if f♯µ is (ρ, ϵ)-resilient (in mean) about f♯κ for all f ∈ F .

We first recall and derive some basic results for finite-sample resilience. The following lemma is a
simplification of [55, Proposition 4], specified to the 1-dimensional case.
Lemma 13 (1-dimensional finite-sample resilience). Suppose that µ ∈ P([−M,M ]) is (ρ, ϵ)-
resilient in mean for ϵ ≤ 0.999. Then, with probability at least 1− δ, the empirical distribution µ̂n is

(ρ′, ϵ)-resilient in mean about µ with ρ′ = O

(
ρ

(
1 +

√
log(1/δ)
ϵ2n

)
+ M log(1/δ)

n

)
.

The result is stated in [55] for ϵ < 1/2, but the proof only uses that ϵ is bounded away from 1. We
then extend this result to IPMs over uniformly bounded function classes.
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Proposition 13 (Finite-sample resilience w.r.t. IPMs). Let DF be the IPM induced by a function class
F = −F on Rd with ∥f∥∞ ≤M for f ∈ F , and fix any finite subset H ⊆ F such that DF (µ, ν) ≤
DH(µ, ν)+ρ. Then if µ ∈ P(Rd) is (ρ, ϵ)-resilient w.r.t. DF for ϵ ≤ 0.999, we have that µ̂n is (ρ′, ϵ)-

resilient w.r.t. DF about µ with probability 1−δ, where ρ′ = O

(
ρ+ ρ

ϵ

√
log(|H|/δ)

n + M log(|H|/δ)
n

)
.

Proof. For any νn ≤ (1− ϵ)µ̂n, we have

DF (νn, µ) ≤ max
f∈H

(νn − µ)(f) + ρ.

Now, fixing any f ∈ H, resilience of µ w.r.t. DF requires that f♯µ is (ρ, ϵ)-resilient. Noting that
f♯νn ≤ 1

1−ϵf♯µ̂n, Lemma 13 gives that

|(νn − µ)(f)| = |(f♯νn)x− (f♯µ)x| ≤ O

(
ρ+

ρ

ϵ

√
log(|H|/δ)

n
+
M log(|H|/δ)

n

)
with probability at least 1− δ/|H|. A union bound over f ∈ H gives the desired result.

To apply this result, we approximate Dp with an IPM over a finite function class.

Lemma 14 (Approximating Dp). For each γ > 0, there exists a net N ⊂ Sd−1 of size (10Rpp/γ)d

such that for all µ, ν ∈ P(BR), we have

Dp(µ, ν) = sup
θ∈Sd−1

|(µ− ν)(|θ⊺x|p)| ≤ max
θ∈N

|(µ− ν)(|θ⊺x|p)|+ γ.

Proof. Let N be a γ(2Rpp)−1-covering for Sd−1 in ℓ2 with |N | ≤ (10Rppγ−1)d, the existence of
which is guaranteed by Lemma 3 (i). Then, taking θ to be a direction achieving the LHS supremum,
and θ̃ ∈ N to be its nearest neighbor in N , we have

|(µ− ν)(|θ⊺x|p)| ≤ |(µ− ν)(|θ̃⊺x|p)|+ 2 sup
κ∈P(BR)

κ||θ⊺x|p − |θ̃⊺x|p|

≤ |(µ− ν)(|θ̃⊺x|p)|+ 2Rpp∥θ − θ̃∥
≤ |(µ− ν)(|θ̃⊺x|p)|+ γ,

where the second inequality follows by Lipschitzness. Supremizing over θ gives the lemma.

Combining, we obtain finite-sample resilience w.r.t. our distances of interest. Slightly abusing
notation for brevity, we write ρ(τ) = ρ(τ, p, d, q) =

√
(1 ∨ d/q)(1 ∧ p/d)τ1/p−1/q and ρ(τ) =

ρ(τ, p, q) = τ1/p−1/q for our resilience bounds for the class Gq w.r.t. Wp and Wp.
Lemma 15 (Finite-sample resilience under bounded support). Let 0 ≤ ϵ ≤ 0.999 and q > p. If
µ ∈ Gq with diam(spt(µ)) ≤ R/2 and n = Ω

(
(Rp + ϵ−2)(d log(R/ϵ) + log(1/δ))

)
, then µ̂n is

(O(ρ(ϵ)), ϵ)-resilient w.r.t. Wp and (O(ρ(ϵ)), ϵ)-resilient w.r.t. Wp with probability 1− δ.

Proof. Assume without loss of generality that µx = 0 and µ ∈ Gq ∩ P(BR). By Lemma 12
(combined with Lemma 10 if ϵ ≥ 1/2), we have that µ is (ρ(ϵ), ϵ)-resilient w.r.t. D1/p

p and (ρ(ϵ), ϵ)-

resilient w.r.t. D
1/p

p . For Dp, observe that for ∥x∥ ≤ R and θ ∈ Sd−1, we have |θ⊺x|p ≤ Rp. Thus,
applying Proposition 13 with F = Fp, M = Rp, and H induced by the net from Lemma 14 with
γ = ρ(ϵ)p gives that µ̂n is (O(2pρ(ϵ)p), ϵ)-resilient about µ w.r.t. Dp with probability at least 1−δ/2
whenever

n ≥ (ρ(ϵ)pRp + ϵ−2) log(2|H|/δ)/2p

= (ρ(ϵ)pRp + ϵ−2) log((20Rpp/ρ(ϵ)p)d/δ)/2p.

Plugging in our value for ρ(ϵ) and applying some crude bounds shows the stated sample complexity
of n = Ω

(
(Rp+ ϵ−2)(d log(R/ϵ)+log(1/δ))

)
suffices. Since the resilience bound is centered about
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µ and µ ∈ Gq, we deduce that Dp(µ̂n, δ0) ≤ Dp(µ̂n, µ) + Dp(µ, δ0) ≤ O(2pρ(ϵ)p) + 1 = O(2p).
Thus, by Proposition 11, we have that µ̂n is (O(ρ(ϵ)), ϵ)-resilient w.r.t. Wp. An analogous argument
shows that the same sample complexity suffices for Wp (of course, far fewer samples are actually
needed, but we shall not focus on this distinction). Applying a union bound gives that both resilience
guarantees hold with probability 1− δ.

Finally, we use finite-sample resiliency to bound finite-sample robust estimation risk.

Proposition 14. Let 0 ≤ ϵ ≤ 0.499 and q > p and D ∈ {Wp,Wp}. Then there exists an
estimation procedure A with the following guarantee: for any µ ∈ Gq with diam(spt(µ)) ≤ R/2
and n = Ω

(
(Rp + ϵ−2)(d log(R/ϵ) + log(1/δ))

)
, after observing any random distribution µ̃n such

that ∥µ̃n − µ̂n∥TV ≤ ϵ almost surely, A produces ν such that D(ν, µ) ≲ R(D,Gq, ϵ) + D(µ̂n, µ)
with probability 1− δ.

Proof. For D = Wp, define

Πϵ,ρ(µ̃n) =
{
κ ∈ P(Rd) : ∥κ− µ̃n∥TV ≤ ϵ and κ is (ρ, 2ϵ)-resilient w.r.t. Wp

}
Write ρ⋆ = inf{ρ ≥ 0 : Πϵ,ρ(µ̃n) ̸= ∅} for the smallest resilience parameter such that this set is
non-empty. Since 2ϵ ≤ 0.999, we know by Lemma 15 that µ̂n is (O(ρ(2ϵ), 2ϵ)-resilient w.r.t. Wp

(for an appropriate choice of constant in the sample complexity) with probability 1− δ/2. Noting
that ∥µ̃n − µ̂n∥TV ≤ ϵ, we have ρ⋆ ≲ ρ(2ϵ) ≲ ρ(ϵ) with probability 1− δ/2.

Now consider any algorithm which returns ν ∈ Πϵ,2ρ⋆(µ̃n). Then we have ∥ν − µ̂n∥TV ≤
∥ν − µ̃n∥TV + ∥µ̃n − µ̂n∥TV ≤ 2ϵ. By considering their midpoint κ = 1

1−∥ν−µ̂n∥TV
ν ∧ µ̂n

and applying (O(ρ(2ϵ)), 2ϵ)-resilience of ν and µ̂n w.r.t. Wp, we deduce that Wp(ν, µ̂n) ≤
Wp(ν, κ) + Wp(κ, µ̂n) ≲ ρ(ϵ) ≲ R(Wp,Gq, ϵ) with probability 1 − δ. By the triangle inequal-
ity for Wp, we thus have Wp(ν, µ) ≲ R(Wp,Gq, ϵ) + Wp(µ̂n, µ) with probability 1 − δ. An
analogous argument gives the corresponding result for Wp.

Reduction to bounded support: To prove Proposition 2, we provide a reduction from the general
case to that of bounded support via Markov’s inequality and a coupling argument.

Lemma 16 (High probability norm bound). If X ∼ µ ∈ Gq, there exists R ≲ δ−1/q
√
1 ∨ d/q ≤

δ−1/q
√
d such that ∥X − µx∥ ≤ R with probability at least 1− δ.

Proof. Assume without loss of generality that µx = 0. We compute

µ(∥x∥q)1/q ≲ (1 ∨ d/q)q/2 sup
θ∈Sd−1

µ(|θ⊺x|q)1/q ≤ (1 ∨ d/q)q/2,

where the first inequality uses Lemma 6 and the second uses µ ∈ Gq . Markov’s inequality then gives
the claim.

Lemma 17 (Switch of base measure). Fix µ ∈ P(Rd) and A ⊆ Rd with µ(A) ≥ 1− ϵ. Write µA
for the distribution of X ∼ µ conditioned on X ∈ A. Consider any random measure µ̃n such that
∥µ̃n − µ̂n∥ ≤ ϵ′ almost surely, where n ≥ 3 log(1/δ)/ϵ. Then there exists a coupling of (µ̃n, µ̂n)
and (µ̂A)n such that ∥µ̃n − (µ̂A)n∥TV ≤ 2ϵ+ ϵ′ with probability at least 1− δ.

Proof. Given n i.i.d. samples X1, . . . , Xn from µ, Lemma 17 and a Chernoff bound give that at
least (1 − 2ϵ)n of them satisfy Xi ∈ A, with probability at least 1 − δ. Define the coupled set of
samples Y1, . . . , Yn by Yi = Xi if Xi ∈ A and Yi ∼ µA i.i.d. otherwise, and choose (µ̂A)n as their
empirical measure (by design, the marginal distribution of Y1, . . . , Yn coincides with n samples from
µA). Under this coupling, we then have

∥µ̃n − (µ̂A)n∥TV ≤ ∥µ̃n − µ̂n∥TV + ∥µ̂n − (µ̂A)n∥TV ≤ 2ϵ+ ϵ′

with probability at least 1− δ.
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Proof of Proposition 2. By Lemma 16, we have that for X ∼ µ, ∥X − µx∥ ≤ R ≍
√
d/ϵ with

probability at least 1 − ϵ/400. Letting A denote the ball of radius R around µx and applying
Lemma 17 with failure probability 0.001, we can view µ̃n as being a 201

200ϵ-corrupted version of n
i.i.d. samples from the conditional distribution µR, with probability at least 0.999. Thus, applying the
procedure from Proposition 14 with R ≍

√
d/ϵ, confidence probability 0.999 and corruption fraction

201
200ϵ < 0.499, we obtain ν with Wp(ν, µR) ≲ R(D,Gq, ϵ) + D((µ̂R)n, µR) with unconditional
probability 0.998. By resilience of µ and the fact that ∥µ − µR∥TV ≤ ϵ/400, the same recovery
guarantees hold with base measure µ. Finally, we bound D((µ̂R)n, µR) by its expectation via
Markov’s inequality to obtain Wp(ν, µ) ≲ R(D,Gq, ϵ)+E[D((µ̂R)n, µR)] with probability 0.99.

D.6 Proof of Proposition 3

For any µ, ν ∈ P1(Rd), we have Wp(µ, ν) ≥ ∥µx − νx∥ (seen by taking θ in the direction of
µx − νx). Hence, if Wp(µ, ν) ≤ ρ for all ν ≤ 1

1−ϵµ, then µ is (ρ, ϵ)-resilient in mean. (This
direction holds for all p ≥ 1). For the other direction, we mirror the proof of Theorem 2, first
establishing a simple lemma.
Lemma 18. Fix X ∼ µ ∈ P1(R) and define the quantiles τϵ = sup{t ∈ R : Pr(X ≥ t) ≥ ϵ} and
τ̃ϵ = sup{t ∈ R : Pr(|X| ≥ t) ≥ ϵ}. Then, we have

E[|X| | |X| ≥ τ̃ϵ] ≤ 4 E[X |X ≥ τϵ] ∨ E[−X |X ≤ τ1−ϵ]

Simply put, if |X| has large tails, then one of X or −X must have a large tail.

Proof. Writing X+ = X ∨ 0 and X− = −X ∨ 0, we bound

E
[
|X|

∣∣ |X| ≥ τ̃ϵ
]
= E

[
X+

∣∣ |X| ≥ τ̃ϵ
]
+ E

[
X−

∣∣ |X| ≥ τ̃ϵ
]

≤ E[X+|X ≥ τϵ] + E[X−|X ≤ τ1−ϵ]

≤ E[X − (τϵ ∧ 0) |X ≥ τϵ] + E[−X + (τ1−ϵ ∨ 0) |X ≤ τ1−ϵ]

= E[X |X ≥ τϵ] + E[−X |X ≤ τ1−ϵ]− (τϵ ∧ 0) + (τ1−ϵ ∨ 0)

≤ E[X |X ≥ τϵ] + E[−X |X ≤ τ1−ϵ] + (−τ1−ϵ ∨ 0) + (τϵ ∨ 0)

≤ E[X |X ≥ τϵ] + E[−X |X ≤ τ1−ϵ] + (E[−X |X ≤ τ1−ϵ] ∨ 0) + (E[X |X ≥ τϵ] ∨ 0).

Now, it is easy to check that each summand is bounded by E[X | X ≥ τϵ] ∨ E[−X | X ≤ τ1−ϵ]
(since this maximum is non-negative), giving the lemma.

Continuing, we take µ ∈ P1(Rd) which is (ρ, ϵ)-mean-resilient and assume without loss of generality
that µx = 0. For all ν ≤ 1

1−ϵµ, we write µ = (1− ϵ)ν + ϵα for α ∈ P(Rd) and bound

Wp(µ, ν) = Wp((1− ϵ)ν + ϵα, ν)

≤ ϵ1/pWp(α, ν) (Fact 2)

≤ ϵ1/p(Wp(α, δ0) +Wp(ν, δ0)) (triangle inequality)

≤ 2ϵ1/p sup
κ≤ 1

(1−ϵ)∧ϵ
µ

Wp(κ, δ0)

= 2ϵ sup
κ≤ 1

(1−ϵ)∧ϵ
µ

sup
θ∈Sd−1

Eκ [|θ⊺X|p]1/p

= 2ϵ sup
θ∈Sd−1

Eκ
[
|θ⊺X|p

∣∣ |θ⊺X| ≥ τ̃ϵ∧(1−ϵ)(θ)
]1/p

.

where τ̃ϵ(θ) = sup{t ∈ R : P(|θ⊺X| ≥ t) ≥ ϵ} for X ∼ µ. (Technically, the final inequality may
fail if µ has a point mass at τ̃ϵ∧(1−ϵ)(θ); in this case, assume that ties are broken with independent
randomness so that the conditioned event has probability ϵ ∧ (1− ϵ)). From now on, we will use that
p = 1. Writing τϵ(θ) = sup{t ∈ R : P(θ⊺X ≥ t) ≥ ϵ} and breaking ties in the same way, we apply
Lemma 18 to bound

W1(µ, ν) ≤ 8ϵ sup
θ∈Sd−1

Eµ[θ⊺X | θ⊺X ≥ τϵ∧(1−ϵ)(θ)]
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= 8ϵ sup
θ∈Sd−1

θ⊺Eµ[X | θ⊺X ≥ τϵ∧(1−ϵ)(θ)]

= 8ϵ ∥Eµ[X | θ⊺X ≥ τϵ∧(1−ϵ)(θ)]∥
= 8ϵ ∥EµX − Eµ[X | θ⊺X ≥ τϵ∧(1−ϵ)(θ)]∥.

Now, if ϵ ≥ 1/2, we can use resilience of µ to bound

W1(µ, ν) ≤ 8ϵρ ≤ 8ρ.

Otherwise, writing E for the event that θ⊺X ≥ τϵ(θ), we have

W1(µ, ν) ≤ 8ϵ ∥ϵEµ[X|E] + (1− ϵ)Eµ[X|Ec]− Eµ[X|E]∥
= 8ϵ(1− ϵ) ∥Eµ[X|Ec]− Eµ[X|E]∥
= 8ϵ(1− ϵ) ∥Eµ[X|Ec]− ϵ−1(Eµ[X]− (1− ϵ)Eµ[X|Ec])∥
= 8(1− ϵ) ∥Eµ[X]− Eµ[X|Ec]∥
≤ 8(1− ϵ)ρ ≤ 8ρ.

Hence, µ is (8ρ, ϵ)-resilient w.r.t. W1.

Immediately, this allows W1 to inherit a multitude of (population-limit and finite-sample) risk bounds
from the robust mean estimation literature. See [54] for a detailed survey of robust statistics results
based on resiliency. For example, µ ∈ Gq is known to be (O(ϵ1−1/q), ϵ)-mean-resilient, immediately
implying Theorem 2 for W1.

D.7 Proof of Proposition 4

When q = 2, we mirror the approach of Proposition 2 but perform projection onto the space of
distributions with bounded covariance, instead of onto the space of resilient distributions. We require
the following standard result (see, e.g., Lemma A.18 of [19]), establishing finite-sample covariance
bounds under bounded support.
Lemma 19. Let µ ∈ P(Rd) with ∥Σµ∥op ≤ σ2 and diam(spt(µ)) ≤ R. Then the empirical
distribution µ̂n satisfies ∥Σµ̂n

∥op ≲ σ2 with probability at least 0.999 for n ≳ R2 log(d).

Importantly, there are efficient filtering algorithms for projecting onto the set of distributions with
bounded covariance (see, e.g., Theorem 3.1 [24]).
Lemma 20 (Spectral reweighting). Let x1, . . . , xn ∈ Rd and 0 < ϵ ≤ 1/10. Suppose the discrete
measure µn = 1

n

∑n
i=1 δxi

admits an ϵ-deletion νn ≤ 1
1−ϵµn such that ∥Σµn

∥op ≤ σ2. Then,
given {xi}ni=1 and ϵ, there is an algorithm which finds ν ≤ 1

1−3ϵµn such that ∥Σν∥op ≲ σ2 with
probability 0.999, in time Õ(nd2).

Combining, we prove the proposition. We remark that sample complexity is dominated by empirical
convergence under D ∈ {Wp,Wp} of the truncated version of a distribution with bounded second
moments. This can be improved significantly in many cases of interest, for example under log-
concavity of the clean distribution.

Proof of Proposition 4. First, we consider the case of bounded support, when diam(spt(µ)) ≤ R,
and with contamination fraction ϵ ∈ [0, 1/10]. We mirror the argument of Proposition 14, but project
onto the set of distributions with bounded covariance using spectral reweighting. Write µ̃n for the
empirical distribution of the ϵ-contaminated samples and µ̂n for that of the clean samples, with
µ̂n ≤ 1

1−ϵ µ̃n. Combining Lemmas 19 and 20, we find that ∥Σµ̂n
∥op ≲ σ2 and that the spectral

reweighting algorithm returns ν ≤ 1
1−3ϵ µ̂n with ∥Σν∥op ≲ σ2 in time Õ(nd2), all with probability

0.998. By resilience of the class G2(σ) w.r.t. D and Markov’s inequality, we have

D(ν, µ) ≤ D(ν, µ̂n) + D(µ̂n, µ) ≲ R(D,Gq(σ), ϵ) + E[D(µ̂n, µ)]

with probability 0.995. For the unbounded case, we apply Lemma 16 and Lemma 17 as in the proof
of Proposition 2 to reduce to R ≍

√
d/ϵ and obtain the desired error bound with probability at least

0.99, so long as 0 < ϵ ≤ 1/12 (any constant separated from 1/10 will do).
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D.8 Proof of Lemma 1

We start by showing that the Lipschitz constant of wp is upper bounded by Lpµ,ν . Fix θ1, θ2 ∈ Sd−1

and observe that∣∣wp(θ1)− wp(θ2)
∣∣ = ∣∣Wp

(
pθ1♯ µ, p

θ1
♯ ν
)
−Wp

(
pθ2♯ µ, p

θ2
♯ ν
)∣∣

≤ Wp

(
pθ1♯ µ, p

θ2
♯ µ
)
+Wp

(
pθ1♯ ν, p

θ2
♯ ν
)

≤ ∥θ1 − θ2∥ sup
θ∈Sd−1

((
µ|θ⊺x|p

)1/p
+
(
ν|θ⊺x|p

)1/p)
,

where the last step uses the optimal transportation cost formulation of Wp. The RHS above is Lpµ,ν
from the lemma, which concludes the proof of the first statement.

Next, we bound the Lipschitz constant of wpp . For θ1, θ2 ∈ Sd−1 and i = 1, 2, let (Xi, Yi) be
a coupling of µ and ν so that (θ⊺iXi, θ

⊺
i Yi) is optimal for Wp

(
pθi♯ µ, p

θi
♯ ν
)
. These couplings are

constructed as follows. For i = 1, 2, let (Ui, Vi) be an optimal couplings for Wp

(
pθi♯ µ, p

θi
♯ ν
)
.

Take Pi ∈ Rd×d as a unitary matrix whose first row is θi, and let Pi,−1 ∈ R(d−1)×d denote the
matrix obtained by deleting the first row of Pi. Given u1, u2 ∈ R generate the random variables
Wi(ui) ∼ L

(
Pi,−1X

∣∣θ⊺iX = ui
)
, for i = 1, 2, where X ∼ µ and L(·) designates the probability

law of a random variable. Setting Ūi :=
(
Ui,Wi(Ui)

)
for i = 1, 2, observe that Ūi ∼ L

(
PiX

)
and

further that Xi := P⊺
i Ūi ∼ µ. Constructing V̄i, for i = 1, 2, in an analogous fashion but with ν in

place of µ, and defining Yi similarly to Xi above, we obtain the desired (Xi, Yi) couplings.

Then by optimality of the couplings, we have

wpp(θ1)− wpp(θ2) ≤ E
[∣∣θ⊺1 (X2 − Y2)

∣∣p − ∣∣θ⊺2 (X2 − Y2)
∣∣p],

wpp(θ2)− wpp(θ1) ≤ E
[∣∣θ⊺2 (X1 − Y1)

∣∣p − ∣∣θ⊺1 (X1 − Y1)
∣∣p].

Combining these bounds, we obtain

|wpp(θ1)− wpp(θ2)| ≤ p∥θ1 − θ2∥E
[
max
i=1,2

∣∣∣∣ (θ1 − θ2)
⊺(Xi − Yi)

∥θ1 − θ2∥

∣∣∣∣ · max
i,j=1,2

∣∣θ⊺i (Xj − Yj)
∣∣p−1

]

≤ p∥θ1 − θ2∥E

 max
i=1,2
j=1,2,3

∣∣θ′j(Xi − Yi)
∣∣p

≤ 3p2p∥θ1 − θ2∥ sup
θ∈Sd−1

E
[∣∣θ⊺X1|p + |θ⊺Y1|p

]
,

where for the second inequality we have defined θ3 := θ1−θ2
∥θ1−θ2∥ . This concludes the proof.

Remark 12 (Alternative Lipschitz constants). The Lipschitz constant for wpp can be alternatively
derived as

|wpp(θ1)− wpp(θ2)| ≤ p∥θ1 − θ2∥E
[
max
i=1,2

∣∣∣∣ (θ1 − θ2)
⊺(Xi − Yi)

∥θ1 − θ2∥

∣∣∣∣ · max
i,j=1,2

∣∣θ⊺i (Xj − Yj)
∣∣p−1

]

≤ p∥θ1 − θ2∥E

 max
i=1,2
j=1,2,3

∣∣θ′j(Xi − Yi)
∣∣p

≲p ∥θ1 − θ2∥
(
∥µx− νx∥+ sup

θ∈Sd−1

E
[∣∣θ⊺(X1 − µx)

∣∣p + ∣∣θ⊺(Y1 − νx)
∣∣p]) ,

where the terms corresponding to mean difference and covariance are separated.

D.9 Proof of Proposition 5

We decompose the error by introducing the Monte Carlo average for the population projected
distances:

E
[∣∣∣Ŵp

MC −Wp
p(µ, ν)

∣∣∣]
33



≤ E

[∣∣∣∣∣Ŵp

MC − 1

m

m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)∣∣∣∣∣
]
+ E

[∣∣∣∣∣ 1m
m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)
−Wp

p(µ, ν)

∣∣∣∣∣
]}

.

(15)

For the first term, using the fact that Θ1, . . . ,Θn are i.i.d., we have

E

[∣∣∣∣∣Ŵp

MC − 1

m

m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)∣∣∣∣∣
]
≤ E

{
E
[∣∣∣Wp

p

(
pΘ♯ µ̂n, p

Θ
♯ ν̂n

)
−Wp

p

(
pΘ♯ µ, p

Θ
♯ ν
)∣∣∣ ∣∣∣∣Θ]}.

(16)

Denote (f ⊕ g)(x, y) = f(x) + g(y), and let c(x, y) = ∥x− y∥2. Further, define the c-conjugate of
a function f as f c(y) = infx c(x, y)− f(x). For each θ ∈ Sd−1, observe that

Wp
p

(
pθ♯ µ̂n, p

θ
♯ ν̂n
)
−Wp

p

(
pθ♯µ, p

θ
♯ν
)

≤ sup
(φ,ψ)∈L1(µ)×L1(ν):

φ⊕ψ≤c

{
(pθ♯ µ̂n)φ+ (pθ♯ ν̂n)ψ

}
− sup

(f,g)∈L1(µ)×L1(ν):
f⊕g≤c

{
(pθ♯µ)f + (pθ♯ν)g

}
≤ sup

(φ,ψ)∈L1(µ)×L1(ν)

{
(pθ♯ µ̂n)φ+ (pθ♯µ)φ

c + (pθ♯ ν̂n)ψ + (pθ♯ν)ψ
c
}

= Wp
p

(
pθ♯ µ̂n, p

θ
♯µ
)
+Wp

p

(
pθ♯ ν̂n, p

θ
♯ν
)
.

Repeating this argument for Wp
p

(
pθ♯µ, p

θ
♯ν
)
−Wp

p

(
pΘ♯ µ̂n, p

Θ
♯ ν̂n

)
we obtain∣∣∣Wp

p

(
pθ♯µ, p

θ
♯ν
)
−Wp

p

(
pθ♯ µ̂n, p

θ
♯ ν̂n
)∣∣∣ ≤ Wp

p(p
θ
♯ µ̂n, p

θ
♯µ) +Wp

p(p
θ
♯ ν̂n, p

θ
♯ν).

The proof of Theorem 1 implies that, for any θ ∈ Sd−1,

E
[
Wp
p

(
pθ♯ µ̂n, p

θ
♯µ
)]

≤ Cp
(log n)1{p=2}∥Σµ∥p/2op

n(p∧2)/2
,

E
[
Wp
p

(
pθ♯ ν̂n, p

θ
♯ν
)]

≤ Cp
(log n)1{p=2}∥Σν∥p/2op

n(p∧2)/2
.

Inserting this back into (16), we have

E

[∣∣∣∣∣Ŵp

MC − 1

m

m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)∣∣∣∣∣
]
≤
Cp
(
∥Σν∥p/2op + ∥Σµ∥p/2op

)
(log n)1{p=2}

n(p∧2)/2
(17)

For the second term in (15), recall that wpp(θ) := Wp
p

(
pθ♯µ, p

θ
♯ν
)

for θ ∈ Sd−1, and bound

E

[∣∣∣∣∣ 1m
m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)
−Wp

p(µ, ν)

∣∣∣∣∣
]
≤
√

1

m
Var
(
wpp(Θ)

)
To control the variance we use concentration of Lipschitz functions on the unit sphere. By Re-
mark 12 following the proof of Lemma 1, wpp is M̃p

µ,ν-Lipschitz, with M̃p
µ,ν ≲p ∥µx − νx∥p +

supθ∈Sd−1(µ|θ⊺(x− µx)|p + ν|θ⊺(x− νx)|p). Denoting the median by med(·), we have for d ≥ 3
(cf. e.g., [32, Chapter 1])

P
(∣∣wpp(Θ)−med

(
wpp(θ)

)∣∣ ≥ t
)
≤ 8 exp

(
− (d− 2)t2

2(M̃p
µ,ν)2

)
.

Consequently,

Var
(
wpp(Θ)

)
≤ E

[(
wpp(Θ)−med

(
wpp(Θ)

))2]
=

∫ ∞

0

P
(∣∣wpp(Θ)−med

(
wpp(Θ)

)∣∣ ≥ √
t
)
dt
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≤
16(M̃p

µ,ν)
2

d− 2
.

Alternatively, for d ≤ 2, letting Θ,Θ′ be independent samples drawn uniformly from Sd−1, we have

Var
(
wpp(Θ)

)
=

1

2
E
[∣∣wpp(Θ)− wpp(Θ

′)
∣∣2] ≤ (M̃p

µ,ν)
2

2
E
[
|Θ−Θ′|2

]
≤ (M̃p

µ,ν)
2.

Combining the two variance bounds, for any d ≥ 1, we obtain

E

[∣∣∣∣∣ 1m
m∑
i=1

Wp
p

(
pΘi

♯ µ, pΘi

♯ ν
)
−Wp

p(µ, ν)

∣∣∣∣∣
]
≲

4M̃p
µ,ν√
md

, (18)

where the hidden constant is universal.

We now focus on bounding M̃p
µ,ν , leveraging log-concavity of µ and ν. We present the derivation for

supθ µ|θ⊺(x−µx)|; the one corresponding to ν is analogous. To control this term we use exponential
concentration for 1-Lipschitz functions of log-concave random variables. Recalling that µ and ν
being log-concave implies that so are pθ♯µ and pθ♯ν, Theorem 1.2 in [39] yields

P
(∣∣θ⊺X − µ(θ⊺x)

∣∣ > t
)
≤ e exp(−Dµt),

where X ∼ µ and Dµ ≥ c/
√
∥Σµ∥op, with a universal constant c. Then,

sup
θ∈Sd−1

µ|θ⊺(x− µx)|p ≤
∫ ∞

0

P
(∣∣θ⊺x− µ(θ⊺x)

∣∣p > t
)
dt

≤
∫ ∞

0

e exp(−Dµt
1/p) dt

= Γ(p+ 1)D−p
µ

≤ Γ(p+ 1)

(√
∥Σµ∥op
c

)p
≤ Cp∥Σν∥p/2op ,

for a constant Cp depending only on p. Similarly, we obtain

sup
θ∈Sd−1

ν|θ⊺(x− νx)|p ≤ Cp∥Σν∥p/2op ,

which together implies

M̃p
µ,ν ≤ C ′

p

(
∥µx− νx∥p + ∥Σµ∥p/2op + ∥Σν∥p/2op

)
.

Inserting the above bound into (18) and combining with (17) yields the result.

D.10 Proof of Proposition 6

Observe that w̃2
2(θ) is Mn-Lipschitz by Lemma 1 and ρn-weakly convex by Lemma 2.2 in [34],

where Mn = 4 supθ(µ̂n|θ⊺x|2 + ν̂n|θ⊺x|2) and ρn = 2maxi,j ∥Xi − Yj∥2. By equation (2.10)
in [14], there exists a choice of step sizes αt =

cρn,Mn√
t+1

, such that Algorithm 1 for the objective
φ(θ) = w̃2

2 + δBd , where δBd = ∞1(Bd)c , outputs a point θt∗ that is close to a near-stationary point
θ∗, in the sense that Et∗ [∥θ∗ − θt∗∥] ≤ ϵ

2ρn
and dist

(
0, ∂w̃2

2(θ
∗)
)
≤ ϵ, in number of steps

T ≤

⌈
64ρ2nM

2
n

(
1 ∧ Mn

2ρn

)
ϵ4

⌉
.

We derive high probability upper bounds on Mn and ρn to obtain a non-stochastic bound on the
computational complexity of our algorithm.

We will first reduce our problem to the case where µ and ν are isotropic log-concave, where our
assumptions will lead to concentration inequalities on the above quantities. Assume first that Σµ
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and Σν have rank d. Let Tµ(x) = Σ
−1/2
µ (x− µx), and define T ν analogously. Then, µ̃ = Tµ♯ µ and

ν̃ = T ν♯ ν are isotropic log-concave. Let µ̃n and ν̃n be empirical measures corresponding to µ̃ and ν̃,
obtained by applying Tµ and Tν to samples from µ and ν, respectively. For the first, we have

Mn ≤M2
µ,ν + 24 sup

θ∈Sd−1

|µ̂nθ⊺(x− µx)|2 + 24 sup
θ∈Sd−1

ν̂n|θ⊺(x− νx)|2, and

ρn ≤ 6
(
∥µx− νx∥2 + ∥Σµ∥op max

i
∥Σ−1/2

µ (Xi − µx)∥2 + ∥Σν∥op max
j

∥Σ−1/2
ν (Yj − νx)∥2

)
.

Further, assuming that µ and ν are centered, we have

sup
θ∈Sd−1

∣∣µ̂n|θ⊺x|2 − µ|θ⊺x|2
∣∣

≤ sup
θ∈Sd−1

∣∣∣µ̂n|θ⊺Σµ
x|2 − µ|θ⊺x|2

∣∣∣ [
θΣµ

=
Σ

−1/2
µ θ

∥Σ−1/2
µ θ∥

]
≤ ∥Σµ∥op sup

θ∈Sd−1

∣∣∣µ̃n|θ⊺x|2 − µ̃|θ⊺x|2
∣∣∣,

and similarly,

sup
θ∈Sd−1

∣∣ν̂n|θ⊺x|2 − ν|θ⊺x|2
∣∣ ≤ ∥Σν∥op sup

θ∈Sd−1

∣∣∣ν̃n|θ⊺x|2 − ν̃|θ⊺x|2
∣∣∣.

For isotropic µ̃ and ν̃, we have (cf. Theorem 4.2 in [2])

P
(

sup
θ∈Sd−1

∣∣∣µ̃n|θ⊺x|2 − µ̃|θ⊺x|2
∣∣∣ ≤ ϵ

)
≥ 1− exp

(
−cn1/4ϵ

√
d
)
.

Choosing ϵ = 1/c above and noting that µ̃|θ⊺x|2 = ν̃|θ⊺x|2 = 1, we have

Mn ≤M2
µ,ν + 4(1 + 1/c)

(
∥Σµ∥op + ∥Σν∥op

)
(19)

with probability at least 1− 2
n . Additionally, by Lemma 3.1 in [2], if d ≥

(
log n

)2
, there exists a

universal constant C > 0 such that

max
{
max
i

∥Σ−1/2
µ (Xi − µx)∥2,max

i
∥Σ−1/2

µ (Xi − µx)∥2
}
≤ Cd,

implying
ρn ≤ 6

(
∥µx− νx∥2 + Cd (∥Σµ∥op + ∥Σν∥op)

)
(20)

with probability at least 1− 2
n .

If Σµ and Σν are not full rank, then the above results hold for µ ∗ Unif(Bd(0, σ)) and ν ∗
Unif(Bd(0, σ)) instead, which are log-concave measures with covariance matrices Σµ+σ2Id/(d+1)
and Σν + σ2Id/(d+ 1), respectively. Letting Mσ

n , ρσn and M2,σ
µ,ν denote Mn, ρn and M2

µ,ν for these
perturbed measures, we observe that |ρn−ρ| ≤ σ2, |Mσ

n−Mn| ≤ 96σ2, and |M2,σ
µ,ν −M2

µ,ν | ≤ 48σ2.
Choosing σ2 = ∥Σµ∥op + ∥Σν∥op, we see that (19) and (20) hold for non-full dimensional µ and ν
as well with adjustments to c and C.

Combining (19) and (20), and noting that sorting to obtain the optimal permutation σ∗ and computing
the subdifferential ∂ρ(σ∗, θ) = ∇θρ(σ

∗, θ) takes O(n log n) operations, we have the result.

D.11 Proof of Proposition 8

By Lemma 1, we have that ŵp(θ) is L̂n-Lipschitz with L̂n := supθ∈Sd−1

{
(µ̂n|θ⊺x|p)1/p +

(ν̂n|θ⊺x|p)1/p
}

. This yields, via the LIPO convergence guarantee (Corollary 13 in [36]), that

max
θ∈Sd−1

ŵp(θ)− max
1≤i≤k

ŵp(Θi) ≤ 2L̂n

(
log(1/δ)

k

)1/d

(21)

with probability at least 1− δ.
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As in the previous section, we will first reduce our problem to the case where µ and ν are isotropic
log-concave. For 1 ≤ p ≤ 2, L̂n ≤ supθ∈Sd−1

{
(µ̂n|θ⊺x|2)1/2 + (ν̂n|θ⊺x|2)1/2

}
, so that it suffices

to bound L̂n for p ≥ 2. We have

L̂n = sup
θ∈Sd−1

{
(µ̂n|θ⊺x|p)1/p + (ν̂n|θ⊺x|p)1/p

}
≤ sup
θ∈Sd−1

{
(µ̂n|θ⊺(x− µx)|p)1/p + (ν̂n|θ⊺(x− νx)|p)1/p

}
+ sup

θ
|µ(θ⊺x)|+ sup

θ
|ν(θ⊺x)|

≤ ∥Σµ∥1/2op

[
sup

θ∈Sd−1

(µ̃|θ⊺x|p)1/p + sup
θ∈Sd−1

∣∣∣(µ̃n|θ⊺x|p)1/p − (|µ̃(θ⊺x)|p)1/p
∣∣∣]

+ ∥Σν∥1/2op

[
sup

θ∈Sd−1

(ν̃|θ⊺x|p)1/p + sup
θ∈Sd−1

∣∣∣(ν̃n|θ⊺x|p)1/p − (|ν̃(θ⊺x)|p)1/p
∣∣∣]

+ sup
θ

|µ(θ⊺x)|+ sup
θ

|ν(θ⊺x)|

≤ ∥Σµ∥1/2op

[
(2p)1/p + sup

θ∈Sd−1

∣∣∣(µ̃n|θ⊺x|p)1/p − (|µ̃(θ⊺x)|p)1/p
∣∣∣]

+ ∥Σν∥1/2op

[
(2p)1/p + sup

θ∈Sd−1

∣∣∣(ν̃n|θ⊺x|p)1/p − (|ν̃(θ⊺x)|p)1/p
∣∣∣]

+ sup
θ

|µ(θ⊺x)|+ sup
θ

|ν(θ⊺x)|

Now, applying [2, Theorem 4.2] with ϵ = 1/2 and t = 1, we get

P
(

sup
θ∈Sd−1

∣∣∣(µ̃n|θ⊺x|p)1/p − (|µ̃(θ⊺x)|p)1/p
∣∣∣ > 1

2

)
≤ P

(
sup

θ∈Sd−1

|µ̃n|θ⊺x|p − |µ̃(θ⊺x)|p| > 1

2p

)
≤ 1− e−cp

√
d (22)

under assumed constraints on n in the statement. An analogous bound holds for ν, which yields that

P
(
L̂n ≥ (∥Σµ∥1/2op + ∥Σν∥1/2op )

(
(2p)1/p +

1

2

)
+ sup

θ
|µ(θ⊺x)|+ sup

θ
|ν(θ⊺x)|

)
≤ e−cp

√
d

Recall that β = exp(−cp
√
d). Plugging (22) back into (21), we get

max
θ∈Sd−1

ŵp(θ)− max
1≤i≤k

ŵp(Θi) ≤ Lµ,ν

(
log(1/δ)

k

)1/d

(23)

with probability 1− δ − β.

Finally, we have maxθ∈Sd−1 ŵp(θ) = Wp(µ̂n, ν̂n), and

|Wp(µ̂n, ν̂n)−Wp(µ, ν)| ≤ Wp(µ̂n, µ) +Wp(ν̂n, ν).

By (5b) in Proposition 7, for any t > 0,

P

(
Wp(µ̂n, µ) ≥ αn,µ + t

)
≤ 2 exp

(
−Kµmin

(
n1/pt, n2/(2∨p)t2

))
,

P

(
Wp(ν̂n, ν) ≥ αn,ν + t

)
≤ 2 exp

(
−Kν min

(
n1/pt, n2/(2∨p)t2

))
,

where Kµ ≲ dod(1) max{∥Σµ∥1/2op , ∥Σµ∥op} and Kν ≲ dod(1) max{∥Σν∥1/2op , ∥Σν∥op}. Setting

γn(t) = 2 exp
(
−K−1

µ min
(
n1/pt, n2/(2∨p)t2

))
+ 2 exp

(
−K−1

ν min
(
n1/pt, n2/(2∨p)t2

))
,

we then have
P
(
|Wp(µ̂n, ν̂n)−Wp(µ, ν)| > αn,µ + αn,ν + 2t

)
≤ γn(t).

Combining the above display with (23), we get the desired result.
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E Additional Experiments and Details

Code for reproducing this paper’s experiments can be found at https://github.com/sbnietert/
sliced-Wp. Distance computations and plots for Figure 1 were performed on a cluster machine with
8 CPU cores and 64GB RAM in approximately 6 hours. Distance computations and plots for Figures
2 and 3 were performed on a cluster machine with 4 CPU cores and 20GB RAM in approximately 30
minutes. For Figure 3 (right), the lower bound on W1 is computed by only considering couplings
which leave the shared mass at 0 unmoved.

As an additional experimental setup along the lines of Figure 1, we consider Model (3): Gaussian
mixtures µ = 1

10

∑10
i=1 N (µ1,i,Σ1,i) and ν = 1

10N (µ2,i,Σ2,i), where means µ1,i and µ2,i are
respectively generated from N (1d, Id) and N (31d, Id), and the covariance matrices of the mixtures
are simulated as 1

kX
⊺X , where X is k× d data matrix generated from N (0, Id) and k is a uniformly

sampled integer from 1 to d. Conditioned on fixed random choices of µ and ν, we provide the
corresponding projection and sample complexity plots in Figure 4, with general trends matching
those of Figure 1. For both this experiment and Figure 1 in the main text, the population versions
of the distances where no closed forms exist were calculated by setting the number of samples and
Monte Carlo directions to 5000 and 2000 respectively. Computations and plots were performed on a
cluster machine with 8 CPU cores and 64GB RAM in approximately 12 hours.
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Figure 4:
∣∣Ŵ2

MC −W2
2(µ, ν)

∣∣ under Model (3).

Finally, we consider how the robustness properties of sliced Wp may impact its application to
generative modeling. Minimum distance estimation with respect to classic W1 serves as a theoretical
foundation for Wasserstein GANs [3, 22], a successful approach for training generative models.

(a) Sliced WGAN (b) WGAN-GP

Figure 5: Preliminary GAN experiments with uncontam-
inated (top) vs. contaminated (bottom) MNIST data.

Later work extended this approach to average
and max-sliced Wp [18, 17], albeit at a slightly
less direct level (in these papers, sliced dis-
tances are computed in a feature embedding
space rather than raw image space). In Fig-
ure 5, we display samples generated from open
source implementations of the standard Wasser-
stein GAN with Gradient Penalty (WGAN-GP)
[22] and an average-sliced WGAN [18] trained
for 20 epochs over the MNIST dataset [16] of
digit images with 10% random noise contamina-
tion, using default parameter settings. Computa-
tions were performed on a cluster machine with
4 CPU cores, a NVIDIA Tesla T4 GPU, and
20GB RAM in roughly 12 hours. While there
are differences between the produced samples,
the two GAN architectures seem too distinct to
draw any strong conclusions. Moreover, the ro-
bustness guarantees from Section 4 hold after
preprocessing that appears too expensive to per-
form for data of this scale, so it is not surprising
that the sliced WGAN reproduces random noise.
Translating methods and guarantees for standard
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WGAN robustification (e.g., [46]) to the sliced setting and thorough empirical comparisons are an
interesting avenue for future research beyond the scope of this paper.
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