
A Experiments on toy environment

A.1 Draw Two Balls environment

The DTB environment is inspired from the squeaking balls environment presented in [22], see Fig. 5.
In our variant, there is a bucket of purple, orange and pink balls to choose from. Purple balls are more
numerous than any other balls. The agent must pick two balls consecutively, and upon its choice, it
can obtain three possible goals. If the picked balls are (orange, orange) or (pink, orange), goal 1 is
reached. If the picked balls are (orange, pink), goal 1 and goal 2 are achieved. Otherwise, no goal is
reached and nothing happens, which we will call reaching goal 0. The achievement of the goals are
communicated to the agent via a characteristic sound is played upon the reaching of a goal as in [22].
Note that we purposely introduced goal ambiguity in the environment: if the agent selects the actions
(orange, pink), one does not know which goal it was aiming for without an hypothesis on the agent.
The DTB environment can then be adapted as a teacher-learner environment where the teacher can
demonstrate the goals and the learner can infer the goals from the demonstrations.

Fig. 5: The "Draw Two balls" (DTB) environment.

We use the same two phases training process in DTB as in FBS, and describe thereafter the details of
training on DTB.

A.2 Phase 1: Teacher pre-training

Naive/pedagogical teacher implementation. The naive teacher’s policy πT is conditioned on the
goal and parametrized by two probability distributions; the probability of selecting the first ball given
the goal g: P(first ball = x|g), x ∈ {orange, pink, purple}, and then the probability of selecting
the second ball given the first ball and the goal g: P(second ball = y|first ball = x, g). To get
trained, the teacher randomly samples a goal and plays the corresponding policy using the conditional
probabilities. The policy is then trained using a simple update rule: if the action sequence (pick the
first and second ball) leads to the achievement of the pursued goal, we increase the probability of
selecting this action sequence. Otherwise, we decrease this probability. For the pedagogical teacher,
we increase even more the probability of an action sequence that reaches the goal and for which the
teacher is able to infer the goal.

A.3 Phase 2: Training the Literal/Pragmatic Learner with Teacher’s demonstrations

Literal/pragmatic learner implementation. The probability of selecting an action sequence is
increased if the goal is correctly predicted and reached. As in FBS, pragmatism is implemented in
DTB identically to the pedagogy mechanism of the teacher described above.

A.4 Experiments and results

Phase 1: Qualitatively, what is the difference between a pedagogical and a naive demonstration?
In order to answer this question, we analyze the teachers’ policies. Fig. 6, presents the teacher policies
for goal 1, illustrating the difference between a naive and a pedagogical teacher on DTB environment.
Contrary to the naive teacher, the pedagogical teacher specifically avoids the demonstrations (orange,

14



Fig. 6: Analysis of naive vs pedagogical teachers on DTB for goal 1, which can be achieved by
selecting either (pink, orange) or (orange, pink). Colored bars represent the probability of selecting the
ball: on the left for the first action and on the right for the second action, given the first action. With a
pedagogical demonstration, there is no ambiguity regarding the pursued goal: the pedagogical teacher
always selects the unambiguous demonstration (pink, orange), while the naive teacher alternatively
selects (pink, orange) or (orange, pink).

orange) for goal 1 because it does not allow to directly detect goal 1 after the first ball is picked.
Moreover, it avoids the ambiguous demonstration (orange, pink), which reaches both goal 1 and
goal 2. By carefully selecting among all possible demonstrations for a goal, this pedagogical teacher
policy maximally avoids ambiguity in demonstrations. Quantitatively, this results in a Own Goal
Inference Accuracy (OGIA) of 82% for the naive teacher, and 100% for the pedagogical teacher.

Fig. 7: Left: Goal Inference Accuracy evaluated during training. Right: Goal Reaching accuracy
evaluated during training.

Phase 2: What are the benefits and drawbacks of using a pedagogical teacher over a naive
teacher? A pragmatic learner over a literal learner? We experiment with pedagogical/naive
tutors and pragmatic/literal learners just as in FBS, and present our results on Fig. 7. When a learner
is trained with a pedagogical tutor, it consistently learns faster, and can predict the goals from all
demonstrations, whereas it is not capable of disambiguating goal 1 from goal 2 with the (orange,
pink) demonstration from a naive tutor. Moreover, a learner benefits from pragmatism if the tutor is
pedagogical, resulting in the best tutor-learner combination. The pedagogical teacher + pragmatic
learner combination reaches a GRA of 100% twice faster than the naive teacher + literal learner
combination. Furthermore, the pedagogical+pragmatic combination reaches a GRA X GIA of 1 while
the naive+literal combination only reaches 0.82. The conclusions from these results are thus the same

15



as with FBS. Considering the difference of environments, policy architectures and training processes
between the experiments on DTB and FBS, it confirms that pedagogy and pragmatism do generally
improve learning from demonstrations.

B Implementation details

B.1 Fetch Block Stacking environment

As in [2], the environment goals are based on two predicates: the close and the above binary predicates.
For the 3 objects we consider, these predicates are applied to all permutations of object pairs: 6
permutations for the above predicate and 3 combinations for the close predicate due to its order-
invariance. A semantic configuration is the concatenation of these 9 predicates and represents spatial
relations between objects in the scene. In the resulting semantic configuration space {0, 1}9, the
agent can reach 35 physically valid configurations, including stacks of 2 or 3 blocks and pyramids.

To compute the reward, the agent in FBS compares its goal configuration to the current configuration
and derives a reward with the following procedure: it adds 1 to the reward for each pair of blocks
if the true predicates in the goal configuration match the current configuration. This means that the
reward can either be 0, 1 or 3 (2 is not achievable by associativity).

FBS is based on Mujoco which is licensed under the Apache License 2.0.

B.2 Architecture, training, and hyperparameters for the teacher and learner

B.2.1 Object-centered architecture

Both the teacher and learner share the same architectures, goal-conditioned RL training and hyperpa-
rameters. They are all based on the GANGSTR agent [3] which is a graph-based goal-conditioned
RL agent capable of learning to master all goals on the Fetch Block Stacking environment. A single
forward pass through this graph consists in three steps:

• Message computation is performed for each edge.

• Node-wise aggregation is performed for each node.

• Graph-wise aggregation is performed once for all the graph.

We use max pooling for the node-wise aggregation and summation for the graph-wise aggregation.

The object-centered architecture uses two shared networks, NNedge and NNnode, respectively for
the message computation and node-wise aggregation. Both are 1-hidden-layer networks of hidden
size 256. Taking the output dimension to be equal to 3x the input dimension for the shared networks
showed the best results. All networks use ReLU activations and the Xavier initialization. We use the
Adam optimizer [31], with a learning rate 10−3. The list of hyperparameters is provided in Table 4.

B.2.2 Hyperparameters

B.2.3 Goal-conditioned RL training

The RL training procedure relies on SAC [24] for the RL and HER [4] for goal relabelling. It uses
the Message Passing Interface [12] to exploit multiple processors. Each of the 24 parallel workers
maintains its own replay buffer of size 106 and performs its own updates. Updates are summed over
the 24 actors and the updated actor and critic networks are broadcast to all workers. Each worker
alternates between 10 episodes of data collection and 30 updates with batch size 256. To form an
epoch, this cycle is repeated 50 times and followed by the offline evaluation of the agent. Each agent
is trained for 100 epochs, totalling 24 ∗ 106 timesteps. Each training is performed 10 times with 10
random seeds and results report error bars (standard deviation).

As for the particular case of the learner, we provide additional details:

• Our implementation of SQIL [37] uses 50% experience and 50% demonstrations in the
replay buffer.

16



Table 4: Hyperparameters.

Hyperparam. Description Values.
nb_mpis Number of workers 24
nb_cycles Number of repeated cycles per epoch 50
nb_rollouts_per_mpi Number of rollouts per worker 10
rollouts_length Number of episode steps per rollout 40
nb_updates Number of updates per cycle 30
replay_strategy HER replay strategy final
k_replay Ratio of HER data to data from normal experience 4
batch_size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.99
τ Polyak coefficient for target critics smoothing 0.95
lr_actor Actor learning rate 10−3

lr_critic Critic learning rate 10−3

α Entropy coefficient used in SAC 0.2

• To generate demonstrations, the teacher randomly selects a starting state and makes sure
that the goal is achieved.

• When training the learner, the goal demonstrated by the teacher is selected randomly among
the goals discovered by the learner.

Regarding pedagogy and pragmatism, the extra reward ("pedagogical reward" and "pragmatic reward")
is set to 1.

B.2.4 BGI implementation details

Computation with continuous action policy. The BGI computation is performed using the policy
of the agent. In the case of Fetch Block Stacking and SAC, the actions are continuous. The policy
outputs a goal-conditioned normal distribution with as many dimensions as the dimension of the
action space. This distribution is sampled for goal-conditioned action selection. Given a vector of
actions and the goal-conditioned normal distribution of actions of a policy, one can compute the
probability of observing such action given each goal, and construct a probability distribution over the
goal space of observing such action. This is done using the cumulative distribution function of the
Normal distribution (probability of observing a value given the parameters of the distribution).

We generalize this computation to a trajectory rather than a single action by taking the product of
probabilities over the goal space and normalizing to a probability distribution.

Goal Prediction Neural Network details. In Sec.5.4, we experiment with a Goal Prediction Neural
Network that is trained offline to predict goals from demonstrations using a training dataset of
demonstration provided by the teacher, in order to provide a comparison to BGI inference. This neural
network takes a demonstration as input to a LSTM [30] layer with 512 hidden units, from which the
output is fed to a fully connected layer. The final outputs are goal probabilities. The predicted goal
of the demonstration is the one with the higher probability. The activation functions are ReLU. The
GPNN is trained until convergence (300 epochs) and then tested, just like BGI, on a separate test set
of 500 demonstrations, from which we report the results in Tab.2. We use a batch size of 256 and
Adam [31] as the optimizer, with a learning rate 10−3.

B.2.5 Baselines of learning from demonstrations

Baseline 1 (B1). For this baseline, we discard the experience collected by the learner in the replay
buffer and only use the demonstrations provided by the teacher to perform the same learning procedure
as the main experiment in Sec.5.2.

Baseline 2 (B2). In this experiment, we use the same learning procedure as in the main experiment in
Sec.5.2, but additionally perform a L2 regularization on the output action probabilities by using the
demonstrations as a target. This is done using a Mean Squared Error loss and Adam optimizer with a
learning rate of 10−3 and a batch size of 256.

17



Baseline 3 (B3). This baseline is the original version of SQIL [37], please refer to their paper for
implementation details.

B.2.6 Ambiguity Score details

We provide additional details about the Ambiguity Score and its computation. We manually created a
list of situations from which ambiguity in demonstrations exists. These situations are composed of a
starting state (the initial state of relations between blocks before the demonstration begins), and two
potentially ambiguous goals. The teacher then performs a demonstration for each of the two goals,
with the same initial state. If both demonstrations achieve the same goal (even though they were
aiming for different goals), then they are considered ambiguous.

The list of ambiguous situations we use to compute the results in the paper is the following:

• Initial state: green is close to red, blue further apart. Ambiguous goals: green is close to red
+ blue is close to green and green is close to blue + red further apart.

• Initial state: green is close to red, blue further apart. Ambiguous goals: green is close to red
+ blue is above green and blue is above green + red further apart.

• Initial state: green is above red, blue further apart. Ambiguous goals: green is above red +
blue is close to red and blue is close to green + green further apart.

• Initial state: green is above red, blue further apart. Ambiguous goals: green is above red +
blue is close to red and blue is close to red + green further apart.

• Initial state: green is above red, blue further apart. Ambiguous goals: green is above red +
blue is close to green and blue is close to green + red further apart.

• Initial state: green is close to red, blue further apart. Ambiguous goals: green is close to
red + blue is above green and red in a pyramid and blue is close to red and green + green is
close to red.

Note that these ambiguous situations are augmented with all possible permutations of block colors.

18



B.2.7 Additional results with less than 100 demonstrations per goal

The results with 10 demonstrations per goal show that none of the approaches are able to master all
goals. However, the best combination is still a pedagogical teacher with a pragmatic learner, as Fig. 8
shows.

Fig. 8: Results for FBS environment (Goal Reaching Accuracy (GRA) with 10 demonstrations per
goal). Stars indicate significance (tested against naive+literal).

19


	Experiments on toy environment
	Draw Two Balls environment
	Phase 1: Teacher pre-training
	Phase 2: Training the Literal/Pragmatic Learner with Teacher’s demonstrations
	Experiments and results

	Implementation details
	Fetch Block Stacking environment
	Architecture, training, and hyperparameters for the teacher and learner
	Object-centered architecture
	Hyperparameters
	Goal-conditioned RL training
	BGI implementation details
	Baselines of learning from demonstrations
	Ambiguity Score details
	Additional results with less than 100 demonstrations per goal



