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Figure A1: OCLR Model architecture (copied from the main text). The model is a U-Net
architecture with a Transformer bottleneck. It takes optical flow as input and extracts spatial features
by CNN encoders. A transformer encoder jointly processes spatio-temporal features across all
frames, followed by a transformer decoder that determines the layer representations. Each learnable
query vector in the transformer decoder is associated to one object and used to infer its layer depth.
Additionally, the cross-attention maps from the last transformer decoder are extracted and upsampled
by CNN decoders to infer amodal segmentation for the moving objects. Note, the skip connections
from the CNN encoders to decoders are not shown.

A Architecture and implementation details

In this section, we describe the architecture of the OCLR model in detail.

A.1 CNN backbone

As shown in Figure A1, we adopt a U-Net architecture to extract the visual features for each input
frame, and to upsample the feature map output from the transformer-based bottleneck. The details of
the U-Net backbone are provided in Table A1.

Table A1: U-Net architecture. The U-Net uses a CNN as the backbone. All convolution operations
are followed by an Instance Normalisation and a ReLU activation, except for the "de-output" stage in
the U-Net decoder.

Encoder Decoder

stage operation output size stage operation output size

en-input − 2× 128× 224 de-input − 512× 8× 14

en-conv1 (3× 3, 32) ×2 32× 128× 224 de-convT 4 stride = 2, 256 256× 16× 28
en-mp1 maxpool, stride = 2 32× 64× 112 de-sc4 en-conv4 skip connect. 512× 16× 28

− − − de-conv4 (3× 3, 256) ×2 256× 16× 28
en-conv2 (3× 3, 64) ×2 64× 64× 112 de-convT 3 stride = 2, 128 128× 32× 56
en-mp2 maxpool, stride = 2 64× 32× 56 de-sc3 en-conv3 skip connect. 256× 32× 56

− − − de-conv3 (3× 3, 128) ×2 128× 32× 56
en-conv3 (3× 3, 128) ×2 128× 32× 56 de-convT 2 stride = 2, 64 64× 64× 112
en-mp3 maxpool, stride = 2 128× 16× 28 de-sc2 en-conv2 skip connect. 128× 64× 112

− − − de-conv2 (3× 3, 64) ×2 64× 64× 112
en-conv4 (3× 3, 256) ×2 256× 16× 28 de-convT 1 stride = 2, 32 32× 128× 224
en-mp4 maxpool, stride = 2 256× 8× 14 de-sc1 en-conv1 skip connect. 64× 128× 224

− − − de-conv1 (3× 3, 32) ×2 32× 128× 224
en-bottleneck (3× 3, 512) ×2 512× 8× 14 de-output 3× 3, 3 3× 128× 224
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A.2 Transformer-based bottleneck

In Figure A2, we provide pseudo-code for obtaining cross-attention feature maps and the layer depth
order in the Transformer-based bottleneck.

Figure A2: Pseudo-code for Transformer-based bottleneck.

A.3 Training details

The model is trained on the synthetic dataset from about 120k frames. The input batch size is set to
2, and each input sequence has 30 frames (optical flow). During training, we apply a boundary loss
weight λbound = 0.2 and an ordering loss weight λorder = 0.05. The learning rate is linearly warmed
up to 5× 10−5 during the initial 40k iterations, followed by 50% decays every 80k iterations. All the
models are trained on a single NVIDIA Tesla V100 GPU with 32G memory, and the full convergence
takes approximately 5 days with 600k iterations.

B Synthetic data generation pipeline

In this section, we elaborate on our synthetic data generation process, with more implementation
details on background and foreground objects, dataset distribution, together with several examples.

B.1 Background

Real background video. As shown in Figure B3, we select real-world background videos from
copy-right-free sources, followed by frame-wise pre-processing including random cropping, colour
jittering, flipping and reflections. Augmented video frames are then sampled as backgrounds, in a
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Figure B3: Synthetic data generation.

chronological or reverse chronological order, starting from a random frame with several different
frame rates.

Homography-transformed image. Apart from using real videos, we generate background frames
by randomly sampling images from the PASS dataset [1]. After a similar pre-processing to that for
videos above, the augmented image is set as frame 0. Backgrounds for later frames are propagated by
applying homography transformations to simulate the camera motion.

B.2 Foreground objects

Shapes and textures. As shown in Figure B3, the foreground objects are obtained from two sources,
one is by generating polygon shapes by connecting 3 to 8 points with random coordinates as vertices,
and the other is by taking real object masks from the YouTube-VOS 2018 training set, followed by
random resizing and rotation. Both object shapes are textured by pre-processed PASS images to form
object sprites.

Foreground object motion simulation. At frame 0, the sprites are initialised at random positions.
(In Figure B3, they are initialised in the middle of the frame for demonstration purposes.) We
further apply two transformations to simulate object motion, namely homography transformations
and thin-plate spline mappings. Homographies include rotations, scaling, perspective distortions
and spatial translations. Thin-plate splines transform coordinates according to the motion of control
points and include elastic-like stretching. For the examples shown in Figure B3: for the polygon
sprite, the top and bottom left vertices are moving control points; while for the real duck-shaped
object, the moving point is at the “tail” of the duck.

Stationary object. In Figure B5, the first sequence (from the top) illustrates an example of a
stationary object. Between frames t1 and t2, the object in layer 2 has no relative motion with respect
to the background. As a result, it disappears in the flow field at frame t1. In practise, stationary

5



objects are achieved by matching object transformations to background motions (therefore only
applicable for homography backgrounds).

B.3 Layer composition

In the previous sections, we have explained how objects and backgrounds can be simulated indepen-
dently. The synthetic video sequence is obtained by a layer composition process that combines all
the introduced components via a back-to-front blending process as shown in Figure B4. Examples
of composited sequences are given in Figure B5. We also refer an animated layer composition
demonstration and more example sequences to the supplementary video.

Layer 0
(front)

Layer 1

Layer 2

Background 
layer

(back)

Layer 1

Layer 1 + 2 + bg

Layer 2 + bg

RGB frame

Layer overlay process
front

back
result

Layer 0

Figure B4: Layer composition from back to front. The order from front to back: Layer 0, Layer 1,
Layer 2, Background layer.

B.4 Dataset distribution

In Table B2, we provide the details of the video datasets generated by the simulation pipeline.
Overall, there are three major pipeline settings: background types, object types and object motions.
For all synthetic datasets, an equal proportion of homography transformed backgrounds and real
video backgrounds are generated. Similarly, we evenly split sequences with polygon and real object
sprites. Regarding object motion simulations, we emphasize the object non-rigidness by applying a
combination of homography transformations and thin-plate splines to most sequences (around two
times more than sequences with only homography transformations.) Moreover, we randomly select
one-third of all sequences and introduce stationary objects for 1 to 5 frames.

On the dataset splits: Syn-train is used as the main dataset to train the OCLR flow-based model,
consisting of 4608 sequences with over 138k frames. Syn-single and Syn-Val are mainly used for
validation in ablation studies. The former contains 256 single-object-only sequences with a total
7.7k frames, and is treated as a simplified dataset used for tuning synthetic pipeline settings. On the
other hand, Syn-Val consists of 384 multi-object sequences (around 12k frames) with 1, 2, 3 objects
in equal proportions. It is mainly used for validating multi-object segmentation performance, with
both modal and amodal results reported.

C RGB-based test-time adaptation

In this section, we detail the procedure for applying RGB-based sequences as test-time adaptation.
Specifically, given the predicted modal segmentations from our OCLR (flow-only) model, we can
adopt a similar mask propagation process to that in self-supervised tracking [6, 9, 27]. Overall, the
test-time adaptation process proceeds in three stages: first, finetuning a DINO-pretrained vision
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Figure B5: Examples of synthetic data with ground-truth annotations. From top to bottom: 2-objs
sequence with stationary objects, 2-objs sequence with occlusions, 3-objs sequence with polygon
sprites, 3-objs sequence with real object sprites. For demonstration purposes, the first sequence (from
the top) shows three consecutive frames, whereas for the rest sequences, three frames are selected at
fixed time intervals.
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Table B2: Synthetic dataset distribution. homo-bg: homography transformed image background;
real-bg: real video background; homo: homography transformations only; homo+tps: homography
transformations and thin-plate spline; polygon: polygon sprites; real-obj: real object sprites. Unless
specified otherwise, all values in the table denote the number of sequences (each with 30 frames).

Pipeline settings Syn-Train Syn-Single Syn-Val

Background Obj. motion Obj. type 1-obj 2-objs 3-objs Total 1-obj 1-obj 2-objs 3-objs Total

homo-bg homo polygon 96 96 96 288 16 8 8 8 24
homo-bg homo real-obj 96 96 96 288 16 8 8 8 24
homo-bg homo+tps polygon 288 288 288 864 48 24 24 24 72
homo-bg homo+tps real-obj 288 288 288 864 48 24 24 24 72
real-bg homo polygon 96 96 96 288 16 8 8 8 24
real-bg homo real-obj 96 96 96 288 16 8 8 8 24
real-bg homo+tps polygon 288 288 288 864 48 24 24 24 72
real-bg homo+tps real-obj 288 288 288 864 48 24 24 24 72

Total number of sequences 1536 1536 1536 4608 256 128 128 128 384

Total number of frames 46.8k 46.8k 46.8k 138.2k 7.7k 3.8k 3.8k 3.8k 11.5k

transformer (ViT) [2]; second, mask selection and propagation; and, third, dynamic refinement during
mask propagations.

Finetuning of DINO-pretrained vision transformer. Given a video sequence with T RGB frames,
VRGB = {I1, . . . , IT }, It ∈ R480×832×3, we can compute their RGB features with a pre-trained
self-supervised vision transformer, namely, DINO-ViT-S/8 [2] (patch sizes 8× 8).

FRGB = {f1, . . . , fT } = {ΦDINO(I1), . . . ,ΦDINO(IT )} (1)
where ft ∈ R60×104×384.

In order to adapt the DINO model for our purpose, we use the predicted modal masks from our
OCLR (flow-based) model as noisy annotations to finetune the last two layers of the vision trans-
former (ViT) by noise contrastive estimation (NCE). In detail, for each object mask in frame t, we
define a tri-map with positive Pt, negative Nt and uncertain Ut regions, where uncertain regions are
normally a 5-pixel wide exterior to the object mask.

Considering two frames t and t+ n (n ∈ [1, 4]), for each pixel in the positive region in one frame,
e.g.ft,j (j ∈ Pt), we can compute its cosine similarities to all features in the positive region of Pt+n,
and treat this as the positive score:

PSj =
∑

k∈Pt+n

ft,j · ft+n,k (2)

Similarly, the negative sample is defined as

NSj =
∑

k′∈Nt+n

ft,j · ft+n,k′ (3)

The process is repeated for all pixels in Pt region to give an averaged InfoNCE loss

LNCE = − 1

|Pt|
∑
j∈Pt

log
PSj

PSj +NSj
(4)

For each test sequence, we apply this contrastive loss to finetune the DINO-pretrained ViT by an
Adam optimizer with a learning rate of 1× 10−5 that linearly decays over 1k iterations.

Mask selection and propagation. After finetuning the DINO model, we can use it to propagate the
predicted segmentation masks from our OCLR (flow only) model. Specifically, the predictions for
each pixel at frame t can be obtained by computing its nearest neighbour pixels in previous frames,
and copying their labels. Note that, this is exactly the same procedure as in [6], we simply denote the
propagation process as “Mask-prop” here:

M̂t = Mask-prop(M̂t−1, . . . , M̂t−n) (5)
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where M̂t−1, . . . , M̂t−n refer to the previously obtained results within a temporal window size n.

In contrast to the conventional semi-supervised VOS scenario, where the groundtruth mask at frame
0 is given for propagation, in our work, no groundtruth segmentation mask is provided. Instead,
we pick one key frame from our OCLR predictions, and then propagate the masks of those objects
bi-directionally. The choice of the starting frame is based on the temporal coherence of the optical
flow segmentation predictions. In the following, we describe the process for discovering frames with
the most coherent predictions temporally:

1. We measure the temporal coherence by propagating our OCLR prediction (M̂f
t−1) to the next

frame, i.e. M̂t = Mask-prop(M̂f
t−1), and compute the L1 distance between the propagation

and our OCLR prediction at frame t, i.e. Lt = |M̂f
t − M̂t|.

2. We take a frame-wise average of L1 loss as Lmean = 1
T

∑T
t=1 Lt, and find a set of temporally

consistent frames {ts} with Lts < Lmean.

3. Among the frame set {ts}, one frame tk with the lowest L1 loss (i.e. Ltk = min ({Lt})) is
then selected as the starting frame for mask propagations .

The motivation behind this selection process is that, at frames with lower L1 loss, the predicted mask
by our OCLR model is more consistent with those in adjacent frames. We then start a bi-directional
mask propagation from the key frame tk with a temporal window size n = 7.

Dynamic refinement. Apart from using the prediction of frame tk as starting frame, we also fuse
the other selected frames {ts} into the propagation process for refinement. Specifically, if a new
frame t belongs to the set {ts}, the propagation result M̂t would be averaged with the mask predicted
by our flow-based model M̂f

t . The resultant mask, i.e. (M̂t + M̂f
t )/2, would then be applied to

propagate later frames.

By utilizing masks predicted by our flow-based model, the temporally accumulated drifting issue can
be largely alleviated, especially on the object boundaries, as they are usually clearly delineated in our
OCLR flow-based model. We refer this process as dynamic refinement, short for Dyn. Ref.

Conditional random field (CRF). Following the common practices in video object segmentation
tasks, we adopt CRF as the final post-processing step that utilizes RGB information to refine mask
predictions

D Datasets

D.1 Dataset details

To evaluate our multi-layer model, we benchmark on multiple popular datasets on both single and
multiple object segmentation tasks.

DAVIS2016 [21] consists of 50 high-resolution video sequences (30 for training and 20 for validation)
with 3455 frames, the primary moving objects in the scene have been annotated at the pixel level. We
report our model performance on the validation set at a 480p resolution.

SegTrackv2 [13] contains 14 sequences and 947 fully-annotated frames, with challenging cases such
as occlusions, fast motion and complex shape deformations. Even though multiple objects may be
annotated, the community often treats SegTrackv2 as a benchmark for single object segmentation [7,
30], by grouping objects in the foreground.

FBMS-59 [19] contains 59 sequences with a total of 720 pixel-level annotations provided every
20 frames. Similar to SegTrackv2, some multi-object sequences are relabelled for single object
segmentation evaluations.

Moving Camouflaged Animals (MoCA) [12] focuses on segmenting camouflaged animals moving
in natural scenes. It contains 141 high-resolution video sequences annotated by tight bounding boxes
for every 5th frame. Following [29], we adopt a filtered MoCA dataset by excluding videos with
predominantly no locomotion, resulting in 88 video sequences and 4803 frames
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DAVIS2017 [22] extends DAVIS2016 dataset by introducing additional videos with multi-object
contents, resulting in a total of 150 sequences with over 10k pixel-level annotations. In particular,
DAVIS2017 is a common benchmark for semi-supervised video object segmentation (VOS) tasks
(i.e. with ground-truth first-frame annotation provided). In this work, the model performance is not
directly evaluated on DAVIS2017, where there are sequences with common motion objects that are
indistinguishable based on purely flow information. Instead, we adopt a curated DAVIS2017-motion
dataset, with details provided in the next section.

Overall, we adopt a Hungarian matching process to associate layer predictions with the ground-truth
annotations in DAVIS2016, MoCA, DAVIS2017-motion and our synthetic datasets. For evaluations
on SegTrackv2 and FBMS-59, we instead group all layers together as a single foreground object.

D.2 DAVIS2017-motion curation

As objects in common motion cannot be distinguished purely from motion cues, we re-annotate the
original DAVIS2017 dataset by grouping jointly moving objects to form a new DAVIS2017-motion
dataset for benchmarking motion-based object segmentation. In this section, we first provide a
definition of common motion, followed by some curation details.

Common motion. In this work, the concept of object common motion is defined based on two
necessary criteria: First, objects are or appear to be spatially connected throughout the whole
sequence. More specifically, pixel-level masks for different objects are next to each other for all
frames. Second, objects must share the same motion trends. A quick judgement can be made by
observing if there is a noticeable flow discontinuity at the common boundary.

Curation details. As shown in Figure D6, based on the rules defined above, we group the an-
notations of jointly moving objects as a whole, resulting in the new DAVIS2017-motion dataset.
Note that, as DAVIS2017-motion is adopted mainly for validation purposes, we re-annotate only the
validation sequences in the original DAVIS2017. The full list of curated sequences includes: bmx-
trees, horsejump-high, india, kite-surf, lab-coat, mbike-trick, motocross-jump, paragliding-launch,
scooter-black, shooting, soapbox. We will release the curated dataset, together with the re-annotation
codes for further research.
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Figure D6: Curated DAVIS2017-motion dataset. Note that, in the original DAVIS2017 dataset (3rd
row), the objects have been annotated based on their semantic categories, however, in our curated
DAVIS2017-motion dataset, we join those objects with common motion as a whole, for example, in
the 1st, 4th, 5th columns, the person and motorbike are originally annotated as two different classes,
while in our curated dataset, they are labelled as a whole, as they follow the same motion.
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E Ablation study

In this section, we present more details on our ablation studies, with a single parameter varied every
time. Firstly, we conduct experiments on the pipeline for data simulation, to get the best Sim2Real
performance on single moving object segmentation; Secondly, we extend the simulation procedure
to multiple objects, and investigate more training details, for example, normalisation, loss function,
number of frames, etc; Thirdly, we repeatedly train several motion segmentation models with the same
optimal hyperparameters to verify our model stability. Fourthly, we demonstrate the scalability of our
method by training on an increasing number of synthetic frames. Finally, we show the effectiveness
of our model by comparing it with other supervised models under the same supervision.

E.1 Synthetic dataset

We simulate the videos with only a single object and conduct experiments to understand several key
choices in the pipeline, for example, motion representation and background motion. As shown in
Table E3, while comparing Ours-A and Ours-B, we observe that training on RAFT flows is beneficial,
resulting in higher performance on all datasets. We conjecture that training on RAFT flows leads
to a narrower Sim2Real domain gap, as flows in these test sets also come from RAFT. In addition,
introducing real videos as backgrounds brings further performance gain, as shown in Ours-B and
Ours-C. Therefore, we treat the settings in Ours-C as the default for our synthetic data pipeline.

Table E3: Settings for training in synthetic dataset pipeline. Note that, all the flows on test set are
computed with RAFT.

Synthetic Training Settings J (Mean) ↑
Experiment Flow Background motion DAVIS 2016 SegTrackv2 Syn-Single

Ours-A GT Homography 67.4 52.3 78.0
Ours-B RAFT Homography 68.6 58.5 84.7
Ours-C RAFT Homography + Real video 72.0 62.3 91.4

E.2 Training setting

Instance normalisation. As shown in Table E4, while evaluating the multi-layer models (N = 3) on
single object (DAVIS2016) and multi-object (DAVIS2017-motion, Syn-multi) segmentation datasets,
the model with instance normalizations (Ours-G) consistently outperforms their counterparts (Ours-
D), showing the importance of using instance normalization.

Hungarian matching. In our proposed architecture, the learnable object queries are permutation
invariant, that is to say, each can correspond to different layers, and we use Hungarian matching to
assign the layer to each object query. Here, we ablate the Hungarian matching procedure, and instead
force each query to predict a layer at fixed order, e.g. 1st query is always associated with the front
layer. As indicated by the result, such design significantly degrades the performance, as shown in
Table E4 Ours-E.

Training by amodal segmentations. In Ours-F, we train the model only by modal masks in
the synthetic dataset. The performance has dropped significantly, suggesting that explicit amodal
supervision helps the network to learn object permanence within layers.

Boundary loss. While comparing between Ours-G and Ours-I, we observe a performance boost
from applying boundary loss. This validates our assumption that focusing on object boundaries can
help the model to learn the information on object shapes and layer orders from optical flows.

Number of frames. Lastly, we compare our default model (Ours-G) with a variant that takes in a
reduced number of input frames (Ours-H, T = 15), not surprisingly, a longer temporal input tends to
also give slightly higher overall performance.

Optical flow methods. Since our OCLR model takes optical flows as the only input, the resultant
performance is largely influenced by the quality of optical flow estimations, as demonstrated in
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Table E4: Settings for training parameters. IN: Instance Normalisation; HM: Hungarian matching;
Amodal: Training on amodal mask (vs. modal mask); λbound: weight on boundary loss; T : number
of input frames. Syn-Val (M|A) corresponds to modal and amodal results on synthetic dataset.
Ours-G denotes a default baseline setting compared to others.

Training settings J (Mean) ↑
Model IN HM Amodal λbound T DAVIS2016 DAVIS2017-motion Syn-Val (M|A)

Ours-D ✗ ✓ ✓ 0.2 30 67.6 48.7 83.5 | 83.0
Ours-E ✓ ✗ ✓ 0.2 30 67.4 44.2 70.6 | 71.0
Ours-F ✓ ✓ ✗ 0.2 30 69.2 50.5 81.1 | 76.9
Ours-G ✓ ✓ ✓ 0.2 30 72.1 54.5 85.6 | 84.7

Ours-H ✓ ✓ ✓ 0.2 15 71.3 53.5 82.8 | 83.0
Ours-I ✓ ✓ ✓ 0 30 71.5 54.1 80.9 | 81.6

Table E5. The highest performance of Our-G verifies our choice of the RAFT method for optical flow
predictions.

Table E5: Choice of optical flow methods.

J (Mean) ↑
Model Optical flow DAVIS2016 DAVIS2017-motion

Ours-G RAFT [25] 72.1 54.5
Ours-J ARFlow [15] 54.6 39.5
Ours-K MaskFlownet [31] 66.0 49.0

E.3 Repeating experiments

In Table E6, we demonstrate multi-object segmentation results by re-training the model several times
based on the default setting (Ours-G in Table E4). As can be observed, there are minimal performance
differences between repeated experiments (within 1%), which validates the reliability of our results.

Table E6: Repeating experiments on multi-object segmentation tasks.

J (Mean) ↑
Experiment DAVIS2016 DAVIS2017-motion Syn-Val (M|A)

1 72.1 54.5 85.6 | 84.7
2 72.0 54.1 85.2 | 84.3
3 72.8 54.3 84.9 | 84.5
4 72.1 54.0 85.9 | 85.2

Mean 72.3 54.2 85.4 | 84.7
Std. ±0.3 ±0.2 ±0.4 | ±0.3

E.4 Scalability of model performance

Table E7 demonstrates how our model performance scales with the amount of synthetic data. As
more synthetic frames are introduced during training, there is a clear increase in both DAVIS2016
and DAVIS2017-motion performance. Moreover, Ours-O and Ours-P correspond to models that are
directly trained on real datasets (i.e. DAVIS2017-motion). Limited to the number of manual annota-
tions, these models achieve lower performance than synthetic-supervised counterparts, particularly in
multi-object segmentation.
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Table E7: Model performance scales with the size of training sets. “with aug.” stands for
augmentations applied on the input flows including random cropping, rotations, jittering, dropouts,
etc.

J (Mean) ↑
Model Training set No. of training frames DAVIS2016 DAVIS2017-motion

Ours-L Syn-train subset 43.2k 69.6 51.2
Ours-M Syn-train subset 69.1k 70.2 51.5
Ours-N Syn-train subset 115.2k 71.2 53.7
Ours-G Syn-train 138.2k 72.1 54.5

Ours-O DAVIS2017-motion 4.2k 66.7 42.8
Ours-P DAVIS2017-motion 4.2k (with aug.) 69.4 45.3

E.5 Effectiveness of the OCLR model

Table E8 provides a comparison between our OCLR model and two other supervised models on
multi-object segmentation. All methods take optical flow as the only input and are supervised by
either the real dataset (DAVIS2017-motion) or our synthetic data (Syn-train). Motion Grouping (sup.)
represents a supervised version of Motion Grouping [29], while the standard Mask R-CNN [5] model
adopted follows the default settings in the original paper, with a ResNet-50-FPN backbone trained
from scratch. In this case, the Mask R-CNN model takes optical flows as the only input, and is
therefore referred to as Mask R-CNN (flow-only).

Table E8: Comparison of different models under real or synthetic supervision. All models take
optical flow at the only input. During inference, the 1st frame GT is not available ( i.e., unsupervised
VOS). In column Sup. (supervision), “Syn.” and “Real” represent synthetic data supervision and
real-data supervision, respectively.

J (Mean) ↑
Model Sup. Training set No. of training frames DAVIS2017-motion

Motion Grouping (sup.) Real Syn-train 4.2k 32.7
Mask R-CNN (flow-only) Real Syn-train 4.2k 40.3

OCLR (flow-only) Real Syn-train 4.2k 42.8

Motion Grouping (sup.) Syn. DAVIS2017-motion 138.2k 44.9
Mask R-CNN (flow-only) Syn. DAVIS2017-motion 138.2k 50.4

OCLR (flow-only) Syn. DAVIS2017-motion 138.2k 54.5

From Table E8, it can be observed that: (i) Our OCLR outperforms both benchmark models under
both supervision scenarios, particularly under synthetic supervision. When visualising the qualitative
results, we found that Mask R-CNN demonstrates inferior performance in comparison to OCLR,
particularly when there is noisy optical flow, temporally stationary objects, or heavy object deforma-
tions; while in contrast, OCLR is designed with the ability to infer amodal masks, and thus to handle
situations with occlusion happening; (ii) Motion Grouping originally designed for self-supervision
does not perform well when direct supervision is applied; (iii) Compared to supervision provided by
a limited amount of real data (4.2k frames), scalable synthetic supervision (138.2k frames) leads to
general performance improvements.

E.6 Settings for test-time adaptation

Mask propagation. According to Table E9, results obtained by RGB-based mask propagation from
a key frame (Ours-Q) surpass the performance of the flow-only model (Ours-G). This validates the
benefits of introducing RGB information during test time.

Dynamic refinement. In Ours-R, the dynamic refinement is applied to the propagation process by
introducing segmentation outputs from our OCLR model. Consequently, this additional object mask
information on average leads to a 2% improvement in performance.
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Finetuning of vision transformer By comparing Ours-S with Ours-R, we notice a further perfor-
mance boost by per-sequence finetuning of the DINO-pretrained vision transformer, and the settings
in Ours-S contribute to the highest test-time adaptation result.

Conditional random field (CRF) Finally, by comparing between Ours-T with Ours-S, applying
CRF as the post-processing step further improves the overall performance.

Table E9: Settings for test-time adaptation.

Training Settings J (Mean) ↑
Model Mask Prop. Dyn. Ref. Fine-tuning CRF DAVIS2016 DAVIS2017-motion

Ours-G ✗ ✗ ✗ ✗ 72.1 54.5
Ours-Q ✓ ✗ ✗ ✗ 76.5 60.9
Ours-R ✓ ✓ ✗ ✗ 77.4 63.5
Ours-S ✓ ✓ ✓ ✗ 78.9 63.9
Ours-T ✓ ✓ ✓ ✓ 80.9 65.2

F Quantitative results

Table F10 summarizes performance on single object video segmentation benchmarks. For camou-
flaged object detection on MoCA, Table F11 provides a more detailed quantitative comparison across
different approaches. The multiple object video segmentation results on DAVIS2017-motion are
shown in Table F12.

Table F10: Quantitative comparison single object video segmentation benchmarks. Results from
more methods are quoted compared to the table in the main text. “HA” stands for human annotations.
In column Sup. (supervision), “None”, “Syn.”, “Real” represent self-supervision, synthetic data
supervision, and real data supervision, respectively. Bold represents the state-of-the-art performance
(excluding our test-time adaptation results, which are labelled as blue instead).

Training Settings J (Mean) ↑
Model HA Sup. RGB Flow DAVIS2016 SegTrackv2 FBMS-59

SAGE [28] ✗ None ✓ ✓ 42.6 57.6 61.2
NLC [4] ✗ None ✓ ✓ 55.1 67.2 51.5
CUT [8] ✗ None ✓ ✓ 55.2 54.3 57.2
FTS [20] ✗ None ✓ ✓ 55.8 47.8 47.7
CIS [30] ✗ None ✓ ✓ 59.2 45.6 36.8

CIS (w. post-process.) [30] ✗ None ✓ ✓ 71.5 62.0 63.5
Motion Grouping [29] ✗ None ✗ ✓ 68.3 58.6 53.1

SIMO [11] ✗ Syn. ✗ ✓ 67.8 62.0 −
OCLR (flow-only) ✗ Syn. ✗ ✓ 72.1 67.6 65.4
OCLR (test. adap.) ✗ Syn. ✓ ✓ 80.9 72.3 69.8

SFL [3] ✓ Real ✓ ✓ 67.4 − −
FSEG [7] ✓ Real ✓ ✓ 70.7 61.4 68.4
LVO [26] ✓ Real ✓ ✓ 75.9 57.3 65.1
ARP [24] ✓ Real ✓ ✓ 76.2 57.2 59.8

COSNet [16] ✓ Real ✓ ✗ 80.5 49.7 75.6
MATNet [32] ✓ Real ✓ ✓ 82.4 50.4 76.1
3DC-Seg [17] ✓ Real ✓ ✓ 84.3 − −

D2Conv3D [23] ✓ Real ✓ ✗ 85.5 − −

G Qualitative results

Figure G7, G8 and G9 illustrate our model predictions on Syn-Val, SegTrackv2 and FBMS-59, respec-
tively. We also demonstrates qualitative results on synthetic and real datasets in the supplementary
video.
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Figure G7: Qualitative results on our synthetic dataset Syn-Val. Both modal and layer-wise amodal
predictions are shown.
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Table F11: Quantitative comparison of camouflaged object detection on MoCA. “HA” stands for
human annotations. In column Sup. (supervision), “None”, “Syn.”, “Real” represent self-supervision,
synthetic data supervision, and real data supervision, respectively. Bold represents the state-of-the-art
performance.

Training settings Detection Success Rate ↑
Model HA Sup. RGB Flow J ↑ τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 mean

CIS [30] ✗ None ✓ ✓ 49.4 0.556 0.463 0.329 0.176 0.030 0.311
CIS (w. post-process.) ✗ None ✓ ✓ 54.1 0.631 0.542 0.399 0.210 0.033 0.363
Motion Grouping [29] ✗ None ✗ ✓ 63.4 0.742 0.654 0.524 0.351 0.147 0.484

SIMO [11] ✗ Syn. ✗ ✓ 68.6 0.772 0.717 0.623 0.464 0.255 0.566
Ours (flow-only) ✗ Syn. ✗ ✓ 70.9 0.795 0.743 0.658 0.508 0.289 0.599
Ours (test. adap.) ✗ Syn. ✓ ✓ 67.5 0.789 0.717 0.615 0.445 0.230 0.559

COD [12] ✓ Real ✗ ✓ 44.9 0.414 0.330 0.235 0.140 0.059 0.236
COD (two-stream) ✓ Real ✓ ✓ 55.3 0.602 0.523 0.413 0.267 0.088 0.379

COSNet [16] ✓ Real ✓ ✗ 50.7 0.588 0.534 0.457 0.337 0.167 0.417
MATNet [32] ✓ Real ✓ ✓ 64.2 0.712 0.670 0.599 0.492 0.246 0.544
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Figure G8: Qualitative results of single object video segmentation on SegTrackv2.
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Table F12: Quantitative comparison of multi-object video segmentation on DAVIS2017-motion.
Results for semi-supervised methods are obtained by re-running source codes on the DAVIS2017-
motion. Note that, the compared methods here are trained without using any human annotations
during training, in particular, Motion Grouping (sup.), Mask R-CNN (flow-only) and OCLR models
are supervised by only synthetic data, and other approaches are trained with self-supervision. Bold
represents the state-of-the-art performance (excluding our test-time adaptation results, which are
labelled as blue instead).

Training settings DAVIS2017-motion performance

Model 1st-frame-GT RGB Flow J&F ↑ J (Mean) ↑ F (Mean) ↑
Motion Grouping [29] ✗ ✗ ✓ 35.8 38.4 33.2

Motion Grouping (sup.) ✗ ✗ ✓ 39.5 44.9 34.2
Mask R-CNN (flow-only) ✗ ✗ ✓ 50.3 50.4 50.2

OCLR (flow-only) ✗ ✗ ✓ 55.1 54.5 55.7
OCLR (test. adap.) ✗ ✓ ✓ 64.4 65.2 63.6

CorrFlow [10] ✓ ✓ ✗ 54.0 54.2 53.7
UVC [14] ✓ ✓ ✗ 65.5 66.2 64.7
MAST [9] ✓ ✓ ✗ 70.9 71.0 70.8
CRW [6] ✓ ✓ ✗ 73.4 72.9 74.1

MAMP [18] ✓ ✓ ✓ 75.8 76.4 75.2
DINO [2] ✓ ✓ ✗ 78.7 77.7 79.6
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Figure G9: Qualitative results of single object video segmentation on FBMS.

H Discussions on ethic guideline

H.1 Potential negative societal impacts

In our work, the main source of information is from our synthetic dataset, which is generated based
on textures from the PASS dataset (without any personally identifiable information) and only shapes
from the YouTubeVOS2018 training sets. These procedures ensure that almost no human information
is introduced to our network. Furthermore, we advocate a segmentation method mainly utilizing
motion cues, represented by optical flows. The textures in optical flow are only related to the motion
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fields and object shapes, without any real-world semantic information. By filtering out possible
human-related information, we have made largely eliminated any social negative impacts on the
environment, human rights, economics, personal security, etc.

H.2 General ethical conduct guideline

Does the work contain any personally identifiable information or sensitive personally identifiable
information? No. The dataset we benchmark and curate, e.g. DAVIS, SegTrackv2, FBMS and
MoCA, do not contain sensitive personally identifiable information. For the generation of our
synthetic dataset, we obtain all RGB texture information from the PASS dataset, which does not
contain any personally identifiable information. For shape information, we use randomly generated
polygon or only real-object shapes from the YouTubeVOS2018 training sets, without any textural
details, which greatly eliminates possible sensitive information. If there is any personally identifiable
information later found in any of the above datasets, we will make immediate corresponding changes.

Does the work contain information that could be deduced about individuals that they have
not consented to share? No. As described above, all information provided to train and test our
model does not contain sensitive personally identifiable information. Therefore, no personal privacy
information could be deduced.

Does the work encode, contain, or potentially exacerbate bias against people of a certain gender,
race, sexuality, or who have other protected characteristics? No. As explained above, we tried
to eliminate personally identifiable information in our synthetic dataset, which in turn minimises
possible human-related biases.

Does the work contain human subject experimentation and whether it has been reviewed and
approved by a relevant oversight board? No. We did not include human subject experimentation
in our work.

Have the work been discredited by the creators? No. All datasets we used and curated are under
the CC-BY license, and we make necessary references to the original source.

Consent to use or share the data. Explain whether you have asked the data owner’s permission
to use or share data and what the outcome was. As explained above, all adopted datasets follow
the CC-BY license, and we have made the necessary references.

Do you have domain specific considerations when working with high-risk groups. No. We
minimise personally identifiable information in our synthetic dataset, therefore not raising any
domain-specific issues regarding high-risk groups.

Have you filtered offensive content. Yes. As mentioned above, we filter out offensive content in
our synthetic dataset.

Can you guarantee compliance to GDPR? Yes.
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