
A Model Zoo Details

Table 5: Model zoo overview.

Zoo Input Channels Parameters Population Size
MNIST 1 2464 1000
SVHN 1 2464 1000
CIFAR-10 3 2864 1000
STL-10 3 2864 1000

The model zoos are generated following
the method of [37, 38] An overview of
the model zoos is given in in Table 5. All
model zoos share one general CNN archi-
tecture, outlined in Table 6. The hyperpa-
rameter choices for each of the population
are listed in Table 7. The hyperparameters
are chosen to generate zoos with smooth,
continuous development and spread in performance.

Table 6: CNN architecture details for the
models in model zoos.

Layer Component Value

Conv 1

input channels 1/3
output channels 8
kernel size 5
stride 1
padding 0

Max Pooling kernel size 2

Activation tanh / gelu

Conv 2

input channels 8
output channels 6
kernel size 5
stride 1
padding 0

Max Pooling kernel size 2

Activation tanh / gelu

Conv 3

input channels 6
output channels 4
kernel size 2
stride 1
padding 0

Activation tanh / gelu

Linear 1 input channels 36
output channels 20

Activation tanh / gelu

Linear 2 input channels 20
output channels 10

Table 7: Hyperparameter choices for the model zoos.

Model Zoo Hyperparameter Value

MNIST

input channels 1
activation tanh
weight decay 0
learning rate 3e-4
initialization uniform
optimizer Adam
seed [1-1000]

SVHN

input channels 1
activation tanh
weight decay 0
learning rate 3e-3
initialization uniform
optimizer adam
seed [1-1000]

CIFAR-10

input channels 3
activation gelu
weight decay 1e-2
learning rate 1e-4
initialization kaiming-uniform
optimizer adam
seed [1-1000]

STL-10

input channels 3
activation tanh
weight decay 1e-3
learning rate 1e-4
initialization a kaiming-uniform
optimizer adam
seed [1-1000]

16

B Hyper-Representation Architecture and Training Details

Figure 8: Schematic of the auto-encoder architecture to learn hyper-representations.

Hyper-representations are learned with an autoencoder based on multi-head self-attention. The
architecture is outlined in Figure 8. Convolutional and fully connected neurons are embedded to
token embeddings of dimension dtoken. Learned position encodings are added to provide relational
information. A learned compression token (CLS) is appended to the sequence of token embeddings.
The sequence of token embeddings is passed to Nlayers layers of multi-head self-attention with
Nheads heads with hidden embedding dimension dhidden. The CLS token is compressed to the
bottleneck of dimension dz with an MLP or a linear layer. For the decoder, an MLP or a linear layer
maps the bottleneck to a sequence of token embeddings. The sequence is passed through another
stack of multi-head self-attention, which is symmetric to the encoder. Debedders map the token
embeddings back to convolutional and fully connected neurons. The reconstruction and contrastive
loss are balanced with a parameter �. The contrastive loss is computed on the embeddings z mapped
through a projection head z̄ = p(z, where p is a learned MLP with four layers with 400 neurons each
and z̄ has 50 dimensions. In Table 8, the exact hyper-parameters for each of the hyper-representation
are listed to reproduce our results.

Table 8: Hyper-representation architecture and training details.

MNIST SVHN CIFAR-10 STL-10

Architecture

dinpot 2464 2464 2864 2864
dtoken 972 1680 1488 1632
dhidden 1140 1800 1164 1680
Nlayers 2 4 2 4
Nheads 12 12 12 24
dz 700 1000 700 700
Compression linear linear linear linear

Training

Optimizer Adam Adam Adam Adam
Learning rate 0.0001 0.0001 0.0001 0.0001
Dropout 0.1 0.1 0.1 0.1
Weight Decay 1e-09 1e-09 1e-09 1e-09
� 0.977 0.920 0.950 0.950
training epochs 1750 1750 500 2000
batch size 500 250 200 200

17

C Evaluation of Layer-Wise Loss Normalization

To evaluate layer-wise loss normalization, we compare two hyper-representations with comparable
reconstruction. Both have a R2 = 1 � mse(ŵ,w)

mse(wmean,w
as a measure of the explained variance of

around 70%. One is trained trained with the baseline hyper-representation MSE, the other with
layer-wise-normalization. Figures 9 and 10 show the distribution of weights per layer before and

Figure 9: Top: Weight distribution per layer (1-5) of the SVHN test set before w and after
reconstruction ŵ with the basline hyper-representation training loss. Layers 3 and 4 have small
weight distributions, therefore add little penalty to the MSE and are consequently poorly reconstructed.
Bottom: Accuracy distribution of the same population before and after reconstruction. The badly
reconstructed layers (top) cause the reconstructed models to perform around random guessing.

Figure 10: Top: Weight distribution per layer (1-5) of the SVHN test set before w and after
reconstruction ŵ with layer-wise loss normalization. The distributions of all layers are more similar,
the reconstruction is equally distributed across the layers. Bottom: Accuracy distribution of the same
population before and after reconstruction. The normalization fixes the catastrophic failure of the
models. The remaining loss in accuracy can be explained with remaining reconstruction error.

after reconstruction, as well as the accuracy distribution of both populations on the SVHN image test
set. With the basline learning scheme in Figure 9, the distributions in layers 3 and 4 do not match. In
these layers, the original weight distribution is smaller, and so there is only a small error even if the
reconstructions predicts the mean. These layers become a weak link of the reconstructed models, and
cause performance around random guessing. With layer-wise loss normalization in Figure 10, the
weight distribution between the layers becomes more similar. As a consequence, the reconstruction
error is more evenly distributed across the layers, there are no single layers that aren’t reconstructed at
all. This appears to allow information to flow forward through the model, and significantly improves
the performance of reconstructed models. We find layer-wise-normalization necessary to reconstruct
or sample functional models across all populations, where the weights are unevenly distributed.

18

D Hyper-Representation Analysis

In this section, we detail the analysis of hyper-representations. We begin with their geometry,
followed by the distributions of individual dimensions of hyper-representations, and finally investigate
robustness and smoothness.

Embeddings in Hyper-Representation Space Populate a Hyper-Sphere We analyse the geom-
etry of hyper-representations z. The space of hyper-representations is bounded to a high dimensional
box by a tanh activation. Surprisingly, hyper-representations do not populate the entire space, but
sections on a shell of a high-dimensional sphere. Figure 11 shows the distribution of the norm of the
embeddings of the MNIST zoo. All embeddings are distributed on a small band between length 10
and 12, therefore they must populate the shell of a hyper-sphere. In Figure 12 we investigate pairwise
cosine distances between the embeddings of the MNIST zoo. The majority of the embeddings
populate the region between 0.6 and 0.8. The outliers around 1.0 are embeddings of the same model
at different epochs. This indicates that models are not entirely orthogonal, but mutually equally far
apart, populating a section of the shell of the hyper-sphere. While hyper-spheres are commonly found
in embeddings of contrastive learning [19], in our experiments hyper-spheres form even without
a contrastive loss. Properties of the models embedded on that hyper-sphere can be predicted from
hyper-representations, therefore the topology on the sphere appears to encode model properties.

Figure 11: Distributions of `2 norm of hyper-
representations z of the MNIST zoo.

Figure 12: Distributions of pairwise cosine dis-
tance of hyper-representations z of the MNIST
zoo.

Distributions of Dimensions of Embeddings in Hyper-Representation Encode Properties Pre-
vious work showed that linear probing from hyper-representations accurately predicts i.e. model
accuracy. In these linear probes, the individual z dimensions each linearly contribute to accuracy
predictions. This allows us investigate z dimensions independently. Figure 13 shows examples for
the distribution of selected individual dimensions of hyper-representations z. On the left are the
distribution of the entire population, on the right of the top 30 % performing models. The individual
dimensions show different types of distributions, with different modes. Most have a zero mean and
span 3/4 of the available range, but some collapse to either �1 or 1. Further, the distributions also
differ in at least some dimension between the entire population, and the better performing split of the
population.

Figure 13: Distributions of individual dimensions of hyper-representations z of the MNIST zoo. In
blue is the distribution of all samples, in orange the subset of the 30 % best samples.

19

Generalization Capabilities of Hyper-Representations to Diverse Model Zoos There are certain
architectural changes such as adding/removing/changing pooling layers and nonlinearity that do not
change the number of parameters (the dimensionality of the input/output required by our approach).
These changes as well as changes of hyperparameters used to train models in a zoo may drastically
alter the distribution of weights and pose a challenge to the proposed approach. Modern neural net-
works (ResNet, MobileNet, EfficientNet, etc.) are often trained with very different hyperparameters.
With the experiment below, we investigate the generalization capabilities of hyper-representations to
suchchanges, which might be important for modern large-scale settings as well.

Setup: We experimentally evaluate generalizability of the proposed approach on models trained
with a different choice of nonlinearity or other hyperparameters with two experiments (a and b). To
that end, in addition to the original SVHN test zoo (zoo 1), we use two more diverse SVHN zoos
(zoo 2 and zoo 3). In zoo 2, in addition to random seed, models differ in the activation (tanh, relu,
gelu, sigmoid), l2-regularization (0, 0.001, 0.1) and dropout (0,0.3,0.5). In zoo 3 (extending zoo 2),
we increase the diversity further by additionally varying the initialization method (uniform, normal,
kaiming-uniform, kaiming-normal) and the learning rate (0.0001, 0.001, 0.01).

Experiment (a): We first evaluate our original encoder-decoder trained on a model zoo varying in
random seed only. For evaluation, we pass the test splits of zoo 2 and zoo 3 through the encoder-
decoder. We measure the reconstruction R2 score of the original encoder-decoder on the diverse test
zoos.
Results: Our results (Table D) indicate that our original encoder-decoder can still encode and decode
weights even in such a challenging setting, although there is an expected drop of performance.

Experiment (a): We next evaluate if hyper-representations can be trained on diverse zoos. For this
experiment, we train a hyper-representation on the train split of zoo 3. With this, we aim to show that
training hyper-representations on diverse zoos improves generalization capabilities further.
Results: Our results show that training on diverse zoos is a much more difficult task to optimize, hence
the reconstruction on the original zoo degrades. It nonetheless improves the reconstruction results on
the test split of the diverse zoos 2 and 3. This indicates that varying seeds and hyperparameters may
be different aspects of complexity that need to be considered.

Table 9: Generalizability of hyper-representations towards more diverse model zoo configurations
(measured as the reconstruction score, higher is better).

Training zoo Test zoo 1: original Test zoo 2: vary activation Test zoo 3: vary hyperparameters
Original 81.9% 45.7% 38.9%

Diverse (zoo 3) 25.8% 89.1% 75.6%

20

E Sampling Methods

E.1 VAE

A common extension of the autoencoder of [37] to enable sampling from its latent representation is to
make the autoencoder variational [20]. In our experiments, VAEs could not be trained to satisfactory
reconstruct model weights without unweighting the KL-divergence to insignificance essentially
making it deterministic as in [37]. Empirically, embeddings in hyper-representations are mapped
on the shell of a sphere (see Section D) and leave the inside of the sphere entirely empty. On the
other hand, a gaussian prior allocates most of the probability mass near the center of the sphere. It
therefore appears plausible that the two may be incompatible. That issue of non-compatible priors is
well known. [10] find that regularizing embeddings and decoder yields equally smooth representation
spaces as VAEs without restrictions to specific priors. During training of hyper-representations, both
encoder and decoder are regularized with a small `2 penalty. Further, dropout is applied throughout
the autoencoder, which servers as another regularizer and adds blurryness to the embeddings.
The combination of dropout, the erasing augmentation and the contrastive loss further regularizes
the hyper-representation space. In all our sampling methods, we draw samples from probability
distributions, which effectively disconnects the drawn samples from training embeddings.

E.2 Latent Space GAN Details

The generator and discriminator of our GAN consist of four fully-connected layers interleaved with
ReLU nonlinearities. The same architecture and training hyperparameters are used for all experiments.
The generator’s input is a Gaussian noise n⇤ of dimensionality d = 16, the hidden dimensionalities
are 128, 256 and 512, and the output dimensionality is equal to the hyper-representation length D.
The discriminator’s input is D-dimensional, the hidden dimensionalities are 1024, 512 and 256, and
the output dimensionality is a scalar denoting either a real or fake sample. The discriminator is
regularized with Spectral Norm [31]. The discriminator and generator are trained for 1000 epochs
and batch size 32 using Adam with a two time-scale update rule [18]: learning rate is 1e-4 for the
generator and 2e-4 for the discriminator.

21

F Full Experiment Results

F.1 Digit Domain

Table 10: Accuracy of sampled models: median and 95% confidence intervals. On the main
diagonal are in-dataset experiments, otherwise transfer-learning from source to target. Bold
numbers highlight the best source-to-target results. N/A enotes cases, in which the boot-strapped
CI on the median could not be computed.

Population Source Target

MNIST SVHN

BT

MNIST

91.1 [91.1, 91.2] 72.3 [72.0, 72.4]

BF 91.2 [91.0, 91.3] 76.2 [75.8, 76.5]
SKDE 92.3 [92.1, 92.8] 76.7 [76.2, 77.0]
SKDE30 93.1 [92.9, 93.4] 77.2 [76.8, 77.6]
SNeigh 93.4 [93.2, 93.5] 76.8 [76.4, 77.1]
SNeigh30 94.0 [93.8, 94.1] 77.0 [76.3, 77.4]
SGAN 93.5 [93.3, 93.6] 76.9 [76.6, 77.6]
SGAN30 93.9 [93.5, 93.9] 76.5 [76.3, 76.8]

BF

SVHN

95.1 [95.0, 95.3] 73.2 [72.8, 73.4]
SKDE 95.1 N/A 73.0 [72.6, 73.3]
SKDE30 95.5 N/A 74.2 [73.9, 74.5]
SNeigh 97.2 [97.0, 97.3] 78.1 [77.9, 78.2]
SNeigh30 95.5 [95.4, 95.7] 76.5 [76.3, 76.7]
SGAN 94.3 [94.1, 94.6] 74.5 [74.0, 74.9]
SGAN30 94.9 [94.8, 95.1] 75.3 [75.0, 75.6

Table 11: Mann-Whitney U test of Samples S vs Baselines B: p-value and CLES (Common
Language Effect Size). p-values indicate the probability of the samples of two groups originating
from the same distribution. CLES=0.5 indicates no effect, CLES=1.0 a strong positive, CLES=0.0
a strong negative effect. As the results indicate, both proposed sampling methods are almost always
statistically significantly better than the two baselines. Further, their effect is often very strong.

Population Pairs Source Target

MNIST SVHN

SKDE vs. BT

MNIST

2.1e-18 | 0.8701 5.2e-27 | 0.9551
SKDE vs. BF 0.0e+00 | 0.8639 1.1e-01 | 0.5920
SKDE30 vs. BT 7.0e-27 | 0.9539 2.5e-29 | 0.9754
SKDE30 vs. BF 6.9e-22 | 0.9545 1.7e-04 | 0.7180
SNeigh vs. BT 1.5e-30 | 0.9857 6.6e-31 | 0.9888
SNeigh vs. BF 4.5e-25 | 0.9889 5.2e-03 | 0.6622
SNeigh30 vs. BT 1.7e-35 | 0.9987 1.3e-29 | 0.9778
SNeigh30 vs. BF 3.1e-28 | 0.9994 1.4e-02 | 0.6426
SGAN vs. BT 7.6e-31 | 0.9883 8.0e-25 | 0.9351
SGAN vs. BF 3.0e-25 | 0.9907 7.8e-03 | 0.6546
SGAN30 vs. BT 1.1e-31 | 0.9953 2.1e-26 | 0.9496
SGAN30 vs. BF 6.8e-26 | 0.9973 4.9e-02 | 0.6144
SKDE vs. BT

SVHN

6.1e-79 | 0.9943 1.1e-04 | 0.6006
SKDE vs. BF 7.8e-01 | 0.4904 3.8e-01 | 0.4704
SKDE30 vs. BT 1.7e-82 | 1.0000 1.6e-30 | 0.7985
SKDE30 vs. BF 0.0e+00 | 0.7292 3.0e-08 | 0.6850
SNeigh vs. BT 2.9e-78 | 0.9867 8.6e-80 | 0.9916
SNeigh vs. BF 2.8e-44 | 0.9661 1.8e-47 | 0.9833
SNeigh30 vs. BT 1.7e-82 | 1.0000 4.7e-76 | 0.9797
SNeigh30 vs. BF 8.2e-08 | 0.6791 1.7e-42 | 0.9563
SGAN vs. BT 1.2e-31 | 0.9948 0.0e+00 | 0.8140
SGAN vs. BF 1.5e-07 | 0.2517 7.5e-06 | 0.7118
SGAN30 vs. BT 4.2e-32 | 0.9987 6.7e-22 | 0.9067
SGAN30 vs. BF 3.6e-01 | 0.4565 0.0e+00 | 0.8335

22

Figure 14: MNIST in-dataset experiment:
accuracy over epochs. Boxes indicate quin-
tiles 25 to 75.

Figure 15: MNIST to SVHN transfer learn-
ing experiment: accuracy over epochs.
Boxes indicate quintiles 25 to 75.

23

Figure 16: SVHN in-dataset experiment:
accuracy over epochs. Boxes indicate quin-
tiles 25 to 75.

Figure 17: SVHN to MNIST transfer learn-
ing experiment: accuracy over epochs.
Boxes indicate quintiles 25 to 75.

24

F.2 Natural Images Domain

Table 12: Accuracy of sampled models: median and 95% confidence intervals. On the main
diagonal are in-dataset experiments, otherwise transfer-learning from source to target. Bold
numbers highlight the best source-to-target results. N/A enotes cases, in which the boot-strapped
CI on the median could not be computed.

Population Source Target

CIFAR-10 STL-10

BT

CIFAR-10

49.0 [48.9, 49.0] 39.0 [38.9, 39.1]

BF 48.6 [48.3, 48.7] 42.8 [42.5, 42.9]
SKDE 48.3 [48.1, 48.4] 40.7 [40.3, 40.9]
SKDE30 48.7 [48.4, 48.8] 41.3 [40.9, 41.5]
SNeigh 45.6 [44.9, 46.0] 36.7 [35.8, 37.4]
SNeigh30 46.2 [45.8, 46.4] 37.9 [37.3, 38.2]
SGAN 46.0 N/A 38.6 [38.1, 39.0]
SGAN30 47.0 [46.5, 47.2] 38.6 [38.2, 39.1]

BF

STL-10

49.3 [49.0, 49.4] 39.5 [38.9, 39.7]
SKDE 48.6 [48.4, 48.9] 37.3 [37.0, 37.8]
SKDE30 48.8 [48.4, 49.2] 38.3 [37.9, 38.4]
SNeigh 10.0 N/A 28.3 [26.8, 29.1]
SNeigh30 49.0 [48.5, 49.1] 37.8 [37.6, 38.2]
SGAN 49.0 [48.6, 49.4] 38.5 [37.9, 38.9]
SGAN30 48.8 [48.5, 49.1] 37.9 N/A

Table 13: Mann-Whitney U test of Samples S vs Baselines B: p-value and CLES (Common
Language Effect Size). p-values indicate the probability of the samples of two groups originating
from the same distribution. CLES=0.5 indicates no effect, CLES=1.0 a strong positive, CLES=0.0
a strong negative effect.

Population Pairs Source Target

CIFAR-10 STL-10

SKDE vs. BT

CIFAR-10

1.5e-06 | 0.2966 7.4e-19 | 0.8750
SKDE vs. BF 3.7e-02 | 0.4014 1.7e-18 | 0.0849
SKDE30 vs. BT 3.6e-02 | 0.4114 4.8e-25 | 0.9371
SKDE30 vs. BF 2.9e-01 | 0.5498 0.0e+00 | 0.1266
SNeigh vs. BT 5.7e-28 | 0.0364 7.4e-18 | 0.1359
SNeigh vs. BF 3.1e-22 | 0.0413 7.1e-26 | 0.0024
SNeigh30 vs. BT 3.5e-25 | 0.0616 2.0e-07 | 0.2800
SNeigh30 vs. BF 2.2e-19 | 0.0741 3.0e-25 | 0.0089
SGAN vs. BT 6.6e-25 | 0.0642 6.6e-02 | 0.4223
SGAN vs. BF 2.8e-19 | 0.0754 1.0e-24 | 0.0145
SGAN30 vs. BT 2.1e-21 | 0.0983 1.1e-02 | 0.3928
SGAN30 vs. BF 8.8e-16 | 0.1195 2.7e-25 | 0.0084

SKDE vs. BT

STL-10

1.3e-01 | 0.4362 0.0e+00 | 0.1730
SKDE vs. BF 6.9e-04 | 0.3028 6.0e-10 | 0.1404
SKDE30 vs. BT 6.1e-01 | 0.4783 1.2e-06 | 0.2948
SKDE30 vs. BF 1.1e-02 | 0.3528 9.1e-06 | 0.2424
SNeigh vs. BT 2.9e-32 | 0.0000 3.0e-32 | 0.0000
SNeigh vs. BF 3.3e-20 | 0.0000 7.1e-18 | 0.0000
SNeigh30 vs. BT 1.0e+00 | 0.5000 4.3e-09 | 0.2517
SNeigh30 vs. BF 2.1e-02 | 0.3654 5.4e-07 | 0.2090
SGAN vs. BT 3.2e-01 | 0.5418 2.0e-04 | 0.3427
SGAN vs. BF 2.7e-01 | 0.4360 2.4e-04 | 0.2864
SGAN30 vs. BT 6.2e-01 | 0.4788 5.4e-07 | 0.2880
SGAN30 vs. BF 1.2e-02 | 0.3532 4.6e-06 | 0.2340

25

Figure 18: CIFAR-10 in-dataset experi-
ment: accuracy over epochs. Boxes indi-
cate quintiles 25 to 75.

Figure 19: CIFAR-10 to STL-10 trans-
fer learning experiment: accuracy over
epochs. Boxes indicate quintiles 25 to 75.

26

Figure 20: STL-10 in-dataset experiment:
accuracy over epochs. Boxes indicate quin-
tiles 25 to 75.

Figure 21: STL-10 to CIFAR-10 trans-
fer learning experiment: accuracy over
epochs. Boxes indicate quintiles 25 to 75.

27

	Introduction
	Background: Training Hyper-Representations
	Methods
	Layer-Wise Loss Normalization
	Sampling from Hyper-Representations
	Uniform SU
	Density estimation SKDE and counterfactual sampling SC
	Neighbor sampling SNeigh
	Latent space GAN SGAN

	Experiments
	Experimental Setup
	Results
	Hyper-Representations are Robust and Smooth
	Sampling for In-dataset Initialization
	Sampling Initializations for Transfer Learning
	Sampling Initializations for Unseen Architectures

	Limitations of Zoos with Small Models

	Related Work
	Conclusion
	Model Zoo Details
	Hyper-Representation Architecture and Training Details
	Evaluation of Layer-Wise Loss Normalization
	Hyper-Representation Analysis
	Sampling Methods
	VAE
	Latent Space GAN Details

	Full Experiment Results
	Digit Domain
	Natural Images Domain

