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Abstract

Quantum neural networks (QNNs) have emerged as a leading strategy to establish
applications in machine learning, chemistry, and optimization. While the applica-
tions of QNN have been widely investigated, its theoretical foundation remains less
understood. In this paper, we formulate a theoretical framework for the expressive
ability of data re-uploading quantum neural networks that consist of interleaved en-
coding circuit blocks and trainable circuit blocks. First, we prove that single-qubit
quantum neural networks can approximate any univariate function by mapping the
model to a partial Fourier series. We in particular establish the exact correlations
between the parameters of the trainable gates and the Fourier coefficients, resolving
an open problem on the universal approximation property of QNN. Second, we
discuss the limitations of single-qubit native QNNs on approximating multivariate
functions by analyzing the frequency spectrum and the flexibility of Fourier coef-
ficients. We further demonstrate the expressivity and limitations of single-qubit
native QNNs via numerical experiments. We believe these results would improve
our understanding of QNNs and provide a helpful guideline for designing powerful
QNNs for machine learning tasks.

1 Introduction

Quantum computing is a technology that exploits the laws of quantum mechanics to solve complicated
problems much faster than classical computers. It has been applied in areas such as breaking
cryptographic systems [1], searching databases [2], and quantum simulation [3, 4], in which it
gives a quantum speedup over the best known classical algorithms. With the fast development
of quantum hardware, recent results [5–7] have shown quantum advantages in specific tasks. An
emerging direction is to investigate if quantum computing can offer quantum advantages in artificial
intelligence, giving rise to an interdisciplinary area called quantum machine learning [8].

A leading strategy to quantum machine learning uses quantum neural networks (QNNs), which are
quantum analogs of artificial neural networks (NNs). Much progress has been made in applications of
QNN in various topics [9–11], including quantum autoencoder [12, 13], supervised learning [14–17],
dynamic learning [18–20], quantum chemistry [21], and quantum metrology [22–24]. Similar to the
field of machine learning, a crucial challenge of quantum machine learning is to design powerful and
efficient QNN models for quantum learning tasks, which requires a theoretical understanding of how
structural properties of QNN may affect its expressive power.

The expressive power of a QNN model can be characterized by the function classes that it can
approximate. Recently, the universal approximation property (UAP) of QNN models has been
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investigated, which is similar to the universal approximation theorem [25, 26] in machine learning
theory. The authors of [27] suggested that a QNN model can be written as a partial Fourier series in
the data and proved the existence of a multi-qubit QNN model that can realize a universal function
approximator. The UAP of single-qubit models remains an open conjecture, due to the difficulties
in analyzing the flexibility of Fourier coefficients. Another work [28] considered hybrid classical-
quantum neural networks and obtained the UAP by using the Stone-Weierstrass theorem. Ref. [29]
proved that even a single-qubit hybrid QNN can approximate any bounded function.

The above results of UAP show that the expressivity of QNNs is strong, but it does not reveal the
relationship between the structural properties of a QNN and its expressive ability. Therefore the UAP
may not be a good guide for constructing QNN models with practical interests. In particular, it is
worth noting that the existence proof in Ref. [27] is under the assumption of multi-qubit systems,
exponential circuit depth, and arbitrary observables, which does not explicitly give the structure of
QNNs. Meanwhile, Refs. [28, 29] demonstrated the construction of QNNs in detail, but it is unclear
whether the powerful expressivity comes from the classical part or the quantum part of hybrid models.
Moreover, a systematic analysis of how parameters in the QNN affect the classes of functions that it
can approximate is missing. The absence of these theoretical foundations hinders the understanding
on the expressive power and limitation of QNNs, which makes it highly necessary but challenging to
design effective and efficient QNNs.

To theoretically investigate the expressivity of QNNs, it is important to study the simplest case
of single-qubit QNNs, just like the celebrated universal approximation theorem first showing the
expressivity of depth-2 NNs [25, 26]. In this paper, we formulate an analytical framework that
correlates the structural properties of a single-qubit native QNN and its expressive power. We consider
data re-uploading models that consist of interleaved data encoding circuit blocks and trainable circuit
blocks [30]. First, we prove that there exists a single-qubit native QNN that can express any Fourier
series, which is a universal approximator for any square-integrable univariate function. It solves the
open problem on the UAP of single-qubit QNNs in Ref. [27]. Second, we systematically analyze
how parameters in trainable circuit blocks affect the Fourier coefficients. The main results on the
expressivity of QNNs are summarized as in Fig. 1. Third, we discuss potential difficulties for single-
qubit native QNNs to approximate multivariate functions. Additionally, we compare native QNNs
with the hybrid version and show the fundamental difference in their expressive power. We also
demonstrate the expressivity and limitations of single-qubit native QNNs via numerical experiments
on approximating univariate and multivariate functions. Our analysis, beyond the UAP of QNNs,
improves the understanding of the relationship between the expressive power and the structure of
QNNs. This fundamental framework provides a theoretical foundation for data re-uploading QNN
models, which is helpful to construct effective and efficient QNNs for quantum machine learning
tasks.

Figure 1: A schematic diagram of the main results. A single-qubit data re-uploading QNN model
consisting of interleaved trainable blocks (in blue) and encoding blocks (in orange) corresponds to a
partial Fourier series. The encoding blocks decide the frequency spectrum of the Fourier series and
the trainable blocks control the Fourier coefficients. By the summability and convergence of the
Fourier series, the QNN model can approximate any square-integrable target function.

We will start by giving some background and defining the native QNN models in the next section,
and then analyze the expressivity of single-qubit native QNNs in Section 3. In Section 4, we discuss
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the limitation of single-qubit native QNNs and compare native QNNs with hybrid QNNs, which
shows the fundamental difference between their expressive power. The numerical experiments on the
expressivity and limitations of single-qubit native QNNs are described in Section 5.

2 Preliminaries

2.1 A primer on quantum computing

Quantum state The basic unit of information in quantum computation is one quantum bit, or qubit
for short. Just like a classical bit has a state in either 0 or 1, a qubit also has a state. A single-qubit
state is a unit vector in a 2-dimensional Hilbert space C2, which is commonly denoted in Dirac
notation |ψ⟩ = α |0⟩ + β |1⟩, where |0⟩ = (1, 0)T and |1⟩ = (0, 1)T are known as computational
basis states. Here |ψ⟩ denotes a column vector and its conjugate transpose ⟨ψ| := |ψ⟩† is a row
vector. Then the inner product ⟨ψ|ψ⟩ = ∥ψ∥2 denotes the square of L2-norm of |ψ⟩. Note that |ψ⟩ is
a normalized state so ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1. Having this constraint, a single-qubit state can be
represented as a point at surface of a Bloch sphere, written as |ψ⟩ = cos(θ/2) |0⟩+ eiϕ sin(θ/2) |1⟩,
where θ and ϕ are re-interpreted as azimuthal angle and polar angle in spherical coordinates. More
generally, a quantum state of n qubits can be represented as a normalized vector in the n-fold tensor
product Hilbert space C2n .

Quantum gate Quantum gates are basic operations used to manipulate qubits. Unlike some classical
logical gates, quantum gates are reversible, so they can be represented as unitary transformations
in the Hilbert space. A unitary matrix U satisfies U†U = UU† = I . A commonly used group of
single-qubit quantum gates is the Pauli gates, which can be written as Pauli matrices:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

The Pauli X , Y , and Z gates are equivalent to a rotation around the x, y, and z axes of the Bloch
sphere by π radians, respectively. A group of more general gates is the rotation operator gates
{RP (θ) = e−i θ

2P | P ∈ {X,Y, Z}}, which allows the rotating angle around the x, y and z axes of
the Bloch sphere to be customized. They can be written in the matrix form as

RX(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, RZ(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
. (2)

Quantum measurement A measurement is a quantum operation to retrieve classical information
from a quantum state. The simplest measurement is the computational basis measurement; for a
single-qubit state |ψ⟩ = α |0⟩+β |1⟩, the outcome of such a measurement is either |0⟩ with probability
|α|2 or |1⟩ with probability |β|2. Computational basis measurements can be generalized to Pauli
measurements, where Pauli matrices are observables that we can measure. For example, measuring
Pauli Z is equivalent to the computational basis measurement, since |0⟩ and |1⟩ are eigenvectors of Z
with corresponding eigenvalues ±1. Pauli Z measurement returns +1 if the resulting state is |0⟩ and
returns −1 if the resulting state is |1⟩. We can calculate the expected value of Pauli Z measurement
when the state is |ψ⟩:

⟨ψ|Z |ψ⟩ = (α∗ ⟨0|+ β∗ ⟨1|)Z(α |0⟩+ β |1⟩) = |α|2 − |β|2. (3)
Pauli measurements can be extended to the case of multiple qubits by a tensor product of Pauli
matrices.

2.2 Data re-uploading quantum neural networks

We consider the data re-uploading QNN model [30], which is a generalized framework of quantum
machine learning models based on parameterized quantum circuits [31]. A data re-uploading QNN is
a quantum circuit that consists of interleaved data encoding circuit blocks S(·) and trainable circuit
blocks V (·),

Uθ,L(x) = V (θ0)

L∏
j=1

S(x)V (θj), (4)
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where x is the input data, θ = (θ0, . . . ,θL) is a set of trainable parameters, and L denotes the
number of layers. It is common to build the data encoding blocks and trainable blocks using the most
prevalent parameterized quantum operators {RX , RY , RZ}. We define the output of this model as
the expectation value of measuring some observable M ,

fθ,L(x) = ⟨0|U†
θ,L(x)MUθ,L(x) |0⟩ . (5)

Note that some data re-uploading QNNs introduce trainable weights in data pre-processing or post-
processing, which are considered as hybrid QNNs. For example, the data encoding block defined as
S(w · x) is essentially equivalent to feeding data x into a neuron with weight w and then uploading
the output to an encoding block S(·). Such a mixing structure makes it hard to tell whether the
expressive power comes from the classical or quantum part. To solely study the expressive power of
QNNs, we define the concept of native QNN, where all trainable weights are introduced by parameters
of tunable quantum gates so that they can be distinguished from a hybrid QNN. Throughout this
paper, we simply refer to the native QNN as QNN for short unless specified otherwise.

3 Expressivity of single-qubit QNNs

To better understand the expressive power of QNNs, we start investigating the simplest case of
single-qubit models. Ref. [27] investigated the expressive power of QNNs using the Fourier series
formalism. In this section, we establish an exact correlation between the single-qubit QNN and the
Fourier series in terms of both the frequency spectrum and Fourier coefficients. Note that we consider
one-dimensional input data for now, which corresponds to the class of univariate functions.

A Fourier series is an expansion of a periodic function f(x) in infinite terms of a sum of sines and
cosines which can be written in the exponential form as

f(x) =

∞∑
n=−∞

cne
i 2π

T nx, (6)

where
cn =

1

T

∫
T

f(x)ei
2π
T nxdx (7)

are the Fourier coefficients. Here T is the period of function f(x). The quantities n 2π
T are called the

frequencies, which are multiples of the base frequency 2π
T . The set of frequency {n 2π

T }n is called the
frequency spectrum of Fourier series.

In approximation theory, a partial Fourier series (or truncated Fourier series)

sN (x) =

N∑
n=−N

cne
i π
T nx (8)

is commonly used to approximate the function f(x). A partial Fourier series can be transformed to a
Laurent polynomial P ∈ C[z, z−1] by the substitution z = ei

2π
T x, i.e.,

P (z) =

N∑
n=−N

cnz
n. (9)

A Laurent polynomial P ∈ F[z, z−1] is a linear combination of positive and negative powers of the
variable z with coefficients in F. The degree of a Laurent polynomial P is the maximum absolute
value of any exponent of z with non-zero coefficients, denoted by deg(P ). We say that a Laurent
polynomial P has parity 0 if all coefficients corresponding to odd powers of z are 0, and similarly P
has parity 1 if all coefficients corresponding to even powers of z are 0.

Following the pattern of Fourier series, we first consider using RZ(x) = e−ixZ/2 to encode the input
x and let RY (·) be the trainable gate. We can write the QNN as

UYZY
θ,L(x) = RY (θ0)

L∏
j=1

RZ(x)RY (θj), (10)
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and the quantum circuit is shown in Fig. 2.

|0⟩ RY (θL) RZ(x) · · · RY (θ0)

Figure 2: Circuit of UYZY
θ,L(x), where the trainable block is RY (·) and the encoding block is RZ(·).

To characterize the expressivity of this kind of basic QNN, we first rigorously show that the QNN
UYZY
θ,L(x) can be represented in the form of a partial Fourier series with real coefficients.

Lemma 1 There exist θ = (θ0, θ1, . . . , θL) ∈ RL+1 such that

UYZY
θ,L(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
(11)

if and only if real Laurent polynomials P,Q ∈ R[eix/2, e−ix/2] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L,

2. P and Q have parity L mod 2,

3. ∀x ∈ R, |P (x)|2 + |Q(x)|2 = 1.

Lemma 1 decomposes the unitary matrix of the QNN UYZY
θ,L(x) into Laurent polynomials with real

coefficients, which can be used to represent a partial Fourier series with real coefficients. The proof
of Lemma 1 uses a method of mathematical induction that is in the similar spirit of the proof of
quantum signal processing [32–35], which is a powerful subroutine in Hamiltonian simulation [4]
and quantum singular value transformation [35]. The forward direction is straightforward by the
definition of UYZY

θ,L(x) in Eq. (10). The proof of the backward direction is by induction in L where
the base case L = 0 holds trivially. For L > 0, we prove that for any UYZY

θ,L(x) where P,Q satisfy
the three conditions, there exists a unique block R†

Y (θk)R
†
Z(x) such that polynomials P̂ and Q̂ in

UYZY
θ,L(x)R

†
Y (θk)R

†
Z(x) satisfy the three conditions for L − 1. Lemma 1 explicitly correlates the

frequency spectrum of the Fourier series and the number of layers L of the QNN. The proof of
Lemma 1 also illustrates the exact correspondence between the Fourier coefficients and parameters of
trainable gates. A detailed proof can be found in Appendix A.1.

Other than characterizing the QNN with Laurent polynomials, we also need to specify the achievable
Laurent polynomials P (x) for which there exists a correspondingQ(x) satisfying the three conditions
in Lemma 1. It has been proved in Refs. [32, 34] that the only constraint is |P (x)| ≤ 1 for all x ∈ R.
That is, for any P ∈ R[eix/2, e−ix/2] with deg(P ) ≤ L and parity L mod 2, if |P (x)| ≤ 1 for
all x ∈ R, there exists a Q ∈ R[eix/2, e−ix/2] with deg(P ) ≤ L and parity L mod 2 such that
|P (x)|2 + |Q(x)|2 = 1 for all x ∈ R.

By Lemma 1, the partial Fourier series corresponding to the QNN UYZY
θ,L(x) only has real coefficients.

With the exponential form of Eq. (6), a Fourier series with real coefficients only has cos(nx) terms,
which means UYZY

θ,L(x) can be used to approximate any even function on the interval [−π, π]. Thus
we establish the following proposition, whose proof is deferred to Appendix A.2.

Proposition 2 For any even square-integrable function f : [−π, π] → R and for all ϵ > 0, there
exists a QNN UYZY

θ,L(x) such that |ψ(x)⟩ = UYZY
θ,L(x) |0⟩ satisfies

∥ ⟨ψ(x)|Z|ψ(x)⟩ − αf(x)∥ ≤ ϵ (12)

for some normalizing constant α.

Although the above result states that the QNN UYZY
θ,L(x) |0⟩ is able to approximate a class of even

functions within arbitrary precision, we can see that the main limitation of the expressive power
of QNN UYZY

θ,L(x) is the real Fourier coefficients, which may restrict its universal approximation
capability.
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To tackle this issue, our idea is to introduce complex coefficients to the corresponding Laurent
polynomials, which can be implemented by adding a trainable Pauli Z rotation operator in each layer.
Specifically, we consider the QNN

UWZW
θ,ϕ,L(x) = RZ(φ)W (θ0, ϕ0)

L∏
j=1

RZ(x)W (θj , ϕj), (13)

where each trainable block is W (θj , ϕj) := RY (θj)RZ(ϕj). Here we add an extra RZ(φ) gate to
adjust the relative phase between P and Q. The quantum circuit of UWZW

θ,ϕ,L(x) is illustrated in Fig. 3.

|0⟩ RZ(ϕL) RY (θL) RZ(x) · · · RZ(ϕ0) RY (θ0) RZ(φ)

Figure 3: Circuit of UWZW
θ,ϕ,L(x), where the trainable block is composed of RY (·) and RZ(·), and the

encoding block is RZ(·).

To characterize the capability of this QNN, we establish the following Lemma which implies
UWZW
θ,ϕ,L(x) can express any Fourier partial sum with complex Fourier coefficients.

Lemma 3 There exist θ = (θ0, θ1, . . . , θL) ∈ RL+1 and ϕ = (φ, ϕ0, ϕ1, . . . , ϕL) ∈ RL+2 such
that

UWZW
θ,ϕ,L(x) =

[
P (x) −Q(x)
Q∗(x) P ∗(x)

]
(14)

if and only if Laurent polynomials P,Q ∈ C[eix/2, e−ix/2] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L,

2. P and Q have parity L mod 2,

3. ∀x ∈ R, |P (x)|2 + |Q(x)|2 = 1.

Lemma 3 demonstrates a decomposition of the QNN UWZW
θ,ϕ,L(x) into Laurent polynomials with

complex coefficients, which can be used to represent a partial Fourier series with complex coefficients
in form of Eq. (8). The proof of Lemma 3 is similar to the proof of Lemma 1 and its details are
provided in Appendix A.3. Again, the proof demonstrates the effect of parameterized gates on
the control of Fourier coefficients. Similarly, the constraint for the achievable complex Laurent
polynomials P (x) in UWZW

θ,ϕ,L(x) is that |P (x)| ≤ 1 for all x ∈ R, as proved in Refs. [36, 37].

We then prove in the following Theorem 4 that UWZW
θ,ϕ,L(x) is able to approximate any square-integrable

function within arbitrary precision, using the well-established result in Fourier analysis. The detailed
proof is deferred to Appendix A.4.

Theorem 4 (Univariate approximation properties of single-qubit QNNs.) For any univariate
square-integrable function f : [−π, π] → R and for all ϵ > 0, there exists a QNN UWZW

θ,ϕ,L(x)

such that |ψ(x)⟩ = UWZW
θ,ϕ,L(x) |0⟩ satisfies

∥ ⟨ψ(x)|Z|ψ(x)⟩ − αf(x)∥ ≤ ϵ (15)

for some normalizing constant α.

Up till now we only let the encoding gate be the RZ(x) gate, what if we use other rotation operator
gates to encode the data? It actually does not matter which one we choose as the encoding gate if
the trainable gates are universal. Note that Pauli rotation operators RX(x), RY (x), RZ(x) have two
eigenvalues cos(x/2)± i sin(x/2), and they can be diagonalized as Q†RZ(x)Q. Merging unitaries
Q† and Q to universal trainable gates gives the QNN that uses RZ(x) as the encoding gate. We
hereby define the generic single-qubit QNNs as

UUZU
θ,ϕ,λ,L(x) = U3(θ0, ϕ0, λ0)

L∏
j=1

RZ(x)U3(θj , ϕj , λj), (16)
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where each trainable block is the generic rotation gate

U3(θ, ϕ, λ) =

[
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

]
. (17)

By definition, any L-layer single-qubit QNN, including UWZW
θ,ϕ,L, can be expressed as UUZU

θ,ϕ,λ,L. Thus
UUZU
θ,ϕ,λ,L is surely a universal approximator.

4 Limitations of single-qubit QNNs

We have proved that a single-qubit QNN is a universal approximator for univariate functions, it
is natural to consider its limitations. Is there a single-qubit QNN that can approximate arbitrary
multivariate functions? We answer this question from the perspective of multivariate Fourier series.
Specifically, we consider the generic form of single-qubit QNNs defined in Eq. (16) and upload the
classical data x := (x(1), x(2), · · · , x(d)) ∈ Rd as

Uθ,L(x) = U3(θ0, ϕ0, λ0)
L∏

j=1

RZ(xj)U3(θj , ϕj , λj), (18)

where each xj ∈ x and L ∈ N+. Without loss of generality, assume that each dimension x(i) is
uploaded the same number of times, denoted by K. Naturally, we have Kd = L. Further, we rewrite
the output of QNNs defined in Eq. (5) as the following form.

fθ,L(x) =
∑
ω∈Ω

cωe
iω·x, (19)

where Ω = {−K, · · · , 0, · · · ,K}d, and the cω is determined by parameters θ and the observable M .
A detailed analysis can be found in Appendix B. We can see that Eq. (19) cannot be represented as
a K-truncated multivariate Fourier series. Specifically, by the curse of dimensionality, it requires
exponentially many terms in d to approximate a function in d dimensions. However, for fθ,L(x), the
degrees of freedom grow linearly with the number of layers L. It implies that single-qubit native
QNNs potentially lack the capability to universally approximate arbitrary multivariate functions from
the perspective of the Fourier series.

Despite the potential limitation of native QNNs in multivariate approximation, it has been proved that
a single-qubit hybrid QNN can approximate arbitrary multivariate functions [28, 29]. However, the
UAP of hybrid QNNs is fundamentally different from the native model that we investigated. Those
hybrid models involve trainable weights either in data pre-processing or post-processing. Specifically,
introducing trainable weights in data pre-processing is equivalent to multiplying each frequency of
the Fourier series by an arbitrary real coefficient, i.e.

S(wx) = RZ(wx) = e−iw x
2Z . (20)

Therefore it enriches the frequency spectrum of native QNNs, which only contain integer multiples
of the fundamental frequency. It can also be readily extended to the encoding of multi-dimensional
data x := (x(1), x(2), · · · , x(d)) as

RZ(w1x
(1))RZ(w2x

(2)) · · ·RZ(wdx
(d)) = RZ(w · x) = e−

1
2 iw·xZ , (21)

where w = (w1, . . . , wd) is a vector of trainable weights. Using such an encoding method enables a
single-qubit QNN to approximate any continuous multivariate function [29]. We notice that, although
the trainable weights enrich the frequency spectrum of the Fourier series, the capability of hybrid
QNNs to approximate arbitrary multivariate functions is not obtained using the multivariate Fourier
series, but the universal approximation theorem [25, 26] in machine learning theory. In another word,
the multivariate UAP of a hybrid QNN mostly comes from the classical structure, and the QNN
serves as an activation function σ(x) = e−ix in the universal approximation theorem. This fact might
be able to shed some light on the reason why a hybrid QNN does not provide quantum advantages
over the classical NN.
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5 Numerical experiments

In order to better illustrate the expressive power of single-qubit native QNNs, we supplement the
theoretical results with numerical experiments. Specifically, we demonstrate the flexibility and
approximation capability of single-qubit native QNNs in Section 5.1. The limitations of single-qubit
QNNs are illustrated in Section 5.2 through the numerical experiments on approximating multivariate
functions. All simulations are carried out with the Paddle Quantum toolkit on the PaddlePaddle Deep
Learning Platform, using a desktop with an 8-core i7 CPU and 32GB RAM.

5.1 Univariate function approximation

A damping function f(x) = sin (5x)/5x is used to demonstrate the approximation performance of
single-qubit native QNN models. The dataset consists of 300 data points uniformly sampled from
the interval [0, π], from which 200 are selected for the training set and 100 for the test set. Since the
function f(x) is an even function, we use the QNN model as defined in Eq. (10). The parameters
of trainable gates are initialized from the uniform distribution on [0, 2π]. We adopt a variational
quantum algorithm, where a gradient-based optimizer is used to search and update parameters in the
QNN. The mean squared error (MSE) serves as the loss function. Here the Adam optimizer is used
with a learning rate of 0.1. We set the training iterations to be 100 with a batch size of 20 for all
experiments.

While approximating a function f(x) by a truncated Fourier series, the approximation error decreases
as the number of expansion terms increases. As shown in Lemma 3, the frequency spectrum and
Fourier coefficients will be extended by consecutive repetitions of the encoding gate and trainable
gate. The numerical results in Fig. 4 illustrate that the approximation error decreases as the number
of layers increases, which are consistent with our theoretical analysis.

Figure 4: Panel (a) is the approximation results of UYZY
θ,L with different L. Panel (b) shows the

approximation error. Here the theoretical truncation error is calculated using the uniform norm
∥fN (x)− f(x)∥∞, where fN (x) is the truncated Fourier series of f(x) with N terms.

To further show the flexibility and capability of single-qubit QNNs, we pick a square wave function
as the target function. The training set contains 400 data points sampled from the interval [0, 20].
The numerical results are illustrated in Fig. 5. By simply repeating 45 layers, the single-qubit QNN
UWZW
θ,ϕ,L(x) learns the function hidden beneath the training data. In particular, the approximation

works well not only for input variables located between the training data but also outside of the region,
because the Fourier series has a natural capability in dealing with periodic functions.

5.2 Multivariate function approximation

We numerically demonstrate the limitations of single-qubit native QNNs in approximate multivariate
functions. We examine the convergence of the loss as the number of layers of the circuit increases
and compare the outcome with the target function. Specifically, we consider a bivariate function
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Figure 5: The result of approximating the square wave function by a 45-layer QNN UWZW
θ,ϕ,L(x). For

showing periodic extrapolation, and the test region is extend to [0, 30].

f(x, y) = (x2 + y − 1.5π)2 + (x+ y2 − π)2 as the target function. Note that f(x, y) is normalized
on the interval [−π, π]2, i.e., −1 ≤ f(x, y) ≤ 1.

The training set consists of 400 data points sampled from interval [−π, π]2. We use the single-
qubit QNN with various numbers of layers defined as Eq. (18) to learn the target function. The
experimental setting is the same as in the univariate function approximation. In order to reduce the
effect of randomness, the experimental results are averaged over 5 independent training instances.

Fig. 6 shows that the single-qubit native QNN has difficulty in approximating bivariate functions.
The approximation result of QNN as shown in Fig. 6b is quite different from the target function, even
for a very deep circuit of 40 layers. Also, the training loss in Fig. 6c does not decrease as the number
of layers increases. Note that the target function is only bivariate here, the limitations of single-qubit
native QNNs will be more obvious in the case of higher dimensions. We further propose a possible
strategy that extends single-qubit QNNs to multiple qubits, which could potentially overcome the
limitations and handle practical classification tasks, see Appendix C for details.

(a) Target function. (b) Approximation result. (c) Training loss.

Figure 6: Panel (a) is the plot of target function f(x, y). Panel (b) shows the approximation result of
a 40-layer QNN. Panel (c) is the plot of training loss for QNNs with different numbers of layers
during the optimization.

6 Conclusion and outlook

In this work, we presented a systematic investigation of the expressive power of single-qubit native
QNNs, which are capable to approximate any square-integrable univariate function with arbitrary
precision. We not only give an existence proof but also analytically show an exact mapping between
native QNNs and the partial Fourier series from perspectives of both frequency spectrum and Fourier
coefficients, which solves an open problem on the UAP of single-qubit QNNs in Ref. [27]. Our proof,
inspired by quantum signal processing, explicitly illustrates the correlation between parameters of
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trainable gates and the Fourier coefficients. Other than the expressivity, we also discuss the limitation
of single-qubit QNNs from the perspective of multivariate Fourier series. Both the expressivity
and limitation of single-qubit QNNs are validated by numerical simulations. We expect our results
provide a fundamental framework to the class of data re-uploading QNNs, which serves as insightful
guidance on the design of such QNN models.

Although the expressive power of a single-qubit QNN have been well investigated, it may not be
an ideal model in practice due to the potential limitations on approximating multivariate functions.
Moreover, single-qubit models can be efficiently simulated by classical computers and hence cannot
bring any quantum advantage. The multi-qubit QNNs as shown in Ref. [27] and in Appendix C might
require exponential circuit depth, which is impractical to implement and also does not fit the systematic
analysis for the single-qubit case. Therefore one future step is to efficiently generalize the framework
of single-qubit QNNs to multi-qubit cases. One promising approach is to encode data into multi-
qubit unitaries by block encoding and then mapping higher-dimensional operations on multi-qubit
systems to single-qubit gates by qubitization [38]. Such techniques are originally used in multi-qubit
extensions of quantum signal processing, such as quantum singular value transformation [35] and
quantum phase processing [37]. By the connection between single-qubit QNNs and quantum signal
processing, block encoding and qubitization may lead to useful QNN models for multi-qubit cases
and establish corresponding systematic analyses. A recent paper presents a method that extends
quantum signal processing to multivariate [39], which might also be applicable to single-qubit QNNs.
We believe our results and their possible extensions would improve our understanding of QNNs and
provide a helpful guideline for designing powerful QNNs for machine learning tasks.
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