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Abstract

An important unresolved challenge in the theory of regularization is to set the
regularization coefficients of popular techniques like the ElasticNet with general
provable guarantees. We consider the problem of tuning the regularization param-
eters of Ridge regression, LASSO, and the ElasticNet across multiple problem
instances, a setting that encompasses both cross-validation and multi-task hyperpa-
rameter optimization. We obtain a novel structural result for the ElasticNet which
characterizes the loss as a function of the tuning parameters as a piecewise-rational
function with algebraic boundaries. We use this to bound the structural complexity
of the regularized loss functions and show generalization guarantees for tuning the
ElasticNet regression coefficients in the statistical setting. We also consider the
more challenging online learning setting, where we show vanishing average ex-
pected regret relative to the optimal parameter pair. We further extend our results to
tuning classification algorithms obtained by thresholding regression fits regularized
by Ridge, LASSO, or ElasticNet. Our results are the first general learning-theoretic
guarantees for this important class of problems that avoid strong assumptions on
the data distribution. Furthermore, our guarantees hold for both validation and
popular information criterion objectives.

1 Introduction

Ridge regression [30, 43], LASSO [41], and their generalization the ElasticNet [28] are among the
most popular algorithms in machine learning and statistics, with applications to linear classification,
regression, data analysis, and feature selection [15, 46, 28, 20, 24]. Given a supervised dataset
(X, y) 2 Rm⇥p

⇥Rm with m datapoints and p features, these algorithms compute the linear predictor

�̂(X,y)
�1,�2

= argmin
�2Rp

ky �X�k22 + �1k�k1 + �2k�k
2
2 (1)

Here �1,�2 � 0 are regularization coefficients constraining the `1 and `2 norms, respectively, of the
model �. For general �1 and �2 the above algorithm is the ElasticNet, while setting �1 = 0 recovers
Ridge and setting �2 = 0 recovers LASSO.

These coefficients play a crucial role across fields: in machine learning controlling the norm of �
implies provable generalization guarantees and prevent over-fitting in practice [34], in data analysis
their combined use yields parsimonious and interpretable models [28], and in Bayesian statistics
they correspond to imposing specific priors on � [35, 33]. In practice, �2 regularizes � by uniformly
shrinking all coefficients, while �1 encourages the model vector to be sparse. This means that
while they do yield learning-theoretic and statistical benefits, setting them to be too high will cause
models to under-fit the data. The question of how to set the regularization coefficients becomes
even more unclear in the case of the ElasticNet, as one must juggle trade-offs between sparsity,
feature correlation, and bias when setting both �1 and �2 simultaneously. As a result, there has been
intense empirical and theoretical effort devoted to automatically tuning these parameters. Yet the
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state-of-the-art is quite unsatisfactory: proposed work consists of either heuristics without formal
guarantees [26, 31], approaches that optimize over a finite grid or random set instead of the full
continuous domain [17], or analyses that involve very strong theoretical assumptions [44].

In this work, we study a variant on the above well-established and intensely studied formulation.
The key distinction is that instead of a single dataset (X, y), we consider a collection of datasets
or instances of the same underlying regression problem (X(i), y(i)) and would like to learn a pair
(�1,�2) that selects a model in equation (1) that has low loss on a validation dataset. This can be
useful to model practical settings, for example where new supervised data is obtained several times or
where the set of features may change frequently [19]. We do not require all examples across datasets
to be i.i.d. draws from the same data distribution, and can capture more general data generation
scenarios like cross-validation and multi-task learning [45]. Despite these advantages, we remark that
our problem formulation is quite different from the standard single dataset setting. Our formulation
treats the selection of regularization coefficients as data-driven algorithm design, which is often
used to study combinatorial problems [27, 3], and has connections to meta-learning [12].

Our main contribution is a new structural result for the ElasticNet Regression problem, which implies
generalization guarantees for selecting ElasticNet Regression coefficients in the multiple-instance
setting. In particular, Ridge and LASSO regressions are special cases. We extend our results to obtain
low regret in the online learning setting, and to tuning related linear classification algorithms. In
summary, we make the following key contributions:

• We formulate the problem of tuning the ElasticNet as a question of learning �1 and �2 simulta-
neously across multiple problem instances, either generated statistically or coming online. Our
formulation captures relevant settings like cross-validation and multi-task learning.

• We provide a novel structural result (Theorem 2.2) that characterizes the loss of the ElasticNet fit.
We show that the hyperparameter space can be partitioned by polynomial curves of bounded degrees
into pieces where the loss is a bivariate rational function. The result holds for both the usual Elas-
ticNet validation objective and when it is augmented with information criteria like the AIC or BIC.

• An important consequence of our structural result is a bound on the pseudo-dimension (Definition
5) for the loss function class, which yields strong generalization bounds for tuning �1 and
�2 simultaneously in the statistical learning setting (Theorem 3.2). Informally, for ElasticNet
regression problems with at most p parameters, for any problem distribution D, we show that
O
�

1
✏2 (p

2 log 1
✏ + log 1

� )
�

problem instances (or datasets) are sufficient to learn an ✏-approximation
to the best (�1,�2), with probability at least 1� �.

• In the online setting, we show under very mild data assumptions—much weaker than prior
work—that the problem satisfies a dispersion condition [6, 9]. As a result we can tune all
parameters across a sequence of instances appearing online and obtain vanishing regret relative
to the optimal parameter in hindsight over the sequence (Theorem 3.3) at the rate Õ(1/

p
T )2 wrt

the length T of the sequence.

• We also give distributional and online learning results for regularized classifiers (Theorems 4.1, 4.2).

We include a couple of remarks to emphasize the generality and significance of our results. First, in
our multiple-instance formulation the different problem instances need not have the same number of
examples, or even the same set of features. This allows us to handle practical scenarios where the set
of features changes across datasets, and we can learn parameters that work well on average across
multiple different but related regression tasks. Second, by generating problem instances iid from a
fixed (training + validation) dataset, we can obtain iterations (training/validation splits) of popular
cross-validation techniques (including the popular leave-one-out and Monte Carlo CV) and our result
implies that Õ(p2/✏2) iterations are enough to determine an ElasticNet parameter �̂ with loss within
✏ (w.h.p.) of the optimal parameter �⇤ over the distribution induced by the cross-validation splits.

Key challenges and insights. A major challenge in learning the ElasticNet parameters is that the
variation of the solution path as a function of �2 is hard to characterize. Indeed the original ElasticNet
paper [47] suggests using the heuristic of grid search to learn a good �2, even though �1 may be exactly
optimized by computing full solution paths (for each �2). We approach this indirectly by utilizing a

2The soft-O notation is used to emphasize dependence on T , and suppresses other factors as well as
logarithmic terms.
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characterization of the LASSO solution by [42], which is based on the KKT (Karush–Kuhn–Tucker)
optimality conditions, to arrive at a precise piecewise structure for the problem. In more detail, we
use these conditions to come up with a set of algebraic curves (polynomial equations in �1 and �2) of
bounded degrees, such that the set of possible discontinuities is contained within the zero-set of these
curves, and the loss function behaves well in the each piece of the partition of the parameter domain
by these curves. This characterization is crucial in establishing a bound on the structural complexity
needed to provide strong generalization guarantees. We further show additional structure on these
algebraic curves that (roughly speaking) imply that the curves do not concentrate in any region of
the domain, allowing us to use the powerful recipe of [8] for online learning.

Related work. Model selection for Ridge regression, LASSO or ElasticNet typically involves
selecting the regularization parameter � for given data, although some parameter-free techniques
for variable selection have been recently proposed [32]. Choosing ‘optimal’ parameters for tuning
the regularization has been a subject of extensive theoretical and applied research. Much of this
effort is heuristic [26, 31] or focused on developing tuning objectives beyond validation accuracy
like AIC or BIC [1, 39] without providing procedures for provably optimizing them. The standard
approach given a tuning objective is to optimize it over a grid or random set of parameters, for
which there are guarantees [17], but this does not ensure optimality over the entire continuous
tuning domain, especially since objectives such as 0-1 validation error or information criteria can
have many discontinuities. Selecting a grid that is too fine or too coarse can result in either very
inefficient or highly inaccurate estimates (respectively) for good parameters. Other guarantees
make strong assumptions on the data distribution such as sub-Gaussian noise [44, 16] or depend on
unknown parameters that are hard to quantify in practice [23]. Recent work has shown asymptotic
consistency of cross-validation for ridge regression, even in the limiting case �2 ! 0 which is
particularly interesting for the overparameterized regime [29, 36]. A successful line of work has
focused on efficiently obtaining models for different values of �1 using regularization paths [22], but
the guarantees are computational rather than learning-theoretic or statistical. In contrast, we provide
principled approaches that guarantee near-optimality of selected parameters with high confidence
over the entire continuous domain of parameters.

Data-driven algorithm design has proved successful for tuning parameters for a variety of combi-
natorial problems like clustering, integer programming, auction design and graph-based learning
[7, 11, 5, 4]. We provide an application of these techniques to parameter tuning in a problem that is not
inherently combinatorial by revealing a novel discrete structure. We identify the underlying piecewise
structure of the ElasticNet loss function which is extremely effective in establishing learning-theoretic
guarantees [10]. To exploit this piecewise structure, we analyze the learning-theoretic complexity
of rational algebraic function classes and infer generalization guarantees. We also employ and extend
general tools and techniques for online data-driven learning from [8, 4] to rational functions in order
to prove our online learning guarantees for regularization coefficient tuning.

2 Preliminaries and a Key Structural Result

Given data (X, y) with X 2 Rm⇥p and y 2 Rm, consisting of m labeled examples with p features,
we seek estimators � 2 Rp which minimize the regularized loss. Popular regularization methods
like LASSO and ElasticNet can be expressed as computing the solution of an optimization problem

�̂(X,y)
�,f 2 argmin

�2Rp
ky �X�k22 + h�, f(�)i

where f : Rp
! Rd

�0 gives the regularization penalty for estimator �, � 2 Rd
�0 is the regularization

parameter, and d is the number of regularization parameters. d = 1 for Ridge and LASSO, and
d = 2 for the ElasticNet. Setting f = f2 with f2(�) = k�k22 yields Ridge regression, and setting
f(�) = f1(�) := k�k1 corresponds to LASSO. Also using fEN(�) = (f1(�), f2(�)) gives the
ElasticNet with regularization parameter � = (�1,�2). Note that we use the same � (with some
notational overloading) to denote the regularization parameters for ridge, LASSO, or ElasticNet.
We write �̂(X,y)

�,f as simply �̂�,f when the dataset (X, y) is clear from context. On any instance
x 2 Rp from the feature space, the prediction of the regularized estimator is given by the dot product
hx, �̂�,f i. The average squared loss over a dataset (X 0, y0) with X 0

2 Rm0⇥p and y0 2 Rm0
is given
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by lr(�̂�,f , (X 0, y0)) = 1
m0

���y0 �X 0�̂�,f

���
2

2
. By setting (X 0, y0) to be the training data (X, y), we

get the training loss lr(�̂�,f , (X, y)). We use (Xval, yval) to denote a validation split.

Distributional and Online Settings. In the distributional or statistical setting, we receive a col-
lection of n instances of the regression problem P (i) = (X(i), y(i), X(i)

val , y
(i)
val ) 2 Rmi,pi,m0

i
:=

Rmi⇥pi ⇥ Rmi ⇥ Rm0
i⇥pi ⇥ Rm0

i for i 2 [n] generated i.i.d. from some problem distribution D.
The problems are in the problem space given by ⇧m,p =

S
m1�0,m2m,p1p Rm1,p1,m2 (note

that the problem distribution D is over ⇧m,p). On any given instance P (i) the loss is given by
the squared loss on the validation set, `EN(�, P (i)) = lr(�̂

(X(i),y(i))
�,fEN

, (X(i)
val , y

(i)
val )). On the other

hand, in the online setting, we receive a sequence of T instances of the ElasticNet regression prob-
lem P (i) = (X(i), y(i), X(i)

val , y
(i)
val ) 2 ⇧m,p for i 2 [T ] online. On any given instance P (i), the

online learner is required to select the regularization parameter �(i) without observing y(i)val , and

experiences loss given by `(�(i), P (i)) = lc(�̂
(X(i),y(i))
�(i),fEN

, (X(i)
val , y

(i)
val )). The goal is to minimize the

regret w.r.t. choosing the best fixed parameter in hindsight for the same problem sequence, i.e.
RT =

PT
i=1 `(�

(i), P (i)) � min�
PT

i=1 `(�, P
(i)). We also define average regret as 1

T RT and
expected regret as E[RT ] where the expectation is over both the randomness of the loss functions and
any random coins used by the online algorithm.

Given a class of regularization algorithms A parameterized by regularization parameter � over a set
of problem instances X , and given loss function ` : A ⇥ X ! R which measures the loss of any
algorithm in A on any fixed problem instance, consider the set of functions HA = {`(A, ·) | A 2 A}.
For example, for the ElasticNet we have `EN(�, P ) = lr(�̂

(XP ,yP )
�,fEN

, (X 0
P , y

0
P )), where (XP , yP ) and

(X 0
P , y

0
P ) are the training and validation sets associated with problem P 2 X respectively. Bounding

the pseudo-dimension of HA gives a bound on the sample complexity for uniform convergence
guarantees, i.e. a bound on the sample size n for which the algorithm ÂS 2 A which minimizes the
average loss on any sample S of size n drawn i.i.d. from any problem distribution D is guaranteed
to be near-optimal with high probability [21]. See Appendix A for the relevant classic definitions
and results. Define the dual class H⇤ of a set of real-valued functions H ✓ 2X as H⇤ = {h⇤

x : H !

R | x 2 X} where h⇤
x(h) = h(x). In the context of regression problems X , for each fixed problem

instance x 2 X there is a dual function h⇤
x that computes the loss `(A, x) for any (primal) function

hA = `(A, ·) 2 HA. For a function class H, showing that dual class H⇤ is piecewise-structured in
the sense of Definition 1 and bounding the complexity of the duals of boundary and piece functions
of H⇤ are useful to understand the learnability of H [10].
Definition 1 (Piecewise structured functions, [10]). A function class H ✓ RX that maps a domain
X to R is (F,G, k)-piecewise decomposable for a class G ✓ {0, 1}X of boundary functions and
a class F ✓ RX of piece functions if the following holds: for every h 2 H , there are k boundary
functions g1, . . . , gk 2 G and a piece function fb 2 F for each bit vector b 2 {0, 1}k such that for
all x 2 X , h(x) = fbx(x) where bx = (g1(x), . . . , gk(x)) 2 {0, 1}k.

Intuitively, a real-valued function is piecewise-structured if the domain can be divided into pieces by
a finite number of boundary functions (say linear or polynomial thresholds) and the function value
over each piece is easy to characterize (e.g. constant, linear, polynomial). To state and understand our
structural insights into the ElasticNet problem we will also need the definition of equicorrelation sets,
the subset of features with maximum absolute correlation for any fixed �1, useful for characterizing
LASSO/ElasticNet solutions. For any subset E ✓ [p] of the features, we define XE = (. . . X⇤i . . .)i2E
as the m⇥ |E| matrix of columns X⇤i of X corresponding to indices i 2 E . Similarly �E 2 R|E| is
the subset of estimators in � corresponding to indices in E . We will assume all the feature matrixes
X (for training datasets) are in general position (Definition 6).

Definition 2 (Equicorrelation sets, [42]). Let �⇤
2 argmin�2Rp ky �X�k22+�1||�||1. The equicor-

relation set corresponding to �⇤, E = {j 2 [p] | |xT
j (y � X�⇤)| = �1}, is simply the set of

covariates with maximum absolute correlation. We also define the equicorrelation sign vector for �⇤

as s = sign(XT
E (y �X�⇤)) 2 {±1}.

Consider the class of algorithms consisting of ElasticNet regressors for different values of � =
(�1,�2) 2 (0,1)⇥ (0,1). We assume �1 > 0 for technical simplicity (cf. [42]). We seek to solve

4



problems of the form P = (X, y,Xval, yval) 2 ⇧m,p, where (X, y) is the training set, (Xval, yval) is
the validation set with the same set of features, and m, p are upper bounds on the number of examples
and features respectively in any dataset. Let HEN = {`EN(�, ·) | � 2 (0,1) ⇥ (0,1)} denote
the set of loss functions for the class of algorithms consisting of ElasticNet regressors for different
values of � 2 R+

⇥ R+. Additionally, we will consider information criterion based loss functions,
`AIC

EN (�, P ) = `EN(�, P )+2||�̂(X,y)
�,fEN

||0 and `BIC
EN (�, P ) = `EN(�, P )+2||�̂(X,y)

�,fEN
||0 logm [1, 39]. Let

H
AIC
EN and H

BIC
EN denote the corresponding sets of loss functions. These criteria are popularly used

to compute the squared loss on the training set, to give alternatives to cross-validation. We do not
make any assumption on the relation between training and validation sets in our formulation, so our
analysis can capture these settings as well.

Figure 1: An illustration of the piecewise struc-
ture of the ElasticNet loss, as a function of
the regularization parameters, for a fixed prob-
lem instance. Pieces are regions where some
bounded degree polynomials (r1, r2) have a
fixed sign pattern (one of ±1,±1), and in each
piece the loss is a fixed (rational) function.

We will now establish a piecewise structure of the
dual class loss functions (Definition 1). A key obser-
vation is that if the signed equicorrelation set (E , s)
(i.e. a subset of features E ✓ [p] with the same
maximum absolute correlation, assigned a fixed sign
pattern {�1,+1}|E|, see Definition 2) is fixed, then
the ElasticNet coefficients may be characterized
(Lemma C.1) and the loss is a fixed rational poly-
nomial piece function of the parameters �1,�2. We
then show the existence of a set of boundary func-
tion curves G, such that any region of the parameter
space located on a fixed side of all the curves (more
formally, for a fixed sign pattern in Definition 1) in G

has the same signed equicorrelation set. The bound-
ary functions are a collection of possible curves at
which a covariate may enter or leave the set E and
correspond to algebraic curves. We make repeated
use of the following lemma which provides useful
properties of the piece functions as well the the boundary functions of the dual class loss functions.
Lemma 2.1. Let A be an r ⇥ s matrix. Consider the matrix B(�) = (ATA+ �Is)�1 and � > 0.

1. Each entry of B(�) is a rational polynomial Pij(�)/Q(�) for i, j 2 [s] with each Pij of
degree at most s� 1, and Q of degree s.

2. Further, for i = j, Pij has degree s � 1 and leading coefficient 1, and for i 6= j Pij has
degree at most s� 2. Also, Q(�) has leading coefficient 1.

The proof is straightforward (Appendix C). We will now formally state and prove our key structural
result which is needed to establish our generalization and online regret guarantees in Section 3.
Theorem 2.2. Let L be a set of functions {l� : ⇧m,p ! R�0 | � 2 R+

⇥ R�0} that map a
regression problem instance P 2 ⇧m,p to the validation loss `EN(�, P ) of ElasticNet trained with
regularization parameter � = (�1,�2). The dual class L⇤ is (F ,G, p3p)-piecewise decomposable,
with F = {fq : L ! R} consisting of rational polynomial functions fq1,q2 : l� 7!

q1(�1,�2)
q2(�2)

, where
q1, q2 have degrees at most 2p, and G = {gr : L ! {0, 1}} consisting of semi-algebraic sets3

bounded by algebraic curves gr : u� 7! I{r(�1,�2) < 0}, where r is a polynomial of degree 1 in �1

and at most p in �2.

Proof. Let P = (X, y,Xval, yval) 2 ⇧m,p be a regression problem instance. By using the standard
reduction to LASSO [47] and well-known characterization of the LASSO solution in terms of equicor-
relation sets, we can characterize the solution �̂�,fEN of the Elastic Net as follows (Lemma C.1):

�̂�,fEN = (XT
E XE + �2I|E|)

�1XT
E y � �1(X

T
E XE + �2I|E|)

�1s

for some E 2 [p] and s 2 {�1, 1}p. Thus for any � = (�1,�2), the prediction ŷ on any validation
example with features x 2 Rp satisfies (for some E , s 2 2[p] ⇥ {�1, 1}p)

ŷj = x�̂�,fEN = x(XT
E XE + �2I|E|)

�1XT
E y � �1x(X

T
E XE + �2I|E|)

�1s

3See Definition 7 for definitions of standard terminology from algebraic geometry.
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For any subset R ✓ R2, if the signed equicorrelation set (E , s) is fixed over R, then the above
observation, together with Lemma C.2 implies that the loss function `EN(�, P ) is a rational function
of the form q1(�1,�2)

q2(�2)
, where q1 is a bivariate polynomial with degree at most 2|E| and q2 is univariate

with degree 2|E|.

To show the piecewise structure, we need to demonstrate a set boundary functions G = {g1, . . . , gk}
such that for any sign pattern b 2 {0, 1}k, the signed equicorrelation set (E , s) for the region with
sign pattern b is fixed. To this end, based on the observation above, we will consider the conditions
(on �) under which a covariate may enter or leave the equicorrelation set. We will show that this
can happen only at one of a finite number of algebraic curves (with bounded degrees).

Condition for joining E . Fix E , s. Also fix j /2 E . If covariate j enters the equicorrelation set, the
KKT conditions (Lemma B.1) applied to the LASSO problem corresponding to the ElasticNet
(Lemma C.1) imply

(x⇤
j )

T (y⇤ �X⇤
E(c1 � c2�

⇤
1)) = ±�⇤

1,

where c1 = (X⇤
E
TX⇤

E)
�1X⇤

E
T y⇤, c2 = (X⇤

E
TX⇤

E)
�1s, X⇤ = 1p

1+�2

✓
X

p
�2Ip

◆
, y⇤ =

✓
y
0

◆
, and

�⇤
1 = �1p

1+�2
. Rearranging, and simplifying, we get

�⇤
1 =

(x⇤
j )

TX⇤
E(X

⇤
E
TX⇤

E)
�1(X⇤

E)
T y⇤ � (x⇤

j )
T y⇤

(x⇤
j )

TX⇤
E(X

⇤
E
TX⇤

E)
�1s± 1

, or

�1 =
xT
j XE(XE

TXE + �2I|E|)
�1XE

T y � xT
j y

xT
j XE(XE

TXE + �2I|E|)�1s± 1
.

Note that the terms (x⇤
j )

TX⇤
E = xT

j XE , (X⇤
E)

T y⇤ = XT
E y, and (x⇤

j )
T y⇤ = xT

j y do not depend on
�1 or �2 (the �2 terms are zeroed out since j /2 E). Moreover, (X⇤

E
TX⇤

E)
�1 = (XE

TXE +�2I|E|)
�1.

Using Lemma C.2, we get an algebraic curve rj,E,s(�1,�2) = 0 with degree 1 in �1 and |E| in �2

corresponding to addition of j /2 E given E , s.

Condition for leaving E . Now consider a fixed j0 2 E , given fixed E , s. The coefficient
of j0 will be zero for �⇤

1 =
(c1)j0
(c2)j0

, which simplifies to �1((XE
TXE + �2I|E|)

�1s)j0 =

((XE
TXE +�2I|E|)

�1XE
T y)j0 . Again by Lemma C.2, we get an algebraic curve rj0,E,s(�1,�2) = 0

with degree 1 in �1 and at most |E| in �2 corresponding to removal of j0 2 E given E , s.

Putting the two together, we get
Pp

i=0 2
i
�p
i

�
((p� i) + i) = p3p algebraic curves of degree 1 in

�1 and at most p in �2, across which the signed equicorrelation set may change. These curves
characterize the complete set of points (�1,�2) at which (E , s) may possibly change. Thus by setting
these p3p curves as the set of boundary functions G, E , s is guaranteed to be fixed for each sign
pattern, and the corresponding loss takes the rational function form shown above.

The exact same piecewise structure can be established for the dual function classes for loss functions
`AIC

EN (�, ·) and `BIC
EN (�, ·). This is evident from the proof of Theorem 2.2, since any dual piece has a

fixed equicorrelation set, and therefore ||�||0 is fixed. Given this piecewise structure, a challenge to
learning values of � that minimize the loss function is that the function may not be differentiable
(or may even be discontinuous, for the information criteria based losses) at the piece boundaries,
making well-known gradient-based (local) optimization techniques inapplicable here. In the following
(specifically Algorithm 1) we will show that techniques from data-driven design may be used to
overcome this optimization challenge.

3 Learning to Regularize the ElasticNet

We will consider the problem of learning provably good ElasticNet parameters for a given problem
domain, from multiple datasets (problem instances) either available as a collection (Section 3.1),
or arriving online (Section 3.2). Our parameter tuning techniques also apply to simpler regression
techniques typically used for variable selection, like LARS and LASSO, which are reasonable
choices if the features are not multicollinear. Proof details for this section are located in Appendix C.
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3.1 Distributional Setting

Our main result in this section is the following upper bound on the pseudo-dimension of the classes
of loss functions for the ElasticNet, which implies that in our distributional setting it is possible to
learn near-optimal values of � with polynomially many problem instances.

Theorem 3.1. PDIM(HEN) = O(p2). Further, PDIM(HAIC
EN ) = O(p2) and PDIM(HBIC

EN ) = O(p2).

Proof Sketch. We use the (F ,G, p3p)-piecewise decomposable structure for the dual class function
H

⇤
EN established in Theorem 2.2. We can bound the pseudo-dimension of the dual class of piece

functions F
⇤ (a class of bivariate rational functions) by O(log p) by giving an upper bound (of

O(k3d3)) on the number of sign patterns over R2 induced by k algebraic curves of degree at most d.
We can also bound the VC dimension of the dual class of boundary functions G⇤ (semi-algebraic sets
in two variates) by O(p) using a standard linearization argument. Finally, a powerful result from [10]
(Theorem C.3) allows us to bound the pseudodimension of H by combining the above results. ⇤

A key challenge to establish the theorem is providing new bounds on the pseudo-dimension of rational
functions of bounded degrees (Lemma C.5). The upper bound above implies a guarantee on the
sample complexity of learning the ElasticNet tuning parameter, using standard learning-theoretic
results [2]. In our setting of learning from multiple problem instances, each sample is a dataset
instance, so the sample complexity is simply the number of regression problem instances needed to
learn the tuning parameters to any given approximation and confidence level.

Theorem 3.2 (Sample complexity of tuning the ElasticNet). Let D be an arbitary distribution over
the problem space ⇧m,p. There is an algorithm which given n = O

�
1
✏2 (p

2 log 1
✏ + log 1

� )
�

problem
samples drawn from D, for any ✏ > 0 and � 2 (0, 1), outputs a regularization parameter �̂ for the
ElasticNet such that with probability at least 1�� over the draw of the problem samples, we have that

���EP⇠D[`EN (�̂, P )]�min
�

EP⇠D[`EN (�, P )]
���  ✏

Proof. This follows from substituting our result in Theorem 3.1 into well-known generalization
guarantee for function classes with bounded pseudo-dimensions (Theorem A.1).

Discussion and applications. Computing the parameters which minimize the loss on the problem
samples (aka Empirical Risk Minimization, or ERM) achieves the sample complexity bound in
Theorem 3.2. Even though we only need polynomially many samples to guarantee the selection of
nearly-optimal parameters, it is not clear how to implement the ERM efficiently. Note that we do
not assume the set of features is the same across problem instances, so our approach can handle
feature reset i.e. different problem instances can differ in not only the number of examples but
also the number of features. Moreover, as a special case application, we consider the commonly
used techniques of leave-one-out cross validation (LOOCV) and Monte Carlo cross validation
(repeated random test-validation splits, typically independent and in a fixed proportion). Given a
dataset of size mtr, LOOCV would require mtr regression fits which can be inefficient for large
dataset size. Alternately, we can consider draws from a distribution DLOO which generates problem
instances P from a fixed dataset (X, y) 2 Rm+1⇥p

⇥Rm+1 by uniformly selecting j 2 [m+ 1] and
setting P = (X�j⇤, y�j , Xj⇤, yj). Theorem 3.2 now implies that Õ(p2/✏2) iterations are enough to
determine an ElasticNet parameter �̂ with loss within ✏ (w.h.p.) of the parameter �⇤ obtained from
running the full LOOCV. Similarly, we can define a distribution DMC to capture the Monte Carlo
cross validation procedure and determine the number of iterations sufficient to get an ✏-approximation
of the loss corresponding parameter selection with arbitrarily large number of runs of the procedure.
Thus, in a very precise sense, our results answer the question of how much cross-validation is enough
to effectively implement the above techniques.

Remark 1. While our result implies polynomial sample complexity, the question of learning the
provably near-optimal parameter efficiently (even in output polynomial time) is left open. For the
special cases of LASSO (�2 = 0) and Ridge (�1 = 0), the piece boundaries of the piecewise
polynomial dual class (loss) function may be computed efficiently (using the LARS-LASSO algorithm
of [22] for LASSO, and solving linear systems and locating roots of polynomials for Ridge). This
applies to online and classification settings in the following sections as well.
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3.2 Online Learning

We will now extend our results to learning the regularization coefficients given an online sequence
of regression problems, such as when one needs to solve a new regression problem each day. Unlike
the distributional setting above, we will not assume any problem distribution and our results will
hold for an adversarial sequence of problem instances. We will need very mild assumptions on the
data, namely boundedness of feature and prediction values and ‘smoothness’ of predictions (formally
stated as Assumptions 1 and 2), while our distributional results above hold for worst-case problem
datasets. Our first assumption is that all feature values and predictions are bounded, for training
as well as validation examples.
Assumption 1 (Boundedness). The predicted variable and all feature values are bounded by an
absolute constant R, i.e. max{||X(i)

||1,1, ||y(i)||1, ||X(i)
val ||1,1, ||y(i)val ||1}  R.

We will need the following definition of distribution smoothness to state our second assumption.
Definition 3. A continuous probability distribution is said to be -bounded if the probability density
function p(x) satisfies p(x)   for any x in the sample space.

For example, the normal distribution N (µ,�2) with mean µ and standard deviation � is 1
�
p
2⇡

-
bounded. We assume that the predicted variable y in the training set comes from a -bounded (i.e.
smooth) distribution, which does not require the strong tail decay of sub-Gaussian distributions
[44, 13]. Moreover, the online adversary is allowed to change the distribution as long as it is -
bounded. Note that our assumption also captures common data preprocessing steps, for example the
jitter parameter in the popular Python library scikit-learn [37] adds a uniform noise to the y values to
help model stability. The assumption is formally stated as follows:
Assumption 2 (Smooth predictions). The predicted variables y(i) in the training set are drawn
from a joint -bounded distribution, i.e. for each i, the variables y(i) have a joint distribution with
probability density bounded by .

Under these assumptions, we can show that it is possible to learn the ElasticNet parameters with
sublinear expected regret when the problem instances arrive online. The learning algorithm (Algo-
rithm 1) that achieves this regret is a continuous variant of the classic Exponential Weights algorithm
[14, 6]. It samples points in the domain with probability inversely propotional to the exponentiated
loss. To formally state our result, we will need the following definition of dispersed loss functions.
Informally speaking, it captures how amenable a set of non-Lipschitz functions is to online learning
by measuring the worst rate of occurrence of non-Lipschitzness (or discontinuities) between any
pair of points in the domain. [6, 9, 8] show that dispersion is necessary and sufficient for learning
piecewise Lipschitz functions.
Definition 4. Dispersion [8]. The sequence of random loss functions l1, . . . , lT is �-dispersed for
the Lipschitz constant L if, for all T and for all ✏ � T�� , we have that, in expectation, at most Õ(✏T )
functions (the soft-O notation suppresses dependence on quantities beside ✏, T and �, as well as
logarithmic terms) are not L-Lipschitz for any pair of points at distance ✏ in the domain C. That is, for
all T and for all ✏ � T�� , E

h
max ⇢,⇢02C

k⇢�⇢0
k
2
✏

��{t 2 [T ] | lt(⇢)� lt(⇢0) > L k⇢� ⇢0k2}
��
i
 Õ(✏T ).

Our key contribution is to show that the loss sequence is dispersed (Definition 4) under the above
assumptions. This involves establishing additional structure for the problem, specifically about the
location of boundary functions in the piecewise structure from Theorem 2.2. This stronger character-
ization coupled with results from [8] on dispersion of algebraic discontinuities completes the proof.
Theorem 3.3. Suppose Assumptions 1 and 2 hold. Let l1, . . . , lT : (0,�max)2 ! R�0 denote
an independent sequence of losses (e.g. fresh randomness is used to generate the validation set
features in each round) as a function of the ElasticNet regularization parameter � = (�1,�2),
li(�) = lr(�̂

(X(i),y(i))
�,fEN

, (X(i)
val , y

(i)
val )). The sequence of functions is 1

2 -dispersed, and there is an
online algorithm with Õ(

p
T )4 expected regret. The result also holds for loss functions adjusted by

information criteria AIC and BIC.

Proof Sketch. We start with the (F ,G, p3p)-piecewise decomposable structure for the dual class
function H

⇤
EN from Theorem 2.2. Observe that the rational piece functions in F do not introduce

4The Õ(·) notation hides dependence on logarithmic terms, as well as on quantities other than T .
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Algorithm 1 Data-driven Regularization (⇣)

1: Input: Problems (X(i), y(i)) and regularization penalty function f .
2: Hyperparameter: step size parameter ⇣ 2 (0, 1].
3: Output: Parameters (�i)i2[T ] 2 C, C ⇢ R+ (LASSO/Ridge) or C ⇢ R+2 (ElasticNet).
4: Set w1(�) = 1 for all � 2 C.
5: for i = 1, 2, . . . , T do
6: Wi :=

R
C wi(�)d�.

7: Sample � with probability pt(�) =
wi(�)
Wi

, output as �i.
8: Compute average loss function li(�) =

1
|y(i)| l(�̂�,f , (X(i), y(i))).

9: For each � 2 C, update weights wi+1(�) = e⇣(1�li(�))wi(�).

any new discontinuities since the denominator polynomials do not have positive roots. For each of
two types of boundary functions in G (corresponding to leaving/entering the equicorrelation set) we
show that the discontinuities between any pair of points �,�0 lie along the roots of polynomials with
non-leading coefficients bounded and smoothly distributed (bounded joint density). This allows us to
use results from [8] to establish dispersion, and therefore online learnability. ⇤

We remark that the above result holds for arbitrary training features and validation sets in the
problem sequence that satisfy our assumptions, in particular the loss functions are only assumed to
be independent but not identically distributed. In contrast, the results in the previous section needed
them to be drawn from the same distribution. Also the parameters need to be selected online, and
cannot be changed for already seen instances. This setting captures interesting practical settings
where the set of features (including feature dimensions) and the relevant training set (including
training set size) may change over the online sequence. It is not clear how usual model selection
techniques like cross-validation may be adapted to these challenging settings.

4 Extension to Regularized Least Squares Classification

Regression techniques can also be used to train binary classifiers by using an appropriate threshold
on top of the regression estimate. Intuitively, regression learns a linear mapping which projects the
datapoints onto a one-dimensional space, i.e. a real number, after which a threshold may be applied
to classify the points. The use of thresholds to make discrete classifications adds discontinuities
to the empirical loss function. Thus, in general, the classification setting is more challenging as it
already includes the piecewise structure in the regression loss. We provide statistical and online
learning guarantees for Ridge and LASSO. For the ElasticNet we present the extensions needed to
the arguments from the previous sections to obtain results in the classification setting.

More formally, we will restrict y to {0, 1}m. The estimator �̂�,f is obtained as before, and the
prediction on a test instance x may be obtained by taking the sign of a thresholded regression
estimate, sign(hx, �̂�,f i � ⌧), where sign : R ! {0, 1} maps x 2 R to I{x � 0} and ⌧ 2 R is the
threshold. The threshold ⌧ corresponds to the intercept or bias of the learned linear classifier, here
we will treat it as a tunable hyperparameter (in addition to �1,�2)5. The average 0-1 loss over the
dataset (X, y) is given by lc(�̂�,f , (X, y), ⌧) = 1

m

Pm
i=1 |yi � sign(hXi, �̂�,f i � ⌧)|6. Proofs from

this section are in Appendix D.

4.1 Distributional setting

The problem setting is the same as in Section 3.1, except that the labels y are binary and we use
threshold for prediction. We bound the pseudo-dimension for classification loss on these problem
instances, which as before (c.f. Theorems 3.1 and 3.2) imply that polynomially many problem
samples are sufficient to generalize well over the problem distribution D. For Ridge and LASSO we

5We can still have a problem instance specific bias in � using the standard trick of adding a unit feature
to X , thus we generalize the common practice of using a fixed threshold. For example, the RidgeClassifier
implementation in Python library scikit-learn 1.1.1 [37] assumes y 2 {�1,+1}m and sets ⌧ = 0.

6Squared loss and 0-1 loss are identical in this setting.
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upper bound the number of discontinuities of the piecewise constant classification loss by determining
the values of � where any prediction changes.
Theorem 4.1. Let Hc

Ridge, Hc
LASSO and H

c
EN denote the set of loss functions for classification problems

with at most m examples and p features, for linear classifiers regularized using Ridge, LASSO and
ElasticNet regression respectively.

(i) PDIM(Hc
Ridge) = O(logmp)

(ii) PDIM(Hc
LASSO) = O(p logm). Further, in the overparameterized regime (p � m), we have

that PDIM(Hc
LASSO) = O(m log p

m ).
(iii) PDIM(Hc

EN) = O(p2 + p logm).

The key difference with the bound for the regression loss in Theorem 3.1 is the additional O(p logm)
term which corresponds to discontinuities induced by the thresholding in the regression based
classifiers. We can establish a structure similar to Theorem 2.2 in this case (Lemma D.1).

4.2 Online setting

As in Section 3.2, we can define an online learning setting for classification. Note that the smoothness
of the predicted variable is not meaningful here, since y is a binary vector. Instead we will assume that
the validation examples have smooth feature values. Intuitively this means that small perturbations to
the feature values does not meaningfully change the problem.

Assumption 3 (Smooth validation features). The feature values (X(i)
val )jk in the validation examples

are drawn from a joint -bounded distribution.

Under the assumption, we show that we can learn the regularization parameters online, for each of
Ridge, LASSO and ElasticNet estimators. The proofs are straightforward extensions of the structural
results developed in the previous sections, with minor technical changes to use the above validation
set feature smoothness instead of Assumption 2, and are deferred to the appendix.
Theorem 4.2. Suppose Assumptions 1 and 3 hold. Let l1, . . . , lT : (0, H]d ⇥ [�H,H] ! R denote
an independent sequence of losses as a function of the regularization parameter �, li(�, ⌧) =
lc(�̂�,f , (X(i), y(i)), ⌧). If f is given by f1 (LASSO), f2 (Ridge), or fEN (ElasticNet) then the
sequence of functions is 1

2 -dispersed and there is an online algorithm with Õ(
p
T ) expected regret.

5 Conclusions and Future Work

We obtain a novel structural result for the ElasticNet loss as a function of the tuning parameters.
Our characterization gives polynomial upper bounds for the sample complexity of learning the
parameters from multiple instances coming from the same problem domain. For the ElasticNet we
show generalization and online regret guarantees, but efficient implementation of the algorithms
is an interesting question for further work. Also we show general learning-theoretic guarantees, i.e.
without any significant restrictions on the data-generating distribution, in learning from multiple
problems. The problems may be drawn i.i.d. from an arbitrary problem distribution, or even arrive
in an online sequence but with some smoothness properties. It is unclear if such guarantees may be
given for tuning parameters for the more standard setting of tuning a single training set. In this work
we only give upper bounds on the sample complexity by bounding the pseudodimension, showing
lower bounds is an interesting direction for future work.
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