
A Proof of Theorem 4.2

Additional notations. We use the following notations. A Bernoulli random variable B with
success probability p ∈ [0, 1] is denoted as B ∼ Bern(p). We denote pa := P (A = a) and
pY |a := P (Y = 1|A = a); Further, we denote by PX and PX|a the distribution of X and the
conditional distribution of X given A = a, respectively.

The proof of Theorem 4.2 relies on the following two technical lemmas. For any τ ∈ [0, 1], consider
a Bernoulli random variable B ∼ Bern(τ), independent of other sources of randomness considered.
For all a ∈ A, t ∈ [0, 1] and τ ∈ [0, 1], define the random variable Ŷa,t,τ by

Ŷa,t,τ = I(ηa(X) > t) +B · I(ηa(X) = t).

For all a ∈ A, define the set S

S = {(t, τ) ∈ [0, 1]2 : P (ηA(X) > t|A = a) + τ · P (ηA(X) = t|A = a) > 0}.

For all (t, τ) ∈ S, denote

ga(t, τ) = P (Y = 1|Ŷa,t,τ = 1, A = a). (7)

This is well-defined due to the definition of S.
Lemma A.1. For all a ∈ A, t ∈ [0, 1] and 0 ≤ τ1 ≤ τ2 ≤ 1, such that (t, τ1) ∈ S, we have

ga(t, τ1) ≥ ga(t, τ2) ≥ t. (8)

Furthermore, for all a ∈ A, τ1, τ2 ∈ [0, 1] and 0 ≤ t1 ≤ t2 ≤ 1 such that (t1, τ1) ∈ S, (t1, τ2) ∈ S,

ga(t1, τ1) ≤ ga(t2, τ2). (9)

Proof. For all a ∈ A, y ∈ Y , and t ∈ [0, 1], denote

way(t) = P (ηA(X) > t|A = a, Y = y), vay(t) = P (ηA(X) = t|A = a, Y = y),

wa(t) = P (ηA(X) > t|A = a), va(t) = P (ηA(X) = t|A = a).

Let 0 ≤ t1 ≤ t2 ≤ 1. Recalling the conditional density dPX|a,y of X given A = a and Y = y, we

have that ηa(x) =
pY,adPX|A=a,Y =1(x)

dPX|a(x)
. We thus have for all t ∈ [0, 1] for which wa(t) > 0 that

pY |awa1(t)

wa(t)
=

pY |a
∫
ηa(x)>t

dPX|A=a,Y=1(x)∫
ηa(x)>t

dPX|a(x)
=

∫
ηa(x)>t

ηa(x)dPX|a(x)∫
ηa(x)>t

dPX|a(x)
> t.

Further, when va(t) > 0,

pY |ava1(t)

va(t)
=

pY |a
∫
ηa(x)=t

dPX|A=a,Y=1(x)∫
ηa(x)=t

dPX|a(x)
=

∫
ηa(x)=t

ηa(x)dPX|a(x)∫
ηa(x)=t

dPX|a(x)
= t.

It follows that, for t ∈ [0, 1] and 0 ≤ τ1 ≤ τ2 ≤ 1, such that (t, τ1) ∈ S,

t ≤ wa1(t) + va1(t)

wa(t) + va(t)
≤ wa1(t) + τ2va1(t)

wa(t) + τ2va(t)
≤ wa1(t) + τ1va1(t)

wa(t) + τ1va(t)
.

Eq. (8) follows since for all t, τ ∈ [0, 1] such that (t, τ) ∈ S,

ga(t, τ) =
pY,a[wa1(t) + τva1(t)]

wa(t) + τva(t)
.

For Eq. (9), we have that, when 0 ≤ t1 ≤ t2 ≤ 1 and P (ηA(X) > t2|A = a) > 0,

ga(t1, τ1)− ga(t2, τ2) =
pY |a[wa1(t1) + τ1va1(t1)]

wa(t1) + τ1va(t1)
− pY,a[wa1(t2) + τ2va1(t2)]

wa(t2) + τ2va(t2)

≤ pY,awa1(t1)

wa(t1)
− pY,a[wa1(t2) + va1(t2)]

wa(t2) + va(t2)
.
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This further equals∫
ηa(x)>t1

ηa(x)dPX|a(x)∫
ηa(x)>t1

dPX|a(x)
−

∫
ηa(x)≥t2

ηa(x)dPX|a(x)∫
ηa(x)≥t2

dPX|a(x)

=

∫
t1<ηa(x)<t2

ηa(x)dPX|a(x) +
∫
ηa(x)≥t2

ηa(x)dPX|a(x)∫
t1<ηa(x)<t2

dPX|a(x) +
∫
ηa(x)≥t2

dPX|a(x)
−

∫
ηa(x)≥t2

ηa(x)dPX|a(x)∫
ηa(x)≥t2

dPX|a(x)
.

This can also be written as∫
t1<ηa(x)<t2

ηa(x)dPX|a(x) ·
∫
ηa(x)≥t2

dPX|a(x)

[
∫
t1<ηa(x)<t2

dPX|a(x) +
∫
ηa(x)≥t2

dPX|a(x)] ·
∫
ηa(x)≥t2

dPX|a(x)

−

∫
t1<ηa(x)<t2

dPX|a(x) ·
∫
ηa(x)≥t2

ηa(x)dPX|a(x)

[
∫
t1<ηa(x)<t2

dPX|a(x) +
∫
ηa(x)≥t2

dPX|a(x)] ·
∫
ηa(x)≥t2

dPX|a(x)
≤ 0.

This finishes the proof.

Lemma A.2. For any a ∈ A and s ∈ [pY |a, 1], there exists (ts, τs) ∈ [0, 1]2 such that, with ga from
(7),

ga(ts, τs) = s.

Proof. For all a ∈ A, define the set T on which ga(t, 0) and ga(t, 1), respectively, are well-defined:

T = {t ∈ [0, 1] : P (ηA(X) > t|A = a) > 0}.

As a function of t ∈ T , t 7→ ga(t, 1) is left-continuous. Letting t∗ = supT ∈ [0, 1]. Since
ga(0, 1) = pY |a ≤ s, ts = sup{t ∈ T : ga(t, 1) ≤ s} is well-defined. From Lemma A.1, the
definition of ts, and the left-continuity of t 7→ ga(t, 1) on T , it follows that

ga(ts, 1) ≤ s ≤ ga(ts, 0).

(1) When P (ηa(X) = ts|A = 1) = 0, for all τ ∈ [0, 1] we have

ga(ts, 0) = ga(ts, τ) = ga(ts, 1) = s.

In this case, we can set τs ∈ [0, 1].

(2) When P (ηa(X) > ts|A = 1) = 0 for a ∈ A, we have s = ts and we can set τs ∈ [0, 1].

(3) When P (ηa(X) = ts|A = 1) ̸= 0, we have ga(ts, τs) = s for

τs =
pY |a · P (ηa(X) > ts|A = a, Y = 1)− s · P (ηa(X) > ts|A = a)

pY |a · P (ηa(X) = ts|A = a)− s · P (ηa(X) = ts|A = a, Y = 1)
.

Lemma A.3. Let f be any classifier and fG = I(ηa(x) > ta) + τa(x)I(ηa(x) = ta) be a GWTR
satisfies

I(τa(x) ≡ 1) + I

(∫
fG(x, a)ηa(x)dPX|a(x) > ta

∫
fG(x, a)dPX|a(x)

)
≥ 1. (10)

Suppose that, for all a ∈ A,∫
f(x, a)dPX|a(x) =

∫
fG(x, a)dPX|a(x) (11)

and ∫
f(x, a)ηa(x)dPX|a(x)∫

f(x, a)dPX|a(x)
=

∫
fG(x, a)ηa(x)dPX|a(x)∫

fG(x, a)dPX|a(x)
. (12)

Then, f is also a GWTR. Conversely, if f is not a GWTR and (12) holds for all a ∈ A, we have

|A|∑
a=1

pa

∫
[fG(x, a)− f(x, a)]dPX|a(x) > 0.
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Proof. We assume fG takes the following form: for all x ∈ X and a ∈ A,
fG(x, a) = I(ηa(x) > ta) + τa(x, a)I(ηa(x) = ta).

From (11) and (12), we have∫
(f(x, a)− fG(x, a))dPX|a(x) =

∫
η(x)>ta

(f(x, a)− 1)dPX|a(x)

+

∫
η(x)<ta

f(x, a)dPX|a(x) +

∫
η(x)=ta

(f(x, a)− τa(x))dPX|a(x) = 0, (13)

and ∫
(f(x, a)− fG(x, a))ηa(x)dPX|a(x) =

∫
η(x)>ta

(f(x, a)− 1)ηa(x)dPX|a(x)

+

∫
η(x)<ta

f(x, a)dPX|a(x) + ta

∫
η(x)=ta

(f(x, a)− τa(x))dPX|a(x) = 0. (14)

Combining (13) and (14) gives us, for all a ∈ A,∫
ηa(x)>ta

(f(x, a)− 1)(ηa(x)− ta)dPX|a(x) +

∫
ηa(x)<ta

f(x, a)(ηa(x)− ta)dPX|a(x) = 0.

Noting that I(ηa(x) > ta)(f(x, a)−1)(ηa(x)−ta) ≤ 0 and I(ηa(x) < ta)f(x, a)(ηa(x)−ta) ≤ 0,
we have∫

ηa(x)>ta

(f(x, a)−1)(ηa(x)−ta)dPX|a(x)+

∫
ηa(x)<ta

f(x, a)(ηa(x)−ta)dPX|a(x) ≤ 0. (15)

The equality holds if and only if, for all a ∈ A, f(x, a) = fG(x, a) almost surely on the set
{ηa(x) > ta} ∪ {ηa(x) > ta}. In other words, f is also a GWTR.

When f is not a GWTR, let∫
f(x, a)ηa(x)dPX|a(x)∫

f(x, a)dPX|a(x)
=

∫
fG(x, a)ηa(x)dPX|a(x)∫

fG(x, a)dPX|a(x)
= sG.

We have 0 ≤ ta ≤ sG by Lemma A.2. Suppose there exists a a ∈ A such that∫
f(x, a)dPX|a(x) >

∫
fG(x, a)dPX|a(x). (16)

(1) When ta < sG, we have,∫
[f(x, a)− fG(x, a)]ηa(x)dPX|a(x)− ta

∫
[f(x, a)− fG(x, a)]dPX|a(x)

=

∫
ηa(x)>ta

(f(x, a)− 1)(ηa(x)− ta)dPX|a(x) +

∫
ηa(x)<ta

f(x, a)(ηa(x)− ta)dPX|a(x) > 0.

This contradicts (15).

(2) When ta = sG, we have f(x, a) = I(η(x, a) ≥ ta). Then,∫
ηa(x)>ta

(f(x, a)− 1)(ηa(x)− ta)dPX|a(x) +

∫
ηa(x)<ta

f(x, a)(ηa(x)− ta)dPX|a(x) = 0.

This equation holds if and only if f(x, a) = fG(x, a) almost surely on the set {ηa(x) > ta} ∪
{ηa(x) > ta}. Then,∫

f(x, a)dPX|a(x)−
∫

fG(x, a)dPX|a(x) =

∫
η(x,a)=ta

(f(x, a)− 1)dPX|a(x) ≤ 0.

Again, we have a contradiction since
∫
f(x, a)dPX|a(x)−

∫
fG(x, a)dPX|a(x) > 0.

As a result, we can conclude that, for all a ∈ A,∫
f(x, a)dPX|a(x) ≤

∫
fG(x, a)dPX|a(x).

Moreover, there exists at least one a ∈ A such that∫
f(x, a)dPX|a(x) <

∫
fG(x, a)dPX|a(x).

Otherwise, f is also a GWTR. This finishes the proof.
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We adopt the following strategy to prove Theorem 4.2. Consider any classifier f that satisfies
predictive parity, which is not a GWTR. We will show that there exist a GWTR satisfying predictive
parity with a smaller risk. Thus, at least one of the fair Bayes-optimal classifier under predictive
parity is a GWTR.

Recall that Ŷf is the prediction of f at (x, a). As f satisfies predictive parity, there exists sf ∈ [0, 1]
such that

P (Y = 1|A = a, Ŷf = 1) = sf ≤ 1 for a ∈ A.

We set

s† =

{
max (sf ,maxa pY |a), max (sf ,maxa pY |a) > c;
c+ ε, max (sf ,maxa pY |a) ≤ c.

(17)

Here, ε < 1−c is a small constant such that there exists a a ∈ A with P (ηa(X) > c+ε|A = a) > 0.
By our construction, we have s† ∈ [maxa pY |a, 1] and, according to Lemma A.2, there exist
combinations (t†a, τ

†
a)

|A|
a=1 such that, for ga from (7),

ga(t
†
a, τ

†
a) = s†, a ∈ A. (18)

Now, we consider the GWTR f† defined for all x ∈ X and a ∈ A by

f†(x, a) = I(ηa(x) > t†a) + τ †aI(ηa(x) = t†a). (19)

Here, we follow the construction in Lemma A.2 to set t†a = sup{t : ga(t) < s†}, and let τa(x) ≡ τ †a
be a constant function. Moreover, we set τ †a = 1 whenever P (ηa(X) > t†a|A = a) = 0 or
P (ηa(X) = t†a|A = a) = 0. Clearly, f† satisfies predictive parity, and thus it is enough to show that
f† has a smaller risk than f , i.e., Rc(f

†)−Rc(f) < 0. Now, we can write

Rc(f) =
∑
a∈A

[
(1− c)P (Ŷf = 0, Y = 1, A = a) + c · P (Ŷf = 1, Y = 0, A = a)

]
= (1− c)P (Y = 1)−

∑
a∈A

pa(1− c)

∫
f(x, a)ηa(x)dPX|a(x)

+
∑
a∈A

pac

∫
f(x, a)(1− ηa(x))dPX|a(x).

Next, for any classifier f satisfying predictive parity with positive predictive value sf , we have that

sf = P (Y = 1|Ŷf = 1, A = a) =
pY |aP (Ŷf=1|Y=1,A=a)

P (Ŷf=1|A=a)

=
pY |a

∫
f(x,a)dPX|A=a,Y =1(x)∫
f(x,a)dPX|a(x)

=
∫
f(x,a)ηa(x)dPX|a(x)∫

f(x,a)dPX|a(x)
.

It follows that Rc(f) further equals∑
a∈A

pa

∫
f(x, a)(c− ηa(x))dPX|a(x) + (1− c)P (Y = 1)

=
∑
a∈A

pa(c− sf )

∫
f(x, a)dPX|a(x) + (1− c)P (Y = 1).

As a result, Rc(f
†)−Rc(f) equals∑

a∈A
pa(c− s†)

∫
f†(x, a)dPX|a(x)−

∑
a∈A

pa(c− sf )

∫
f(x, a)dPX|a(x).

We consider the following three cases in order: (1) sf ≤ min(c,maxa pY |a), (2) sf >
max(c,maxa pY |a), and (3) min(c,maxa pY |a) < sf ≤ max(c,maxa pY |a).

(1) Case 1: sf ≤ min(c,maxa pY |a).
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It is clear that Rc(f
†)−Rc(f) < 0 since c− s† < 0 and c− sf ≥ 0.

(2) Case 2: sf > max(c,maxa pY |a).

We have from the definition of s†, (18) and (8) that for all a ∈ A, s† = sf ≥ t†a. Further, we can
write

Rc(f
†)−Rc(f) =

∑
a∈A

pa(c− sf )

∫
[f†(x, a)− f(x, a)]dPX|a(x).

Suppose that sf = ta. Specifically, sf = s† = t†a equals

t†a =

∫
f†(x, a)ηa(x)dPX|a(x)∫

f†(x, a)dPX|a(x)
=

∫
ηa(x)>t†a

ηa(x)dPX|a(x) + τ †a
∫
ηa(x)=t†a

ηa(x)dPX|a(x)∫
ηa(x)>t†a

dPX|a(x) + τ †a
∫
ηa(x)=t†a

dPX|a(x)
.

This implies P (ηa(X) > t†a|A = a) = 0 and, by our construction, τa(x) ≡ τ †a = 1. Thus, f†

satisfies the condition (10) in Lemma A.3. As a result, we have,
|A|∑
a=1

pa

∫
[f†(x, a)− f(x, a)]dPX|a(x) > 0.

This implies Rc(f
†)−Rc(f) < 0 since c− sf < 0.

(3) Case 3: min(c,maxa pY |a) < sf ≤ max(c,maxa pY |a).

In fact, the case 3 can be further divided into two possible sub-cases, depending on the relations
between c and maxa pY |a: (3.i) maxa pY |a < sf ≤ c, and (3.ii) c < sf ≤ maxa pY |a.

Sub-case (3.i): In this case, we have s† = c+ ε and sf ≤ c. Then,

Rc(f
†)−Rc(f) =

∑
a∈A

pa(c− s†)

∫
f†(x, a)dPX|a(x)−

∑
a∈A

pa(c− sf )

∫
f(x, a)dPX|a(x)

≤ −ε
∑
a∈A

paP (ηa(X) > c+ ε|A = a) < 0

Sub-case (3.ii): In this case, we partition A = A1 ∪ A2 into the sets A1 = {a : pY |a ≤ sf} and
A2 = {a : pY |a > sf}. Denoting s♭a = max (sf , pY |a), it is clear that sf ≤ s♭a ≤ s†. According to
Lemma A.2, there exist combinations (t♭a, τ

♭
a)

|A|
a=1 such that

ga(t
♭
a, τ

♭
a) = s♭a, a ∈ A.

We now consider the classifier f ♭ defined for all x ∈ X and a ∈ A by

f ♭(x, a) = I(ηa(x) > t♭a) + τ ♭aI(ηa(x) = t♭a).

Again, we follow the construction in Lemma A.2 to set t♭a = sup{t : ga(t) < s♭a}, and let τa(x) ≡ τ ♭a
be a constant function. Moreover, we set τ ♭a = 1 whenever P (ηa(X) > t♭a|A = a) = 0 or
P (ηa(X) = t♭a|A = a) = 0.

Note that sf = s♭a > c for a ∈ A1. Following the same argument as in case (2), we have,∑
a∈A1

(c− s♭a)

∫
f ♭(x, a)dPX|a(x)−

∑
a∈A1

(c− sf )f(X,A)dPX|a(x) < 0. (20)

For a ∈ A2, we have s♭a = pY |a, which implies that (t♭a, τ
♭
a) = (0, 1). As a consequence, for a ∈ A2,

(c− s♭a)

∫
f ♭(x, a)dPX|a(x)− (c− sf )

∫
f(x, a)dPX|a(x)

= (c− pY |a)− (c− sf )

∫
f(x, a)dPX|a(x) < 0 (21)
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since
∫
f(x, a)dPX|a(x) ≤ 1 and c − pY |a < c − sf ≤ 0. Combining (20) and (21) shows that

Rc(f
♭)−Rc(f) equals∑
a∈A

pa(c− s♭)

∫
f ♭(x, a)dPX|a(x)−

∑
a∈A

pa(c− sf )

∫
f(x, a)dPX|a(x) < 0.

Now, under the Condition 4.1, we have, for a ∈ A,

ga(c, 1) ≥ max
a

pY |a = s† = ga(t
†
a, τ

†
a) ≥ s♭a = ga(t

♭
a, τ

♭
a).

From (8), we have t♭a ≤ t†a ≤ c. Thus, Rc(f
†)−Rc(f

♭) equals∑
a∈A

pa

∫
(c− ηa(x))[f

†(x, a)− f ♭(x, a)]dPX|a(x)

=
∑
a∈A

pa

∫
(ηa(x)− c)[f ♭(x, a)− f†(x, a)]dPX|a(x)

≤
∑
a∈A

pa

∫
(ηa(x)− c)I(t♭a ≤ ηa(x) ≤ t†a)dPX|a(x) ≤ 0.

As a result,
Rc(f

†)−Rc(f) = Rc(f
†)−Rc(f

♭) +Rc(f
♭)−Rc(f) < 0.

This finishes the proof.

B Proof of Theorem 4.3

Let fG be any GWTR, say of the form

fG(x, a) = I(ηa(x) > tG,a) + τG,a(x)I(ηa(x) = tG,a),

satisfying predictive parity with

P (Y = 1|ŶfG(x,a)) = 1, A = a) = sG, for a ∈ A.

According to Lemma A.1, we have pY |A=0 = P (Y = 1|η0(x) ≥ 0, A = 0) ≤ sfG . By the definition
of t1, we have c < t1 ≤ tG1 . Thus, P (c < η1(X) < tG1 |A = 1) > P (c < η1(X) < t1|A = 1) >
0.

Denote sNG = P (Y = 1|η1(X) ≥ c, A = 1). We have sG ≥ sNG, since tG,1 > c. Further,
following the same argument as in Lemma A.2, there exist (t0, τ0) such that

PY |a[P (η0(X) < t0|A = 0, Y = 1) + τ0P (η0(X) = t0|A = 0, Y = 1)]

P (η0(X) < t0|A = 0) + τ0P (η0(X) = t0|A = 0)
= sNG.

We consider the following classifier fNG, which is not a GWTR:

fNG(x, a) =

{
I(ηa(x) ≥ c), a = 1;
I(ηa(x) < t0) + τ0I(ηa(x) = t0), a = 0.

(22)

By construction, fNG satisfies predictive parity. Moreover, when p1 > 2
2+δ1δ2

, we have

Rc(fG)−Rc(fNG) = p1

∫
(c− η1(x))[fG(x, 1)− fNG(x, 1)]dPX|1(x)

+ p0

∫
(c− η0(x))[fG(x, 1)− fNG(x, 0)]dPX|0(x)

≥ p1

∫
c<η1(x)<tG1

(c− η1(x))dPX|1(x)− 2p0 ≥ p1

∫
c+δ2<η1(x)<tG1

(c− η1(x))dPX|1(x)− 2p0

≥ δ1δ2p1 − 2(1− p1) > 0.

Thus, we have constructed a classifier that is not a GWTR satisfying predictive parity and achieving a
smaller cost-sensitive risk than any fair GWTR. We can conclude that no fair Bayes-optimal classifier
under predictive parity is a GWTR.
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C Fair and Unconstrained Bayes-optimal Classifiers of the Synthetic Model

In this section, we derive the unconstrained and fair Bayes-optimal classifiers for our synthetic
model used in Section 6.1. Consider the following data distribution for (X,A, Y ) where A ∈ {0, 1},
Y ∈ {0, 1} with

• For a ∈ {0, 1}, P (A = a) = pa and P (Y = 1|A = a) = 1− P (Y = 0|A = a) = pY |a;

• For (a, y) ∈ {0, 1}2, X|A = a, Y = y ∼ N (µa,y, σ
2I2) with µa,y = (2a− 1, 2y − 1)⊤.

Denote by ga,y(x) = 1
2πσ2 exp(− 1

2σ2 ∥x − µa,y∥2) the conditional density function of X given
A = a and Y = y. we have

ηa(x) = P (Y = 1|X = x,A = a) =
pY |aga,1(x)

pY |aga,1(x) + (1− pY |a)ga,0(x)

=
pY |a exp(− 1

2σ2 ∥x− µa,1∥2)
pY |a exp(− 1

2σ2 ∥x− µa,1∥2) + (1− pY |a) exp(− 1
2σ2 ∥x− µa,0∥2)

.

Then, the unconstrained deterministic Bayes-optimal classifier f⋆ is

f⋆(x, a) = I(ηa(x) > c)

= I

(
(1− c)pY |a exp(−

1

2σ2
∥x− µa,1∥2) > c(1− pY |a) exp(−

1

2σ2
∥x− µa,0∥2)

)
= I

(
x⊤(µa,0 − µa,1) < log

(1− c)pY |a

c(1− pY |a)

)
.

For given pY |A=0, Condition 4.1 is equivalent to

pY |A=1 ≤ P (Y = 1|ηA(X) > c,A = 0)
pY |A=0P (ηA(X) > c|A = 0, Y = 1)

P (ηA(X) > c|A = 0)

=
pY |A=0P

(
X⊤(µ0,0 − µ0,1) < log

(1−c)pY |A=0

c(1−pY |A=0)
|A = 0, Y = 1

)
P
(
X⊤(µ0,0 − µ0,1) < log

(1−c)pY |A=0

c(1−pY |A=0)
|A = 0

)
=

pY |A=0Φ̄
(

σ log(q0(c))
2 − 1

σ

)
pY |A=0Φ̄

(
σ log(q0(c))

2 − 1
σ

)
+ (1− pY |A=0)Φ̄

(
σ log(q0(c))

2 + 1
σ

) , (23)

where qa(c) =
c(1−pY |a)

(1−c)pY |a
and Φ̄(t) = 1− Φ(t) with Φ(t) the cumulative distribution function of the

standard normal distribution.

Now we consider fair Bayes optimal classifiers under (23). We consider the GWTR ft1,t0 such that
for a ∈ {0, 1} and all x ∈ X , ft1,t0(x, a) = I(ηa(x) > ta). Following the same argument as in (23),
we have

P (Y = 1|ηa(x) > ta, A = a) =
pY |aΦ̄

(
σ log(qa(ta))

2 − 1
σ

)
pY |aΦ̄

(
σ log(qa(ta))

2 − 1
σ

)
+ (1− pY |a)Φ̄

(
σ log(qa(ta))

2 + 1
σ

) .
Then, ft1,t0 satisfies predictive parity if

pY |A=1Φ̄
(

σ log(q1(t1))
2 − 1

σ

)
(1− pY |A=1)Φ̄

(
σ log(q1(t1))

2 + 1
σ

) =
pY |A=0Φ̄

(
σ log(q0(t0))

2 − 1
σ

)
(1− pY |A=0)Φ̄

(
σ log(q0(t0))

2 + 1
σ

) .
Note that, as a function of ta, ta 7→ P (Y = 1|ηa(x) > ta, A = a) is strictly monotone increasing.
Thus, for T1(t) = t, there exists a function t 7→ T0(t) such that

pY |A=1Φ̄
(

σ log(q1(t))
2 − 1

σ

)
(1− pY |A=1)Φ̄

(
σ log(q1(t))

2 + 1
σ

) =
pY |A=0Φ̄

(
σ log(q0(T0(t)))

2 − 1
σ

)
(1− pY |A=0)Φ̄

(
σ log(q0(T0(t)))

2 + 1
σ

) .
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Then fT1(t),T0(t) satisfies predictive parity and its cost-sensitive risk Rc(fT1(t),T0(t)) is∑
a∈{0,1}

cpa(1− pY |a)P (ηa(X) ≥ ta|A = a, Y = 0)

+
∑

a∈{0,1}

(1− c)papY |aP (ηa(X) < ta|A = a, Y = 1)

=
∑

a∈{0,1}

(1− c)papY |aΦ

(
σ log(qa(Ta(t)))

2
− 1

σ

)

+
∑

a∈{0,1}

cpa(1− pY |a)Φ̄

(
σ log(qa(Ta(t)))

2
+

1

σ

)
.

Let t⋆ be defined as
t⋆ = argmin

t∈[0,1]

Rc(fT1(t),T0(t)).

Thus, under (23), the fair Bayes-optimal classifier under predictive parity is given by ft⋆,T0(t⋆). This
classifier can be computed numerically as both T0(t) and t⋆ can be found numerically.

D Experimental Settings and More Simulation Results

Training details. Our experiments are conducted on a personal computer with an Intel(R) Core(TM)
i9-9920X CPU @ 3.50Ghz and an NVIDIA GeForce RTX 2080 Ti GPU. For the Adult and COMPAS
datasets, we employ the same training settings as in [5]. We train the conditional probability predictor
using a three-layer fully connected net with 32 neurons in the hidden layers. For the CelebA dateset,
we adopt the same settings in [51] to train the conditional probability predictor with ResNet-50,
pre-trained on the ImageNet dataset. We also apply the dropout technique with p = 0.5 to improve
the model performance. In all the simulations, we use the Adam optimizer with the default parameters.
The details are summarized in Table 3.

Table 3: Training details for three datasets

DATASET ADULT CENSUS COMPAS CELEBA
BATCH SIZE 512 2048 32

TRAINING EPOCHS 200 500 50
OPTIMIZER ADAM ADAM ADAM

LEARNING RATE 1E-1 5E-4 1E-4
PRE-TRAINING N/A N/A IMAGENET

DROPOUT N/A N/A 0.5

D.1 Synthetic Data

We conduct more experiments to evaluate the performance of our FairBayes-DPP algorithm under
different model and training settings. We consider the same synthetic model as in Section 6.1 with
different settings on sample size, proportion P (A = 0) of the minority group and cost parameters.
We also extend the synthetic model to a multi-class protected attribute. In all scenarios, we repeat the
experiments 100 times12.

D.1.1 Sample Size

We first evaluate FairBayes-DPP with different sample sizes. In the experiment, we fix c = 0.5,
p(A = 1) = 0.3, p(Y = 1|A = 1) = 0.6 and p(Y = 1|A = 1) = 0.2. We further fix the number of
test data points to be 5000, and change the number of training data points from 5000 to 25000. The
simulation results are presented in Figure 2. It can be seen that FairBayes-DPP has a smaller disparity
than the unconstrained classifier. As the sample size grows, the performance of FairBayes-DPP
improves, since the estimation error reduces with more training data points.

12The randomness of the experiment comes from the random generation of the training and test data sets.
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D.1.2 Proportion of Minority Group

Next, we evaluate the effect of the proportion P (A = 0) of the minority group on the performance
of FairBayes-DPP. We fix c = 0.5, p(Y = 1|A = 1) = 0.6, p(Y = 1|A = 0) = 0.2, and vary
P (A = 0) from 0.5 to 0.9. Moreover, we set the training data size and test data size to be 25000 and
5000, respectively. Figure 3 presents the simulation results.

We observe that, for both FairBayes-DPP and unconstrained learning, the test accuracy increases with
P (A = 0). The sample complexity of learning the unconstrained classifier should intuitively depend
on the sample size of the smallest group. When P (A = 0) is very small, the estimator of η0 has large
variability and results in a small test accuracy.

We also observe that the performance of FairBayes-DPP is unstable when P (A = 0) is very small.
This limitation is caused by the unstable estimation of η0, which is used by FairBayes-DPP to
adjusts the per-class thresholds. As we can see, the performance of FairBayes-DPP improves rapidly
when P (A = 0) grows. We emphasize that the success of FairBayes-DPP relies on the consistent
estimation of the per-group feature-conditional probabilities of the labels.

D.1.3 Cost Parameter

We then evaluate the effect of cost parameter c. We fix P (Y = 1) = 0.3, p(Y = 1|A = 1) = 0.5,
p(Y = 1|A = 0) = 0.2, and vary c from 0.4 to 0.8. Again, we set the training and test data sizes
to be 25000 and 5000, respectively. We present the simulation results in Figure 3. We observe that
FairBayes-DPP successfully mitigates disparity with a wide range of cost parameters.

D.1.4 Multi-class Protected Attribute

Finally, we study a multi-class protected attribute. We generate data a ∈ A = {1, 2, ..., |A|} and
y ∈ {0, 1} by setting µay = (2y− 1)ea, where ea ∈ R|A| the unit vector with the a-th element equal
to unity. Conditional on A = a and Y = y, X is generated from a multivariate Gaussian distribution
N(µay, 2

2I|A|).

We consider two cases, |A| = 3 and |A| = 5, with the model parameters presented in Table 4. For
both cases, we set c = 0.5, the training data sample size as 50000 and the test data sample size
as 5000. We present the simulation results in Figure 5. Again, FairBayes-DPP achieves superior
performance in preserving accuracy and mitigating bias.

D.2 CelebA Dataset

In the main text, we have presented the simulation results for the first six attributes of the CelebA
dataset. Here, we show the simulation results for the remaining 20 attributes in Table 5. Again, we

Figure 2: Accuracy and DPP as a function of sample size.
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Figure 3: Accuracy and DPP as a function of P (A = 0).

Figure 4: Cost-sensitive risk and DPP as a function of the cost parameter.

observe that FairBayes-DPP mitigates the gender bias effectively in most cases, and preserves model
accuracy.

Table 4: Parameters of synthetic model for multi-clase protected attribute.

|A = 3|
a 1 2 3
pa 0.3 0.3 0.4
pY |a 0.2 0.6 0.3

|A = 5|
a 1 2 3 4 5
pa 0.2 0.3 0.2 0.15 0.15
pY |a 0.2 0.6 0.3 0.4 0.2
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Figure 5: Accuracy and DPP with multi-class protected attribute.

Table 5: Per-attribute accuracy and DPP of the remaining 20 attributes from the CelebA dataset.

ATTRIBUTES

PER-ATTRIBUTE ACCURACY PER-ATTRIBUTE DPP
FAIRBAYES UNCON- FAIRBAYES UNCON-

-DPP STRAINED -DPP STRAINED

BLACK HAIR 0.895(0.004) 0.899(0.003) 0.023(0.009) 0.033(0.013)
BLOND HAIR 0.958(0.001) 0.959(0.001) 0.028(0.014) 0.119(0.042)
BLURRY 0.963(0.001) 0.963(0.001) 0.023(0.017) 0.047(0.017)
BROWN HAIR 0.886(0.003) 0.889(0.004) 0.029(0.009) 0.078(0.028)
BUSHY EYEBROWS 0.928(0.001) 0.926(0.001) 0.055(0.030) 0.166(0.038)
CHUBBY 0.957(0.002) 0.957(0.002) 0.032(0.012) 0.043(0.026)
EYEGLASSES 0.996(0.000) 0.997(0.000) 0.010(0.005) 0.004(0.003)
HIGH CHEEKBONES 0.875(0.002) 0.876(0.002) 0.044(0.008) 0.143(0.016)
MOUTH SLIGHTLY OPEN 0.940(0.001) 0.940(0.001) 0.011(0.003) 0.017(0.008)
NARROW EYES 0.873(0.002) 0.875(0.003) 0.110(0.025) 0.063(0.026)
OVAL FACE 0.756(0.002) 0.756(0.003) 0.033(0.016) 0.108(0.031)
PALE SKIN 0.970(0.001) 0.970(0.001) 0.059(0.040) 0.111(0.034)
POINTY NOSE 0.775(0.003) 0.774(0.003) 0.032(0.018) 0.063(0.022)
RECEDING HAIRLINE 0.939(0.001) 0.938(0.001) 0.067(0.019) 0.036(0.034)
SMILING 0.928(0.001) 0.928(0.002) 0.021(0.005) 0.046(0.014)
STRAIGHT HAIR 0.842(0.002) 0.842(0.003) 0.056(0.007) 0.020(0.013)
WAVY HAIR 0.844(0.003) 0.847(0.003) 0.019(0.014) 0.087(0.021)
WEARING EARRINGS 0.889(0.027) 0.908(0.001) 0.075(0.050) 0.207(0.037)
WEARING HAT 0.991(0.000) 0.991(0.000) 0.012(0.013) 0.047(0.018)
WEARING NECKLACE 0.868(0.002) 0.868(0.001) 0.077(0.047) 0.069(0.052)
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