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A Broader Social Impact

We believe policy reuse serves as a promising way to transfer knowledge among AI agents. This
ability will enable AI agents to master new skills efficiently. However, we are also aware of possible
negative social impacts, such as plagiarizing other AI products by querying and reusing their policies.

B Proofs

B.1 Proof for Theorem 1

Proof. As |Q̃πt
tar

(s, a) − Qπt
tar

(s, a)| ≤ ϵ for all s ∈ S, a ∈ A, we have that for all si ∈ S,
the difference between the true value function Vπt

tar
and the approximated value function Ṽπt

tar
is
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B.2 Proof of Theorem 2

Proof. According to Pinsker’s inequality (Fedotov et al., 2003), DKL(π
t+1
tar (·|s)||π̃t

g(·|s)) ≥
1

2 ln 2 ||π
t+1
tar (·|s) − π̃t

g(·|s)||21, where || · ||1 is the L1 norm. So we have that for all s ∈ S,

||πt+1
tar (·|s)− π̃t

g(·|s)||1 ≤
√
2 ln 2δ. According to the Performance Difference Lemma (Kakade &
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Langford, 2002), we have that for all s ∈ S:
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where µ
π̃t
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1 is the normalized discounted state

occupancy distribution. Note that
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Eventually, we have Vπt+1
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B.3 Critic-Guided Source Policy Aggregation under “Hard” Value Functions

In this section we override the notation Q, V to represent “hard” value functions, and over-
ride the notation EA to represent the expected advantage, which is defined as EAπj

(s, πi) =

Ea∼πi(·|s)
[
Qπj (s, a)− Vπj (s)

]
. Then Theorem 1 and Theorem 2 can be extended as below.

Theorem 3 Let Q̃πt
tar

be an approximation of Qπt
tar

such that

|Q̃πt
tar

(s, a)−Qπt
tar

(s, a)| ≤ ϵ for all s ∈ S, a ∈ A. (16)

Define
π̃t
g(·|s) = argmax

π(·|s)∈Πs
t

Ea∼π(·|s)

[
Q̃πt

tar
(s, a)

]
for each s ∈ S. (17)

1We slightly abuse the notation s0 here to indicate that the agent start deterministically from state s.

15



Then,

V
π̃t
g
(s) ≥ Vπt
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for all s ∈ S. (18)

Theorem 4 If
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where R̃max = max
s,a
|r(s, a)| is the largest possible absolute value of the reward.

Theorem 3 and Theorem 4 implies that CUP can still guarantee policy improvement under hard
Bellman updates. Proofs are given below.

Proof for Theorem 3. As |Q̃πt
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Proof for Theorem 4. According to Pinsker’s inequality (Fedotov et al., 2003),
DKL(π

t+1
tar (·|s)||π̃t
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2 ln 2 ||π
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we have that for all s ∈ S, ||πt+1
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Note that |Qπ(s, a)| = |Eπ[
∑∞
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C Discussion on the Influence of Over-Estimation

As CUP takes an argmax over expected Q values, it may suffer from the value over-estimation issue
in DRL (Ostrovski et al., 2021). Although CUP may over-estimate values on rarely selected actions,
this over-estimation serves as a kind of exploration mechanism, encouraging the agent to explore
actions suggested by the source policies and potentially improving the learning target policy. If the
source policies give unsuitable actions, then after exploration this over-estimation is resolved and
these unsuitable actions will not be selected again. Results in Figure 8(b) suggest that even if all
source policies are random and do not give useful actions, CUP still performs similarly to the original
SAC, and is almost unaffected by the over-estimation issue, as over-estimation is addressed after
exploring these actions.

D Experimental Settings

D.1 Additional Implementation Details

To improve CUP’s computation efficiency, we store the source polices’ output
{π1(·|s), π2(·|s), ..., πn(·|s)} in the replay buffer. As we can query source policies with
batches of states, and each state in the buffer only need to be queried for once, CUP is computation-
ally efficient. Empirically, CUP only takes about 30% more wall-clock time than SAC to run the
same number of environment steps. All experiments are run on GeForce GTX 2080 GPUs. The
policy regularization is added after 0.5M environment environment steps to achieve more stable
learning.

SAC utilizes two Q functions to mitigate the overestimation error. When CUP forms the guidance
policy, we use the max value of the two target Q functions to estimate the expected advantage, which
contributes to bolder exploration. Using target networks contributes to more stable training.

Equation 5 requires estimating expectations over Q values. In practice, to be efficient, we estimate
the expectation by sampling a few actions (e.g., 3 actions) from each action probability distribution
proposed by the source policies, and find it sufficient to achieve stable performance.
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Table 1: Detailed hyper-parameter settings for CUP.

Hyper-Parameter Hyper-Parameter Values
batch size 1280
non-linearity ReLU

actor/critic network structure fully connected networks, three
fully connected layers with 400 units

policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 50k steps
learning rates for all networks 3e-4
# of samples / # of train steps per iteration 10 env steps / 1 training step
optimizer adam
Episode length (horizon) 500
beta for all optimizers (0.9, 0.999)
discount 0.99
reward scale 1.0
temperature learned
# of environment steps
before adding KL regularization 500k

beta1 30
β2 3e-3

As for HAAR, we fix the source policies, and train a high-level policy as well as an additional
low-level policy with HAAR’s auxiliary rewards.

D.2 Hyper-Parameter Details

All hyper-parameters used in our experiments are listed in Table 1. We use the same set of hyper-
parameters for all six tasks. We also use the same set of hyper-parameters for both CUP and the SAC
baseline. Most hyper-parameters are adopted from Sodhani et al. (2021).

D.3 Discussions on Hyper-Parameter Design

CUP has two additional hyper-parameters compared to SAC, β1 and β2. We provide some insight on
choosing β1 and β2. Note that the maximum weight for the KL regularization is β1 ∗ β2|Ṽπt

tar
(s) |,

and the original actor loss Lactor has roughly the same magnitude as |Ṽπt
tar

(s) |. So β1 ∗ β2 roughly
determines the maximum regularization weight. Following previous works on regularization [1,2],
(0.1, 1) is a reasonable range for β1 ∗ β2. As a consequence, we choose (0.04, 1) as the range of
β1 ∗ β2 for our hyper-parameter ablation studies. What’s more, as β2 upper bounds the maximum
confidence on the expected advantage estimation (Section 3.2), β2 should be decreased if a large
variance in performance is observed. These two insights efficiently guide the design of β1 and β2. As
shown in Section 4.3, CUP achieves stable performance on a large range of β1s and β2s.

E Additional Experiment Results

E.1 Success Rate Evaluation

Fig. 9 and Fig.10 shows performance evaluated by success rates. The performance is consistent with
performance evaluated by cumulative return.

E.2 Guidance Policy Analysis for All Tasks

This subsection provides analyses of guidance policies on all six tasks, as shown in Fig. 11 and Fig.
12. Results demonstrate that the Pick-Place source policy is the most useful in Shelf-Place, Hammer,
and Pick-Place-Wall, while the Push source policy is the most useful in Push-Back and Push-Wall. In
Peg-Insert-Side, both source policies are of similar usefulness.
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Figure 9: Algorithm performance evaluated by success rate (three source policies).

Figure 10: Algorithm performance evaluated by success rate (six source policies).

E.3 CUP’s Ability to Use Additional Source Policies

In Fig. 6 the improvement brought by additional source policies is mild, because the original three
source policies have already provided sufficient support for policy reuse, as demonstrated in Fig. 13.
To evaluate CUP’s ability to utilize additional source policies, we design another two sets of source
policies. Set 1 consists of three source policies that solve Reach, Peg-Insert-Side, and Hammer, while
Set 2 adds source policies trained on Push-Back, Pick-Place-Wall, and Shelf-Place to Set 1. As Set 1
is less related to our target task Push-Wall, CUP must utilize the additional source policies in Set 2
to improve its performance. As demonstrated in Fig. 14, CUP can efficiently take advantage of the
additional source policies to achieve efficient learning.
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Figure 11: Percentages of source policies being selected by CUP during training on all six tasks. The
green dashed line represents the target policy’s success rate on the task.

E.4 CUP’s Source Policy Selection on the Source Task

To further investigate CUP’s formation of the guidance policy, we train CUP on one of the source
tasks, Push. As shown in Fig. 15, the corresponding source policy Push is selected frequently. After
the target policy converges, CUP selects the target policy and the Push policy for roughly the same
frequency, as they can both solve the task.

E.5 Experiments on Additional Tasks

We evaluate CUP on Bin-Picking and Stick-Pull, two tasks less related to the source policies. As
demonstrated in Fig. 16, in this harder setting, CUP’s performance improvement over SAC is smaller.
To investigate this, we provide an analysis on CUP’s source policy selection. As shown in Fig. 17,
the smaller improvement is because that source policies are less related to the target tasks, as they are
selected less frequently.

E.6 Analyzing Non-Stationarity in HRL Methods

To further analyze the advantages of CUP and demonstrate the non-stationarity problem of HRL
methods, we illustrate the percentages of each low-level policy being selected by HAAR’s high-
level policy. HAAR’s low-level policy set consists of the three source policies and an additional
trainable low-level policy, which is expected to be selected at states where no source policies give
useful actions. As demonstrated in Fig. 18(a) and Fig. 18(b), HAAR’s low-level policy selection
suffers from a large variance over different random seeds, and oscillates over time. This is because
that as the low-level policy keeps changing, the high-level transition becomes non-stationary and
leads to unstable learning. In comparison, as shown in Fig. 18(c) and Fig. 18(d), CUP’s source
policy selection is much more stable and achieves superior performance, as it selects source policies
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Figure 12: Expected advantages of source policies at convergence on all six tasks. The horizontal
axis represents the environment steps of an episode.

according to expected advantages instead of high-level policies, and avoids the non-stationarity
problem.
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Figure 13: Percentages of source policies being selected by CUP during training on Push-Wall with
the original set of six source policies. The additional source policies are seldom selected, which
suggests that the first three source policies already provide sufficient support for policy reuse.

Figure 14: CUP’s performance on another two sets of source policies. CUP can efficiently utilize the
additional source policies contained in Set 2.

Figure 15: Percentages of source policies being selected by CUP during training on Push. The green
dashed line represents the target policy’s success rate on the task. The Push source policy is selected
far more frequently than the other two source policies, and is selected for roughly the same frequency
as the target policy at convergence.
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Figure 16: Performance of CUP and SAC on two harder Meta-World tasks that require more
environment steps to converge.

Figure 17: Percentages of source policies being selected by CUP during training. In these two tasks,
the source policies are chosen less frequently, which implies that source policies are less related to
these tasks.

(a) (b)

(c) (d)

Figure 18: Comparison between HAAR and CUP’s source policy selection on two representative
tasks. Results are averaged over six random seeds. (a) and (b) demonstrates the percentages of each
low-level policy being selected by HAAR’s high-level policy. “Trainable Low-Level” is HAAR’s
additional trainable low-level policy, as mentioned in Appendix E.6. (c) and (d) demonstrates the
the percentages of each source policy being selected by CUP. While HAAR suffers from the non-
stationarity problem and has a large variance in source policy selection, CUP is much more stable
and achieves superior performance, as CUP avoids the non-stationarity problem by avoiding training
high-level policies.

23


