
NodeFormer: A Scalable Graph Structure Learning
Transformer for Node Classification

Qitian Wu1, Wentao Zhao1, Zenan Li1, David Wipf2, Junchi Yan1⇤
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Amazon Web Service, Shanghai AI Lab
{echo740,permanent,emiyali,yanjunchi}@sjtu.edu.cn, davidwipf@gmail.com

Abstract

Graph neural networks have been extensively studied for learning with inter-
connected data. Despite this, recent evidence has revealed GNNs’ deficiencies
related to over-squashing, heterophily, handling long-range dependencies, edge
incompleteness and particularly, the absence of graphs altogether. While a plausible
solution is to learn new adaptive topology for message passing, issues concerning
quadratic complexity hinder simultaneous guarantees for scalability and precision
in large networks. In this paper, we introduce a novel all-pair message passing
scheme for efficiently propagating node signals between arbitrary nodes, as an
important building block for a pioneering Transformer-style network for node
classification on large graphs, dubbed as NODEFORMER. Specifically, the efficient
computation is enabled by a kernerlized Gumbel-Softmax operator that reduces the
algorithmic complexity to linearity w.r.t. node numbers for learning latent graph
structures from large, potentially fully-connected graphs in a differentiable manner.
We also provide accompanying theory as justification for our design. Extensive
experiments demonstrate the promising efficacy of the method in various tasks
including node classification on graphs (with up to 2M nodes) and graph-enhanced
applications (e.g., image classification) where input graphs are missing. The codes
are available at https://github.com/qitianwu/NodeFormer.

1 Introduction

Relational structure inter-connecting instance nodes as a graph is ubiquitous from social domains
(e.g., citation networks) to natural science (protein-protein interaction), where graph neural networks
(GNNs) [32, 19, 14, 36] have shown promising power for leveraging such data dependence as
geometric priors. However, there arises increasing evidence challenging the core GNN hypothesis
that propagating information along observed graph structures will necessarily produce better node-
level representations for prediction on each individual instance node. Conflicts with this premise
lead to commonly identified deficiencies with GNN message-passing rules w.r.t. heterophily [53],
over-squashing [2], long-range dependencies [8], and graph incompleteness [11], etc.

Moreover, in graph-enhanced applications, e.g., text classification [46], vision navigation [12], physics
simulation [30], etc., graph structures are often unavailable though individual instances are strongly
inter-correlated. A common practice is to artificially construct a graph via some predefined rules (e.g.,
k-NN), which is agnostic to downstream tasks and may presumably cause the misspecification of
GNNs’ inductive bias on input geometry (induced by the local feature propagation design).

Natural solutions resort to organically combining learning optimal graph topology with message
passing. However, one critical difficulty is the scalability issue with O(N2) (where N denotes

⇤Wentao Zhao and Zenan Li contribute equally. The SJTU authors are also with MoE Key Lab of Artificial
Intelligence, SJTU. Junchi Yan is the correspondence author who is also with Shanghai AI Laboratory.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/qitianwu/NodeFormer

#nodes) computational complexity, which is prohibitive for large networks (with 10K ⇠ 1M nodes).
Some existing approaches harness neighbor sampling [51], anchor-based adjacency surrogates [4]
and hashing schemes [43] to reduce the overhead; however, these strategies may sacrifice model
precision and still struggle to handle graphs with million-level nodes. Another obstacle lies in the
increased degrees of freedom due to at least an N ⇥N all-pair similarity matrix, which may result in
large combinatorial search space and vulnerability to over-fitting.

In this work, we introduce a novel all-pair message passing scheme that can scale to large systems
without compromising performance. We develop a kernelized Gumbel-Softmax operator that seam-
lessly synthesizes random feature map [27] and approximated sampling strategy [16], for distilling
latent structures among all the instance nodes and yielding moderate gradients through differentiable
optimization. Though such a combination of two operations involving randomness could potentially
result in mutual distortion, we theoretically prove that the new operator can still guarantee a well-
posed approximation for concrete variables (discrete structures) with the error bounded by feature
dimensions. Furthermore, such a design can reduce the algorithmic complexity of learning new
topology per layer to O(N) by avoiding explicit computation for the cumbersome all-pair similarity.

The proposed module opens the door to a new class of graph networks, i.e., NODEFORMER (Scalable
Transformers for Node Classification), that is capable of efficiently propagating messages between
arbitrary node pairs in flexible layer-specific latent graphs. And to accommodate input graphs (if any),
we devise two simple techniques: a relational bias and an edge-level regularization loss, as guidance
for properly learning adaptive structures. We evaluate our approach on diverse node classification
tasks ranging from citation networks to images/texts. The results show its promising power for
tackling heterophily, long-range dependencies, large-scale graphs, graph incompleteness and the
absence of input graphs. The contributions of this paper are summarized as follows:

• We develop a kernelized Gumbel-Softmax operator which is proven to serve as a well-posed
approximation for concrete variables, particularly the discrete latent structure among data points. The
new module can reduce the algorithmic complexity for learning new message-passing topology from
quadratic to linear w.r.t. node numbers, without sacrificing the precision. This serves as a pioneering
model that successfully scales graph structure learning to large graphs with million-level nodes.

• We further propose NODEFORMER, a new class of graph networks with layer-wise message
passing as operated over latent graphs potentially connecting all nodes. The latter are optimized in an
end-to-end differentiable fashion through a new objective that essentially pursues sampling optimal
topology from a posterior conditioned on node features and labels. To our knowledge, NODEFORMER
is the first Transformer model that scales all-pair message passing to large node classification graphs.

• We demonstrate the model’s efficacy by extensive experiments over a diverse set of datasets, in-
cluding node classification benchmarks and image/text classification, where significant improvement
over strong GNN models and SOTA structure learning methods is shown. Besides, it successfully
scales to large graph datasets with up to 2M nodes where prior arts failed, and reduces the time/space
consumption of the competitors by up to 93.1%/80.6% on moderate sized datasets.

2 Related Works

Graph Neural Networks. Building expressive GNNs is a fundamental problem in learning over graph
data. With Graph Attention Networks (GAT) [36] as an early attempt, there are many follow-up works,
e.g., [22, 42], considering weighting the edges in input graph for enhancing the expressiveness. Other
studies, e.g., [28, 52] focus on sparsifying input structures to promote robust representations. There
are also quite a few approaches that propose scalable GNNs through, e.g., subgraph sampling [48],
linear feature mapping [39], and channel-wise transformation [49], etc. However, these works cannot
learn new edges out of the scope of input geometry, which may limit the model’s receptive fields
within local neighbors and neglect global information.

Graph Structure Learning. Going beyond observed topology, graph structure learning targets
learning a new graph for message passing among all the instances [54]. One line of work is similarity-
driven where the confidence of edges are reflected by some similarity functions between node pairs,
e.g., Gaussian kernels [43], cosine similarity [4], attention networks [17], non-linear MLP [7] etc.
Another line of work optimizes the adjacency matrix. Due to the increased optimization difficulties,
some sophisticated training methods are introduced, such as bi-level optimization [11], variational

2

Table 1: Comparison of popular graph structure learning approaches for node-level tasks where in
particular, the graph connects all instance nodes and one’s target is for prediction on each individual
node. For parameterization, ‘Function’ means learning through functional mapping and ‘Adjacency’
means directly optimizing graph adjacency. For expressivty, ‘Fixed’ means learning one graph shared
by all propagation layers and ‘Layer-wise’ means learning graph structures per layers. The largest
demo means the largest # nodes of datasets used. † m denotes # anchors (i.e., a subset of nodes).

Models Parameterization Expressivity Input Graphs Inductive Complexity Largest Demo

LDS-GNN [11] Adjacency Fixed Required No O(N2) 0.01M
ProGNN [18] Adjacency Fixed Required No O(N2) 0.02M
VGCN [10] Adjacency Fixed Required No O(N2) 0.02M
BGCN [51] Adjacency Fixed Required No O(N2) 0.02M
GLCN [17] Function Fixed Not necessary Yes O(N2) 0.02M
IDGL [4] Function Fixed Required Yes O(N2) or O(Nm)† 0.1M

NODEFORMER (Ours) Function Layer-wise Not necessary Yes O(N) or O(E) 2M

approaches [10, 20], Bayesian inference [51] and projected gradient descent [18]. To push further the
limits of structure learning, this paper proposes a new model NODEFORMER (for enabling scalable
node-level Transformers) whose merits are highlighted via a high-level comparison in Table 1. In
particular, NODEFORMER enables efficient structure learning in each layer, does not require input
graphs and successfully scales to graphs with 2M nodes.

Node-Level v.s. Graph-Level Prediction. We emphasize upfront that our focus is on node-level
prediction tasks involving a single large graph such that scalability is paramount, especially if we
are to consider arbitrary relationships across all nodes (each node is an instance with label and
one can treat all the nodes non-i.i.d. generated due to the inter-dependence) for structure-learning
purposes. Critically though, this scenario is quite distinct from graph-level classification tasks
whereby each i.i.d. instance is itself a small graph and fully connecting nodes within each graph is
computationally inexpensive. While this latter scenario has been explored in the context of graph
structure learning [38] and all-pair message passing design, e.g., graph Transformers [9], existing
efforts do not scale to the large graphs endemic to node-level prediction.

3 NODEFORMER: A Transformer Graph Network at Scale

Let G = (N , E) denote a graph with N a node set (|N | = N) and E ✓ N ⇥N an edge set (|E| = E).
Each node u 2 N is assigned with node features xu 2 RD and a label yu. We define an adjacency
matrix A = {auv} 2 {0, 1}

N⇥N where auv = 1 if edge (u, v) 2 E and auv = 0 otherwise. Without
loss of generality, E could be an empty set in case of no input structure. There are two common
settings: transductive learning, where testing nodes are within the graph used for training, and
inductive learning which handles new unseen nodes out of the training graph. The target is to learn a
function for node-level prediction, i.e., estimate labels for unlabeled or new nodes in the graph.

General Model and Key Challenges. We start with the observation that the input structures may not
be the ideal one for propagating signals among nodes and instead there exist certain latent structures
that could facilitate learning better node representations. We thus consider the updating rule

Ã(l) = g(A,Z(l); !), Z(l+1) = h(Ã(l)
,A,Z(l); ✓), (1)

where Z(l) = {z(l)
u }u2N and Ã(l) = {ã

(l)
uv}u,v2N denotes the node representations and the estimated

latent graph of the l-th layer, respectively, and g, h are both differentiable functions aiming at 1)
structure estimation for a layer-specific latent graph Ã(l) based on node representations and 2) feature
propagation for updating node representations, respectively. The model defined by Eqn. 1 follows the
spirit of Transformers [35] (where in particular Ã(l) can be seen as an attentive graph) that potentially
enables message passing between any node pair in each layer, which, however, poses two challenges:

• (Scalability): How to reduce the prohibitive quadratic complexity for learning new graphs?

• (Differentiability): How to enable end-to-end differentiable optimization for discrete structures?

Notice that the first challenge is non-trivial in node-level prediction tasks (the focus of our paper),
since the latent graphs could potentially connect all the instance nodes (e.g., from thousands to
millions, depending on dataset sizes), which is fairly hard to guarantee both precision and scalability.

3

3.1 Efficient Learning Discrete Structures

We describe our new message-passing scheme with an efficient kernelized Gumbel-Softmax operator
to resolve the aforementioned challenges. We assume z(0)

u = xu as the initial node representation.

Kernelized Message Passing. We define a full-graph attentive network that estimates latent in-
teractions among instance nodes and enables corresponding densely-connected message passing:

ã
(l)
uv

=
exp((W (l)

Q
z(l)

u)>(W (l)
K

z(l)
v))

P
N

w=1 exp((W (l)
Q

z(l)
u)>(W (l)

K
z(l)

w))
, z(l+1)

u
=

NX

v=1

ã
(l)
uv

· (W (l)
V

z(l)
v

), (2)

where W
(l)
Q

, W
(l)
K

and W
(l)
V

are learnable parameters in l-th layer. We omit non-linearity activation
(after aggregation) for brevity. The updating for N nodes in one layer using Eqn. 2 requires prohibitive
O(N2) complexity. Also, given large N , the normalization in the denominator would shrink attention
weights to zero and lead to gradient vanishing. We call this problem as over-normalizing.

To accelerate the full-graph model, we observe that the dot-then-exponentiate operation in Eqn. 2 can
be converted into a pairwise similarity function:

z(l+1)
u

=
NX

v=1

(W (l)
Q

z(l)
u , W

(l)
K

z(l)
v)

P
N

w=1 (W (l)
Q

z(l)
u , W

(l)
K

z(l)
w)

· (W (l)
V

z(l)
v

), (3)

where (·, ·) : Rd
⇥Rd

! R is a positive-definite kernel measuring the pairwise similarity. The kernel
function can be further approximated by random features (RF) [27]which serves as an unbiased
estimation via (a,b) = h�(a), �(b)iV ⇡ �(a)>

�(b), where the first equation is by Mercer’s
theorem with � : Rd

! V a basis function and V a high-dimensional vector space, and �(·) : Rd
!

Rm is a low-dimensional feature map with random transformation. There are many potential choices
for �, e.g., Positive Random Features (PRF) [6]

�(x) =
exp (�kxk2

2
2)

p
m

[exp(w>
1 x), · · · , exp(w>

m
x)], (4)

where wk ⇠ N (0, Id) is i.i.d. sampled random transformation. The RF converts dot-then-
exponentiate operation into inner-product in vector space, which enables us to re-write Eqn. 3
(assuming qu = W

(l)
Q

z(l)
u , ku = W

(l)
K

z(l)
u and vu = W

(l)
V

z(l)
u for simplicity):

z(l+1)
u

=
NX

v=1

�(qu)>
�(kv)

P
N

w=1 �(qu)>�(kw)
· vv =

�(qu)> P
N

v=1 �(kv) · v>
v

�(qu)> P
N

w=1 �(kw)
. (5)

The key advantage of Eqn. 5 is that the two summations are shared by each u, so that one only
needs to compute them once and re-used for others. Such a property enables O(N) computational
complexity for full-graph message passing, which paves the way for learning graph structures among
large-scale instances. Moreover, one can notice that Eqn. 5 avoids computing the N ⇥N similarity
matrix, i.e., {ã

(l)
uv}N⇥N , required by Eqn. 2, thus also reducing the learning difficulties.

Nevertheless, Eqn. 5 still suffers what we mentioned the over-normalizing issue. The crux is that
the message passing is operated on a weighted fully-connected graph where, in fact, only partial
edges are important. Also, such a deterministic way of feature aggregation over all the instances may
increase the risk for over-fitting, especially when N is large. We next resolve the issues by distilling
a sparse structure from the fully-connected graph.

Differentiable Stochastic Structure Learning. The difficultly lies in how to enable differentiable
optimization for discrete graph structures. The weight ã

(l)
uv given by Eqn. 2 could be used to define

a categorical distribution for generating latent edges from distribution Cat(⇡(l)
u) where ⇡(l)

u =

{⇡
(l)
uv}

N
v=1 and ⇡

(l)
uv = p(v|u) = ã

(l)
uv. Then in principle, we can sample over the categorical

distribution multiple times for each node to obtain its neighbors. However, the sampling process
would introduce discontinuity and hinders back-propagation. Fortunately, we notice that the Eqn. 3
can be modified to incorporate the reparametrization trick [16] to allow differentiable learning:

z(l+1)
u

=
NX

v=1

exp((q>
u
kv + gv)/⌧)

P
N

w=1 exp((q>
u
kw + gw)/⌧)

·vv =
NX

v=1

(qu/
p

⌧ ,kv/
p

⌧)egv/⌧

P
N

w=1 (qu/
p

⌧ ,kw/
p

⌧)egw/⌧
·vv, (6)

4

where gu is i.i.d. sampled from Gumbel distribution and ⌧ is a temperature coefficient. Eqn. 6 is
a continuous relaxation of sampling one neighbored node for u over Cat(⇡(l)

u) and ⌧ controls the
closeness to hard discrete samples [23]. Following similar reasoning as Eqn. 3 and 5, we can yield

z(l+1)
u

⇡

NX

v=1

�(qu/
p

⌧)>
�(kv/

p
⌧)egv/⌧

P
N

w=1 �(qu/
p

⌧)>�(kw/
p

⌧)egw/⌧
·vv =

�(qu/
p

⌧)> P
N

v=1 e
gv/⌧

�(kv/
p

⌧) · v>
v

�(qu/
p

⌧)> P
N

w=1 egw/⌧�(kw/
p

⌧)
.

(7)
Eqn. 7 achieves message passing over a sampled latent graph (where we only sample once for each
node) and still guarantees linear complexity as Eqn. 5. In practice, we can sample K times (e.g.,
K = 5) for each node and take an average of the aggregated results. Due to space limit, we defer
more details concerning the differentiable sampling-based message passing to Appendix A. Besides,
in Fig. 5 and Alg. 1 of Appendix A, we present an illustration for node embedding updating in each
layer, from a matrix view that is practically used for implementation.

3.2 Well-posedness of the Kernelized Gumbel-Softmax Operator

One reasonable concern for Eqn. 7 is whether the RF approximation for kernel functions maintains the
well-posedness of Gumbel approximation for the target discrete variables. As a justification for the
new message-passing function, we next answer two theoretical questions: 1) How is the approximation
capability of RF for the original dot-then-exponentiate operation with Gumbel variables in Eqn. 6? 2)
Does Eqn. 7 still guarantee a continuous relaxation of the categorical distributions? We formulate the
results as follows and defer proofs to Appendix B.
Theorem 1 (Approximation Error for Softmax-Kernel). Assume kquk2 and kkvk2 are bounded by r,
then with probability at least 1� ✏, the gap � =

���(qu/
p

⌧)>
�(kv/

p
⌧)� (qu/

p
⌧ ,kv/

p
⌧)

��),

where � is defined by Eqn. 4, will be bounded by O

✓q
exp(6r/⌧)

m✏

◆
.

We can see that the error bound of RF for approximating original softmax-kernel function depends
on both the dimension of feature map � and temperature ⌧ . Notably, the error bound is independent
of node number N , which implies that the approximation ability is insensitive to dataset sizes.

The second question is non-trivial since Eqn. 7 involves randomness of Gumbel variables
and random transformation in �, which cannot be decoupled apart. We define cuv =

�(qu/
p

⌧)>
�(kv/

p
⌧)egv/⌧

PN
w=1 �(qu/

p
⌧)>�(kw/

p
⌧)egw/⌧ as the result from the kernelized Gumbel-Softmax and cu =

{cuv}
N
v=1 denotes the sampled edge vector for node u. We can arrive at the result as follows.

Theorem 2 (Property of Kernelized Gumbel-Softmax Random Variables). Suppose m is sufficiently
large, we have the convergence property for the kernelized Gumbel-Softmax operator

lim
⌧!0

P(cuv > cuv0 , 8v
0
6= v) =

exp(q>
u
kv)

P
N

w=1 exp(q>
u
kw)

, lim
⌧!0

P(cuv = 1) =
exp(q>

u
kv)

P
N

w=1 exp(q>
u
kw)

.

It shows that when i) the dimension of feature map is large enough and ii) the temperature goes
to zero, the distribution from which latent structures are sampled would converge to the original
categorical distribution.

Remark. The two theorems imply a trade-off between RF approximation and Gumbel-Softmax
approximation w.r.t. the choice of ⌧ . A large ⌧ would help to reduce the burden on kernel dimension
m, and namely, small ⌧ would require a very large m to guarantee enough RF approximation precision.
On the other hand, if ⌧ is too large, the weight on each edge will converge to 1

N
, i.e., the model nearly

degrades to mean pooling, while a small ⌧ would endow the kernelized Gumbel-Softmax with better
approximation to the categorical distribution. Empirical studies on this are presented in Appendix E.

3.3 Input Structures as Relational Bias

Eqn. 7 does not leverage any information from observed geometry which, however, is often recognized
important for modeling physically-structured data [3]. We therefore accommodate input topology
(if any) as relational bias via modifying the attention weight as ã

(l)
uv ã

(l)
uv + I[auv = 1]�(b(l)),

5

All-Pair
MPMLP + All-Pair

MP
+… MLP +

…

…

Figure 1: Illustration for the data flow of NODEFORMER which takes node embedding matrix X
and (optional) graph adjacency matrix A as input. There are three components in NODEFORMER.
The first one is the all-pair message passing (MP) module (colored red) which adopts our proposed
kernelized Gumbel-Softmax operator to update node embeddings in each layer with O(N) complexity.
The other two components are optional based on the availability of input graphs: 1) relational bias
(colored green) that reinforces the propagation weight on observed edges; 2) edge regularization loss
(colored blue) that aims to maximize the probability for observed edges. These two components
require O(E) complexity. The final training loss L is the weighted sum of the standard supervised
classification loss and the edge regularization loss.

where b
(l) is a learnable scalar as relational bias for any adjacent node pairs (u, v) and � is a certain

(bounded) activation function like sigmoid. The relational bias aims at assigning adjacent nodes in G

with proper weights, and the node representations could be accordingly updated by

z(l+1)
u

 z(l+1)
u

+
X

v,auv=1

�(b(l)) · vv. (8)

Eqn. 8 increases the algorithmic complexity for message passing to O(N + E), albeit within the
same order-of-magnitude as common GNNs operating on input graphs. Also, one can consider
higher-order adjacency as relational bias for better expressiveness at some expense of efficiency, as
similarly done by [1]. We summarize the feed-forward computation of NODEFORMER in Alg. 1.

3.4 Learning Objective

Given training labels Ytr = {yu}u2Ntr , where Ntr denotes the set of labeled nodes, the common
practice is to maximize the observed data log-likelihood which yields a supervised loss (with C

classes)

Ls(Ytr, Ŷtr) = �
1

Ntr

X

v2Ntr

CX

c=1

I[yu = c] log ŷu,c, (9)

where I[·] is an indicator function. However, it may not suffice to generalize well due to that the
graph topology learning increases the degrees of freedom and the number of training labels is not
comparable to that. Therefore, we additionally introduce an edge-level regularization:

Le(A, Ã) = �
1

NL

LX

l=1

X

(u,v)2E

1

du

log ⇡
(l)
uv

, (10)

where du denotes the in-degree of node u and ⇡
(l)
uv is the predicted probability for edge (u, v) at the

l-th layer. Eqn. 10 is a maximum likelihood estimation for edges in E , with data distribution defined

p0(v|u) =

⇢
1

du
, auv = 1

0, otherwise.
(11)

We next show how to efficiently obtain ⇡
(l)
uv . Although the feed-forward NODEFORMER computation

defined by Eqn. 7 does not explicitly produce the value for each ⇡
(l)
uv , we can query their values by

⇡
(l)
uv

=
�(W (l)

Q
z(l)

u)>
�(W (l)

K
z(l)

v)

�(W (l)
Q

z(l)
u)> P

N

w=1 �(W (l)
K

z(l)
w)

, (12)

6

Figure 2: Experimental results for node classification in transductive setting on four common datasets.
The missing results on Deezer is caused by out-of-memory (OOM).

Table 2: Testing ROC-AUC and training memory
cost on OGB-Proteins with batch size 10K.

Method ROC-AUC (%) Train Mem
MLP 72.04 ± 0.48 2.0 GB
GCN 72.51 ± 0.35 2.5 GB
SGC 70.31 ± 0.23 1.2 GB
GraphSAINT-GCN 73.51 ± 1.31 2.3 GB
GraphSAINT-GAT 74.63 ± 1.24 5.2 GB

NODEFORMER 77.45 ± 1.15 3.2 GB
NODEFORMER-dt 75.50 ± 0.64 3.1 GB
NODEFORMER-tp 76.18 ± 0.09 3.2 GB

Table 3: Testing Accuracy and training memory
cost on Amazon2M with batch size 100K.

Method Accuracy (%) Train Mem
MLP 63.46 ± 0.10 1.4 GB
GCN 83.90 ± 0.10 5.7 GB
SGC 81.21 ± 0.12 1.7 GB
GraphSAINT-GCN 83.84 ± 0.42 2.1 GB
GraphSAINT-GAT 85.17 ± 0.32 2.2 GB

NODEFORMER 87.85 ± 0.24 4.0 GB
NODEFORMER-dt 87.02 ± 0.75 2.9 GB
NODEFORMER-tp 87.55 ± 0.11 4.0 GB

where the summation term can be re-used from once computation, as is done by Eqn. 5 and Eqn. 7.
Therefore, after once computation for the summation that requires O(N), the computation for each
⇡

(l)
uv requires O(1) complexity, yielding the total complexity controlled within O(E) (since we only

need to query the observed edges). The final objective can be the combination of two: L = Ls +�Le,
where � controls how much emphasis is put on input topology. We depict the whole data flow of
NODEFORMER’s training in Fig. 1.

4 Evaluation

We consider a diverse set of datasets for experiments and present detailed dataset information in
Appendix D. For implementation, we set � as sigmoid function and ⌧ as 0.25 for all datasets. The
output prediction layer is a one-layer MLP. More implementation details are presented in Appendix C.
All experiments are conducted on a NVIDIA V100 with 16 GB memory.

As baseline models, we basically consider GCN [19] and GAT [36]. Besides, we compare with
some advanced GNN models, including JKNet [44] and MixHop [1]. These GNN models all rely on
input graphs. We further consider DropEdge [28] and two SOTA graph structure learning methods,
LDS-GNN [11] and IDGL [4] for comparison. For large-scale datasets, we additionally compare
with two scalable GNNs, a linear model SGC [39] and a graph-sampling model GraphSAINT [48].
More detailed information about these models are presented in Appendix C. All the experiments are
repeated five times with different initializations.

4.1 Experiments on Transductive Node Classification

We study supervised node classification in transductive setting on common graph datasets: Cora,
Citeseer, Deezer and Actor. The first two have high homophily ratios and the last two are
identified as heterophilic graphs [53, 21]. These datasets are of small or medium sizes (with 2K⇠20K
nodes). We use random splits with train/valid/test ratios as 50%/25%/25%. For evaluation metrics, we
use ROC-AUC for binary classification on Deezer and Accuracy for other datasets with more than
2 classes. Results are plotted in Fig. 2 and NODEFORMER achieves the best mean Accuracy/ROC-
AUC across four datasets and in particular, outperforms other models by a large margin on two
heterophilic graphs. The results indicate that NODEFORMER can handle both homophilious and non-
homophilious graphs. Compared with two structure learning models LDS and IDGL, NODEFORMER
yields significantly better performance, which shows its superiority. Also, for Deezer, LDS and
IDGL suffers from out-of-memory (OOM). In fact, the major difficulty for Deezer is the large

7

Table 4: Experimental results on semi-supervised classficiation on Mini-ImageNet and
20News-Groups where we use k-NN (with different k’s) for artificially constructing an input graph.

Method Mini-ImageNet 20News-Group

k = 5 k = 10 k = 15 k = 20 k = 5 k = 10 k = 15 k = 20

GCN 84.86 ± 0.42 85.61 ± 0.40 85.93 ± 0.59 85.96 ± 0.66 65.98 ± 0.68 64.13 ± 0.88 62.95 ± 0.70 62.59 ± 0.62
GAT 84.70 ± 0.48 85.24 ± 0.42 85.41 ± 0.43 85.37 ± 0.51 64.06 ± 0.44 62.51 ± 0.71 61.38 ± 0.88 60.80 ± 0.59

DropEdge 83.91 ± 0.24 85.35 ± 0.44 85.25 ± 0.63 85.81 ± 0.65 64.46 ± 0.43 64.01 ± 0.42 62.46 ± 0.51 62.68 ± 0.71
IDGL 83.63 ± 0.32 84.41 ± 0.35 85.50 ± 0.24 85.66 ± 0.42 65.09 ± 1.23 63.41 ± 1.26 61.57 ± 0.52 62.21 ± 0.79
LDS OOM OOM OOM OOM 66.15 ± 0.36 64.70 ± 1.07 63.51 ± 0.64 63.51 ± 1.75

NODEFORMER 86.77 ± 0.45 86.74 ± 0.23 86.87 ± 0.41 86.64 ± 0.42 66.01 ± 1.18 65.21 ± 1.14 64.69 ± 1.31 64.55 ± 0.97

NODEFORMER w/o graph 87.46 ± 0.36 64.71 ± 1.33

Figure 3: Comparison of training/inference time and GPU memory cost w.r.t. different instance
numbers (by removing a certain portion of nodes) on 20News-Groups.

dimensions of input node features (nearly 30K), which causes OOM for IDGL even with the anchor
approximation. In contrast, NODEFORMER manages to scale and produce desirable accuracy.

4.2 Experiments on Larger Graph Datasets

To further test the scalability, we consider two large-sized networks, OGB-Proteins and Amazon2M,
with over 0.1 million and 2 million of nodes, respectively. OGB-Proteins is a multi-task dataset with
112 output dimensions, while Amazon2M is extracted from the Amazon Co-Purchasing network that
entails long-range dependence [13]. For OGB-Proteins, we use the protocol of [15] and ROC-AUC
for evaluation. For Amazon2M, we adopt random splitting with 50%/25%/25% nodes for training,
validation and testing, respectively. Due to the large dataset size, we adopt mini-batch partition for
training, in which case, for NODEFORMER we only consider structure learning among nodes in a
random mini-batch. We use batch size 10000 and 100000 for Proteins and Amazon2M, respectively.
While the mini-batch partition may sacrifice the exposure to all instances, we found using large
batch size can yield decent performance, which is also allowable thanks to the O(N) complexity
of our model. For example, even setting the batch size as 100000, we found NODEFORMER costs
only 4GB GPU memory for training on Amazon2M. Table 2 presents the results on OGB-Proteins

where for fair comparison mini-batch training is also used for other models except GraphSAINT.
We found that NODEFORMER yields much better ROC-AUC and only requires comparable memory
as simple GNN models. Table 3 reports the results on Amazon2M which shows that NODEFORMER
outperforms baselines by a large margin and the memory cost is even fewer than GCN. This shows
its practical efficacy and scalability on large-scale datasets and also the capability for addressing
long-range dependence with shallow layers (we use L = 3).

4.3 Experiments on Graph-Enhanced Applications
We apply our model to semi-supervised image and text classification on Mini-ImageNet and
20News-Groups datasets, without input graphs. The instances of Mini-ImageNet [37] are 84×84
RGB images and we randomly choose 30 classes each of which contains 600 samples for experiments.
20News-Groups [25] consists of nearly 10K texts whose features are extracted by TF-IDF. More
details for preprocessing are presented in Appendix D. Also, for each dataset, we randomly split
instances into 50%/25%/25% for train/valid/test. Since there is no input graph, we use k-NN (over
input node features) for artificially constructing a graph for enabling GNN’s message passing and
the graph-based components (edge regularization and relational bias) of NODEFORMER. Table 4
presents the comparison results under different k’s. We can see that NODEFORMER achieves the best
performance in seven cases out of eight. The performance of GNN competitors varies significantly
with different k values, and NODEFORMER is much less sensitive. Intriguingly, when we do not use

8

the input graph, i.e., removing both the edge regularization and relational bias, NODEFORMER can
still yield competitive even superior results on Mini-ImageNet. This suggests that the k-NN graphs
are not necessarily informative and besides, our model learns useful latent graph structures from data.

4.4 Further Discussions

Comparison of Time/Space Consumption. Fig. 3 plots training/inference time and GPU memory
costs of NODEFORMER and two SOTA structure learning models. Compared with LDS, NODE-
FORMER reduces the training time, inference time, memory cost by up to 93.1%, 97.9%, 75.6%,
respectively; compared with IDGL (using anchor-based approximation for speedup), NODEFORMER
reduces the training time, inference time, memory cost by up to 61.8%, 80.8%, 80.6%, respectively.

Ablation on Stochastic Components. Table 2 and 3 also include two variants of NODEFORMER for
ablation study. 1) NODEFORMER-dt: replace Gumbel-Softmax by original Softmax (with temperature
1.0) for deterministic propagation; 2) NODEFORMER-tp: use original Softmax with temperature
set as 0.25 (the same as NODEFORMER). There is performance drop when removing the Gumbel
components, which may be due to over-normalizing or over-fitting that are amplified in large datasets,
as we discussed in Section 3.1 and the kernelized Gumbel-Softmax operator shows its effectiveness.

Ablation on Edge Loss and Relational Bias. We study the effects of edge-level regularization and
relation bias as ablation study shown in Table 6 located in Appendix E, where the results consistently
show that both components contribute to some positive effects and suggest that our edge-level loss
and relation bias can both help to leverage useful information from input graphs.

Impact of Temperature and Feature Map Dimension. We study the effects of ⌧ and m in Fig. 6
located in Appendix E and the variation trend accords with our theoretical analysis in Section 3.2.
Specifically, the result shows that the test accuracy increases and then falls with the temperature
changing from low to high values (usually achieves the peak accuracy with a temperature of 0.4).
Besides, we can see that when the temperature is relatively small, the test accuracy goes high with the
dimension of random features increasing. However, when the temperature is large, the accuracy would
drop even with large feature dimension m. Such a phenomenon accords with the theoretical result
presented in Section 3.2. For low temperature which enables desirable approximation performance for
Gumbel-Softmax, then larger random feature dimension would help to produce better approximation
to the original exponentiate-then-dot operator. In contrast, high temperature could not guarantee
precise approximation for the original categorical distribution, which deteriorates the performance.

Visualization and Implications. Fig. 4 visualizes node embeddings and edge connections (filter
out the edges with weights larger than a threshold) on 20News-Groups and Mini-Imagenet, which
show that NODEFORMER tends to assign more weights for nodes with the same class and sparse edges
for nodes with different classes. This helps to interpret why NODEFORMER improves the performance
on downstream node-level prediction: the latent structures can propagate useful information to help
the model learn better node representations that can be easily distinguished by the classifier. We also
compare the learned structures with original graphs in Fig. 7 located in Appendix E. We can see
that the latent structures learned by NODEFORMER show different patterns from the observed ones,
especially for heterophilic graphs. Another interesting phenomenon is that there exist some dominant
nodes which are assigned large weights by other nodes, forming some vertical ‘lines’ in the heatmap.
This suggests that these nodes could contain critical information for the learning tasks and play as
pivots that could improve the connectivity of the whole system.

5 Why NODEFORMER Improves Downstream Prediction?

There remains a natural question concerning our learning process: how effective can the learned latent
topology be for downstream tasks? We next dissect the rationale from a Bayesian perspective. In fact,
our model induces a predictive distribution p(Y, Ã|X,A) = p(Ã|X,A)p(Y|Ã,X,A) where we
can treat the estimated graph Ã as a latent variable.2 Specifically, p(Ã|X,A) is instantiated with the
structure estimation module and p(Y|Ã,X,A) is instantiated with the feature propagation module.
In principle, ideal latent graphs should account for downstream tasks and maximize the potentials

2We assume one latent graph to simplify the illustration though we practically learn layer-specific graphs for
each layer of NODEFORMER. The analysis can be trivially extended to such a case.

9

(a) 20News-Groups (b) Mini-ImageNet

Figure 4: Visualization of node embeddings and edge connections produced by NODEFORMER on
graph-enhanced application datasets. We mark the nodes with a particular class with one color. More
comparison between the learned structures and original input graphs is presented in Appendix E.

of message passing for producing informative node representations. Thus, optimal latent graphs
presumably come from the posterior p(Ã|Y,X,A) = p(Y|X,A,Ã)p(Ã|X,A)R

Y p(Y|X,A,Ã)p(Ã|X,A)dY
which is given by

Bayes theorem. Unfortunately, such a posterior is unknown and intractable for the integration.

A Variational Perspective. An intriguing conclusion stems from another view into the learning
process: we can treat the structure estimation as a variational distribution q(Ã|X,A) and our
learning objective in Section 3.4 can be viewed as the embodiment of a minimization problem over
the predictive and variational distributions via

p
⇤
, q

⇤ = arg min
p,q
�Eq[log p(Y|Ã,X,A)]
| {z }

Ls

+ D(q(Ã|X,A)kp0(Ã|X,A))| {z }
Le

, (13)

where D denotes the Kullback-Leibler divergence. Specifically, the predictive term is equivalent to
minimizing the supervised loss (with Gumbel-Softmax as a surrogate for sampling-based estimates
over q(Ã|X,A)), and the KL regularization term is embodied with the edge-level MLE loss (Eqn. 10)
(if we define the prior distribution p0(Ã|X,A) following Eqn. 11). One may notice that Eqn. 13 is
essentially the Evidence Lower Bound (ELBO) for the log-likelihood log p(Y|X,A).
Proposition 1. Assume q can exploit arbitrary distributions over Ã. When Eqn. 13 achieves the
optimum, we have 1) D(q(Ã|X,A)kp(Ã|Y,X,A)) = 0 and 2) log p(Y|X,A) is maximized.

The proposition indicates that our adopted learning objective intrinsically minimizes the divergence
between latent graphs generated by the model and the samples from the posterior p(Ã|Y,X,A)
that ideally helps to propagate useful adjacent information w.r.t. downstream tasks. Therefore, a
well-trained network of NODEFORMER on labeled data could produce effective latent topology that
contributes to boosting the downstream performance.

6 Conclusion

This paper proposes a scalable and efficient graph Transformer (especially for node level) that can
propagate layer-wise node signals between arbitrary pairs beyond input topology. The key module,
a kernelized Gumbel-Softmax operator, enables us to learn layer-specific latent graphs with linear
algorithmic complexity without compromising the precision. The results on diverse graph datasets
and situations verify the effectiveness, scalability, and stability. We provide more discussions on the
limitations and potential impacts in Appendix F.

Acknowledgement
This work was partly supported by National Key Research and Development Program of China
(2020AAA0107600), National Natural Science Foundation of China (61972250, 72061127003), and
Shanghai Municipal Science and Technology (Major) Project (22511105100, 2021SHZDZX0102).

10

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine
Learning, pages 21–29, 2019.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021.

[3] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. CoRR, abs/1611.08097, 2016.

[4] Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. In Advances in Neural Information Processing
Systems, 2020.

[5] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 257–266,
2019.

[6] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with
performers. In International Conference on Learning Representations, 2021.

[7] Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein.
Latent patient network learning for automatic diagnosis. CoRR, abs/2003.13620, 2020.

[8] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, and Le Song. Learning steady-
states of iterative algorithms over graphs. In International Conference on Machine Learning,
pages 1114–1122, 2018.

[9] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020.

[10] Pantelis Elinas, Edwin V. Bonilla, and Louis C. Tiao. Variational inference for graph convolu-
tional networks in the absence of graph data and adversarial settings. In Advances in Neural
Information Processing Systems, 2020.

[11] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In International Conference on Machine Learning, pages
1972–1982, 2019.

[12] Chen Gao, Jinyu Chen, Si Liu, Luting Wang, Qiong Zhang, and Qi Wu. Room-and-object
aware knowledge reasoning for remote embodied referring expression. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 3064–3073, 2021.

[13] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit
graph neural networks. In Advances in Neural Information Processing Systems, 2020.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems, 2020.

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017.

[17] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with
graph learning-convolutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 11313–11320, 2019.

11

[18] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 66–74, 2020.

[19] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[20] Danning Lao, Xinyu Yang, Qitian Wu, and Junchi Yan. Variational inference for training graph
neural networks in low-data regime through joint structure-label estimation. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 824–834, 2022.

[21] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on
non-homophilous graphs. CoRR, abs/2104.01404, 2021.

[22] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network via topological denoising. In ACM
International Conference on Web Search and Data Mining, pages 779–787, 2021.

[23] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

[24] Julian J. McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and
complementary products. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785–794, 2015.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020.

[27] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2007.

[28] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020.

[29] Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In ACM International Conference on Informa-
tion and Knowledge Management, pages 1325–1334, 2020.

[30] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W. Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, pages 8459–8468, 2020.

[31] Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural networks.
In International Conference on Learning Representations, 2018.

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93–106, 2008.

[34] Rakshith Sharma Srinivasa, Cao Xiao, Lucas Glass, Justin Romberg, and Jimeng Sun. Fast graph
attention networks using effective resistance based graph sparsification. CoRR, abs/2006.08796,
2020.

12

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

[37] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Advances in Neural Information Processing Systems,
pages 3630–3638, 2016.

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph CNN for learning on point clouds. ACM Trans. Graph., 38(5):146:1–
146:12, 2019.

[39] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In International Conference on Machine
Learning, pages 6861–6871, 2019.

[40] Qitian Wu, Chenxiao Yang, and Junchi Yan. Towards open-world feature extrapolation: An
inductive graph learning approach. Advances in Neural Information Processing Systems, pages
19435–19447, 2021.

[41] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, and Hongyuan Zha. Towards open-world
recommendation: An inductive model-based collaborative filtering approach. In International
Conference on Machine Learning, pages 11329–11339, 2021.

[42] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. In Advances
in Neural Information Processing Systems, 2020.

[43] Xuan Wu, Lingxiao Zhao, and Leman Akoglu. A quest for structure: Jointly learning the graph
structure and semi-supervised classification. In ACM International Conference on Information
and Knowledge Management, pages 87–96, 2018.

[44] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning, pages 5449–5458, 2018.

[45] Chenxiao Yang, Qitian Wu, and Junchi Yan. Geometric knowledge distillation: Topology
compression for graph neural networks. In Advances in Neural Information Processing Systems,
2022.

[46] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classifica-
tion. In AAAI Conference on Artificial Intelligence, pages 7370–7377, 2019.

[47] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNN explainer:
A tool for post-hoc explanation of graph neural networks. In Advances in Neural Information
Processing Systems, 2019.

[48] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations, 2020.

[49] Tianqi Zhang, Qitian Wu, Junchi Yan, Yunan Zhao, and Bing Han. Scalegcn: Efficient and
effective graph convolution via channel-wise scale transformation. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[50] Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against
adversarial attacks. In Advances in Neural Information Processing Systems, 2020.

[51] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Üstebay. Bayesian graph convo-
lutional neural networks for semi-supervised classification. In AAAI Conference on Artificial
Intelligence, pages 5829–5836, 2019.

13

[52] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pages 11458–11468, 2020.

[53] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
Advances in Neural Information Processing Systems, 2020.

[54] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph
structure learning for robust representations: A survey. CoRR, abs/2103.03036, 2021.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The codes are
public available. See Appendix D for dataset information.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See the experiment section

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix D
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Related Works
	NodeFormer: A Transformer Graph Network at Scale
	Efficient Learning Discrete Structures
	Well-posedness of the Kernelized Gumbel-Softmax Operator
	Input Structures as Relational Bias
	Learning Objective

	Evaluation
	Experiments on Transductive Node Classification
	Experiments on Larger Graph Datasets
	Experiments on Graph-Enhanced Applications
	Further Discussions

	Why NodeFormer Improves Downstream Prediction?
	Conclusion
	More Details for NodeFormer
	Differentiable Sampling-based Message Passing on Latent Structures
	Model Implementation from the Matrix View

	Proof for Technical Results
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Proposition 1

	Implementation Details
	Details for Node Classification Experiments in Sec. 4.1
	Details for Node Classification on Larger Graphs in Sec. 4.2
	Details for Graph-Enhanced Experiments in Sec. 4.3

	Dataset Information
	Dataset Information
	Dataset Preprocessing

	More Experiment Results
	Current Limitations, Outlooks and Potential Impacts

