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This material is organized as follows. Section 1 presents more numerical Results. Section 2 proves
Theorem 2.1 and Theorem 2.2. Section 3 proves Theorem 3.1 and Theorem 3.2. Section 4 presents
parameter settings used in the numerical experiments.

1 More Numerical Results

1.1 A Multi-label Classification Example

We validate the effectiveness of the StoNet on the MNIST handwritten digits classification task
(LeCun et al., 1998). The MNIST dataset contains 10 different classes (0 to 9) of images, including
60,000 images in the training set and 10,000 images in the test set. Each image is of size 28× 28
pixels with 256 gray levels. Due to inscalability of the existing nonlinear SDR methods with respect
to the sample size, we worked on a sub-training set which consisted of 20,000 images equally selected
from 10 classes of the original training set.

We applied StoNet, GSIR, GSAVE, autoencoder and PCA to obtain projections onto low-dimension
subspaces with the dimensions q = 10, 49, 98, 196, 392, and then trained a DNN on the dimension
reduced data for the multi-label classification task. Note that for the StoNet, a multi-class logistic
regression should work in principle for the dimension reduced data, and the DNN is used here for
fairness of comparison; for some other methods such as autoencoder and PCA, the DNN seems
necessary for modeling the dimension-reduced data for such a nonlinear classification problem. The
StoNet consisted of one hidden layer with q hidden units. All hyperparameters were determined
based on 5-fold cross-validation in terms of misclassification rates. Refer to Section 4 of this material
for the parameter settings used in the experiments.

The experimental results are summarized in Figure S1 and Table 2 (of the main text). For the dataset,
we also trained a DNN with one hidden layer and 50 hidden units as the comparison baseline, which
achieved a prediction error rate of 0.0459. The comparison shows that the StoNet outperforms GSIR,
GSAVE, autoencoder and PCA in terms of misclassification rates. Moreover, StoNet is much more
efficient than GSIR, GSAVE and autoencoder in computational time. It is interesting to note that
when the data was projected onto a subspace with dimension 392, StoNet even outperformed the
DNN in prediction accuracy. We have also tried LSMIE for this example, but lost interests finally as
the method took more than 24 CPU hours on our computer.
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Figure S1: Misclassification rates versus dimension q. The red dash line represent the baseline result
by training a DNN with one hidden layer and 50 hidden units on the original dataset (mistclassification
rate = 0.0459).

1.2 A Regression Example

Refer to Figure S2 for the performance of different methods on the example.

Figure S2: Pearson Correlation v.s. dimension q for the regression example: The red dash line
represent the baseline result by training a DNN with one hidden layer and 100 hidden units on the
original dataset (Pearson correlation = 0.9987(0.0000)).

2 Proofs of Theorem 2.1 and Theorem 2.2

2.1 Proof of Theorem 2.1

PROOF: Since Θ is compact, it suffices to prove that the consistency holds for each value of θ. For
simplicity of notation, we rewrite σn,i by σi in the remaining part of the proof.

Let Y mis = (Y 1,Y 2, . . . ,Y h), where Y i’s are latent variables as given in Equation (6) of the main
text. Let Ỹ = (Ỹ 1, . . . , Ỹ h), where Ỹ i’s are calculated by the neural network in Equation (5) of
the main text. By Taylor expansion, we have

log π(Y ,Y mis|X,θ) = log π(Y , Ỹ |X,θ) + εT∇Y mis log π(Y , Ỹ |X,θ) +O(‖ε‖2), (S1)
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where ε = Y −Y mis = (ε1, ε2, . . . , εh), log π(Y , Ỹ |X,θ) = log π(Y |X,θ) is the log-likelihood
function of the neural network, and ∇Y mis log π(Y , Ỹ |X,θ) is evaluated according to the joint
distribution given in Equation (10) of the main text.

Consider ∇Y i log π(Y , Ỹ i|X,θ). For its single latent variable, say Y (k)
i , the output of the hidden

unit k at layer i ∈ {2, . . . , h}, we have
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(k)
i )

− 1

σ2
i

(Ỹ
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where w(j)
i+1 denotes the vector of the weights from hidden unit j at layer i+ 1 to the hidden units at

layer i, and w(j,k)
i+1 denotes the weight from hidden unit j at layer i+ 1 to the hidden unit k at hidden
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For layer i = 1, the calculation is similar, but the second term in (S3) is reduced to 0. Then by
Assumption 2.1-(i)&(iv), we have∣∣∣∇Y (k)
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Next, let’s figure out the order of ‖εi‖. The kth component of εi is given by

Y
(k)
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{
e
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i +w
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i (ψ(Y i−1)− ψ(Ỹ i−1)), i > 1,

e
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(S5)

Therefore, ‖ε1‖ = ‖e1‖; and for i = 2, 3, . . . , h, the following inequalities hold:

‖εi‖ ≤ ‖ei‖+ c′rdi‖εi−1‖, and ‖εi‖2 ≤ 2‖ei‖2 + 2(c′r)2d2
i ‖εi−1‖2. (S6)

Since ei and ei−1 are independent, by summarizing (S4) and (S6), we have∫
εT∇Y mis log π(Y, Ỹ |X,θ)π(Y mis|X,θ,Y )dY mis ≤ O
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(S7)

which, by (S1) and Assumption 2.1-(v), implies the mean value

E[log π(Y ,Y mis|X,θ)− log π(Y |X, θ)]→ 0, ∀θ ∈ Θ (S8)

Further, it is easy to verify∫
|εT∇Y mis log π(Y , Ỹ |X,θ)|2π(Y mis|X,θ,Y )dY mis <∞, (S9)

which, together with (S1) and (S6), implies

E| log π(Y ,Y mis|X,θ)− log π(Y |X,θ)|2 <∞. (S10)

Therefore, the weak law of large numbers (WLLN) applies, and the proof can be concluded. �
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2.2 Proof of Theorem 2.2

To prove Theorem 2.2, we first prove Lemma S1, from which Theorem 2.2 can be directly derived.

Lemma S1 Consider a function Q(θ,Xn). Suppose that the following conditions are satisfied:

(i) Q(θ,Xn) is continuous in θ and there exists a function Q∗(θ), which is continuous in θ
and uniquely maximized at θ∗.

(ii) For any ε > 0, supθ∈Θ\B(ε)Q
∗(θ) exists, where B(ε) = {θ : ‖θ − θ∗‖ < ε}; Let

δ = Q∗(θ∗)− supθ∈Θ\B(ε)Q
∗(θ).

(iii) supθ∈Θ |Q(θ,Xn)−Q∗(θ)| p→ 0 as n→∞.

Let θ̂n = arg maxθ∈ΘQ(θ,Xn). Then ‖θ̂n − θ∗‖
p→ 0.

PROOF: Consider two events:

(a) supθ∈Θ\B(ε) |Q(θ,Xn)−Q∗(θ)| < δ/2, and

(b) supθ∈Θ |Q(θ,Xn)−Q∗(θ)| < δ/2.

From event (a), we can deduce that for any θ ∈ Θ\B(ε), Q(θ,Xn) < Q∗(θ) + δ/2 ≤ Q∗(θ∗)−
δ + δ/2 ≤ Q∗(θ∗) − δ/2. From event (b), we can deduce that for any θ ∈ B(ε), Q(θ,Xn) >
Q∗(θ)− δ/2 and thus Q(θ∗,Xn) > Q∗(θ∗)− δ/2.

If both events hold simultaneously, then we must have θ̂n ∈ B(ε) as n→∞. By condition (iii), the
probability that both events hold tends to 1. Therefore, P (θ̂n ∈ B(ε))→ 1. �

3 Proofs of Theorem 3.1 and Theorem 3.2

Since our goal is to obtain the SDR predictor Y h for all observations inD, we proved the convergence
of Algorithm 1 for the case that the full training dataset is used at each iteration. If the algorithm is
used for other purposes, say estimation of θ only, a mini-batch of data can be used at each iteration.
Extension of our proof for the mini-batch case will be discussed in Remark S2. To complete the
proof, we make the following assumptions.

Assumption B1 The function FD(·, ·) takes nonnegative real values, and there exist constants
A,B ≥ 0, such that |FD(0,θ∗)| ≤ A, ‖∇ZFD(0,θ∗)‖ ≤ B, ‖∇θFD(0,θ∗)‖ ≤ B, and
‖H(0,θ∗)‖ ≤ B.

Assumption B2 (Smoothness) FD(·, ·) is M -smooth and H(·, ·) is M -Lipschitz: there exists some
constant M > 0 such that for any Z,Z ′ ∈ Rdz and any θ,θ′ ∈ Θ,

‖∇ZFD(Z,θ)−∇ZFD(Z ′,θ′)‖ ≤M‖Z −Z ′‖+M‖θ − θ′‖,
‖∇θFD(Z,θ)−∇θFD(Z ′,θ′)‖ ≤M‖Z −Z ′‖+M‖θ − θ′‖,
‖H(Z,θ)−H(Z ′,θ′)‖ ≤M‖Z −Z ′‖+M‖θ − θ′‖.

Assumption B3 (Dissipativity) For any θ ∈ Θ, the function FD(·,θ∗) is (m, b)-dissipative: there
exist some constants m > 1

2 and b ≥ 0 such that 〈Z,∇ZFD(Z,θ∗)〉 ≥ m‖Z‖2 − b.

The smoothness and dissipativity conditions are regular for studying the convergence of stochastic
gradient MCMC algorithms, and they have been used in many papers such as Raginsky et al. (2017)
and Gao et al. (2021). As implied by the definition of FD(Z,θ), the values of M , m and b increase
linearly with the sample size n. Therefore, we can impose a nonzero lower bound on m to facilitate
the proof of Lemma S1.

Assumption B4 (Gradient noise) There exists a constant ς ∈ [0, 1) such that for any Z and θ,
E‖∇Z F̂D(Z,θ)−∇ZFD(Z,θ)‖2 ≤ 2ς(M2‖Z‖2 +M2‖θ − θ∗‖2 +B2).
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Introduction of the extra constant ς facilitates our study. For the full data case, we have ς = 0, i.e.,
the gradient ∇ZFD(Z,θ) can be evaluated accurately.

Assumption B5 The step size {γk}k∈N is a positive decreasing sequence such that γk → 0 and∑∞
k=1 γk = ∞. In addition, let h(θ) = E(H(Z,θ)), then there exists δ > 0 such that for any

θ ∈ Θ, 〈θ − θ∗, h(θ))〉 ≥ δ‖θ − θ∗‖2, and lim infk→∞ 2δ γk
γk+1

+ γk+1−γk
γ2
k+1

> 0.

As shown by Benveniste et al. (1990) (p.244), Assumption B5 can be satisfied by setting γk =
ã/(b̃ + kα) for some constants ã > 0, b̃ ≥ 0, and α ∈ (0, 1 ∧ 2δã). By (17), δ increases linearly
with the sample size n. Therefore, if we set ã = Ω(1/n) then 2δã > 1 can be satisfied, where Ω(·)
denotes the order of the lower bound of a function. In this paper, we simply choose α ∈ (0, 1) by
assuming that ã has been set appropriately with 2δã ≥ 1 held.

Assumption B6 (Solution of Poisson equation) For any θ ∈ Θ, z ∈ Z, and a function V (z) = 1 +
‖z‖, there exists a function µθ on Z that solves the Poisson equation µθ(z)−Tθµθ(z) = H(θ, z)−
h(θ), where Tθ denotes a probability transition kernel with Tθµθ(z) =

∫
Z
µθ(z′)Tθ(z, z′)dz′, such

that
H(θk, zk+1) = h(θk) + µθk(zk+1)− Tθkµθk(zk+1), k = 1, 2, . . . . (S11)

Moreover, for all θ,θ′ ∈ Θ and z ∈ Z, we have ‖µθ(z) − µθ′(z)‖ ≤ ς1‖θ − θ′‖V (z) and
‖µθ(z)‖ ≤ ς2V (z) for some constants ς1 > 0 and ς2 > 0.

This assumption is also regular for studying the convergence of stochastic gradient MCMC algorithms,
see e.g., Whye et al. (2016) and Deng et al. (2019). Alternatively, one can assume that the MCMC
algorithms satisfy the drift condition, and then Assumption B6 can be verified, see e.g., Andrieu et al.
(2005).

3.1 Proof of Theorem 3.1

Theorem S1 concerns the convergence of θ(k), which is a complete version of Theorem 3.1.

Theorem S1 (A complete version of Theorem 3.1) Suppose Assumptions B1-B6 hold. If we set
εk = Cε/(ce + kα) and γk = Cγ/(cg + kα) for some constants α ∈ (0, 1), Cε > 0, Cγ > 0, ce ≥ 0
and cg ≥ 0, then there exists an iteration k0 and a constant λ0 > 0 such that for any k > k0,

E(‖θ(k) − θ∗‖2) ≤ λ0γk, (S12)

where λ0 = λ′0 + 6
√

6C
1
2

θ ((3M2 + ζ2)CZ + 3M2Cθ + 3B2 + ζ2
2 )

1
2 for some constants λ′0, Cθ and

CZ .

PROOF: Our proof of Theorem 3.1 follows that of Theorem 1 in Deng et al. (2019). However, since
Algorithm 1 employs SGHMC for updating Z(k), which is mathematically very different from the
SGLD rule employed in Deng et al. (2019), Lemma 1 of Deng et al. (2019) (uniform L2 bounds of
θ(k) and Z(k)) cannot be applied any more. In Lemma S1 below, we prove that E‖θ(k)‖2 ≤ Cθ,
E‖v(k)‖2 ≤ Cv and E‖Z(k)‖2 ≤ CZ under appropriate conditions of {εk} and {γk}, where Cθ , Cv
and CZ are appropriate constants.

Further, based on the proof of Deng et al. (2019), we can derive an explicit formula for λ0:

λ0 = λ′0 + 6
√

6C
1
2

θ ((3M2 + ζ2)CZ + 3M2Cθ + 3B2 + ζ2
2 )

1
2 ,

where λ′0 together with k0 can be derived from Lemma 3 of Deng et al. (2019) and they depend on
δ and {γk} only. The second term of λ0 is obtained by applying the Cauchy-Schwarz inequality
to bound the expectation E〈θ(k) − θ∗, Tθk−1

µθk−1
(Z(k))〉, where E‖θ(k) − θ∗‖2 can be bounded

according to Lemma S1 and E‖Tθ(k−1)µθ(k−1)(Z(k))‖2 can be bounded according to equation (18)
of Assumption B6 and the upper bound of H(z,θ) given in (S13). �

Lemma S1 (L2-bound) Suppose Assumptions 3.1-3.5 hold. If we set εk = Cε/(ce + kα) and
γk = Cγ/(cg + kα) for some constants α ∈ (0, 1], Cε > 0, Cγ > 0, ce ≥ 0 and cg ≥ 0, then there
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exist constants Cv, CZ and Cθ such that supi≥0 E
∥∥v(i)

∥∥2 ≤ Cv, supi≥0 E
∥∥∥Z(i)

∥∥∥2

≤ CZ , and

supi≥0 E
∥∥∥θ(i)

∥∥∥2

≤ Cθ.

PROOF: Similar to the proof of Lemma 1 of Deng et al. (2019), we first show

‖∇ZFD(Z,θ)‖2 ≤ 3M2‖Z‖2 + 3M2‖θ − θ∗‖2 + 3B2,

‖∇θFD(Z,θ)‖2 ≤ 3M2‖Z‖2 + 3M2‖θ − θ∗‖2 + 3B2,

‖H(Z(k+1),θ(k))‖2 ≤ 3M2‖Z(k+1)‖2 + 3M2‖θ(k) − θ∗‖2 + 3B2.

(S13)

By Assumption 3.1, we have ‖∇ZFD(0,θ∗)‖ ≤ B, ‖H(0,θ∗)‖ ≤ B, and ‖∇θFD(0,θ∗)‖ ≤ B.
By Assumption 3.2,

‖∇ZFD(Z,θ)‖
≤‖∇ZFD(0,θ∗)‖+ ‖∇ZFD(Z,θ∗)−∇ZFD(0,θ∗)‖+ ‖∇ZFD(Z,θ)−∇ZFD(Z,θ∗)‖
≤B +M‖Z‖+M‖θ − θ∗‖,
‖∇θFD(Z,θ)‖
≤‖∇θFD(0,θ∗)‖+ ‖∇θFD(Z,θ∗)−∇θFD(0,θ∗)‖+ ‖∇θFD(Z,θ)−∇ZFθ(Z,θ∗)‖
≤B +M‖Z‖+M‖θ − θ∗‖,
‖H(Z(k+1),θ(k))‖
≤‖H(0,θ∗)‖+ ‖H(Z(k+1),θ∗)−H(0,θ∗)‖+ ‖H(Z(k+1),θ(k))−H(Z(k+1),θ∗)‖
≤B +M‖Z(k+1)‖+M‖θ(k) − θ∗‖.

Therefore, (S13) holds.

By Assumptions 3.2, 3.3 and 2.1-(i), we have

〈Z,∇ZFD(Z,θ)〉 =〈Z,∇ZFD(Z,θ∗)〉 − 〈Z,∇ZFD(Z,θ∗)−∇ZFD(Z,θ)〉

≥m‖Z‖2 − b− 1

2
‖Z‖2 − 1

2
‖∇ZFD(Z,θ∗)−∇ZFD(Z,θ)‖2

≥(m− 1

2
)‖Z‖2 − b− 1

2
M2‖θ − θ∗‖2

≥m0‖Z‖2 − b−
1

2
M2‖θ − θ∗‖2,

where the constants m0 = m − 1
2 > 0, Then, similar to the proof of Lemma 2 in Raginsky et al.

(2017), we have

FD(Z,θ) = FD(0,θ∗) +

∫ 1

0

〈Z,∇ZFD(tZ,θ∗ + t(θ − θ∗))〉+ 〈θ − θ∗,∇θFD(tZ,θ∗ + t(θ − θ∗))〉dt

≤ A+

∫ 1

0

‖Z‖‖∇ZFD(tZ,θ∗ + t(θ − θ∗))‖dt+

∫ 1

0

‖θ − θ∗‖‖∇θFD(tZ,θ∗ + t(θ − θ∗))‖dt

≤ A+ ‖Z‖
∫ 1

0

tM‖Z‖+ tM‖θ − θ∗‖+Bdt+ ‖θ − θ∗‖
∫ 1

0

tM‖Z‖+ tM‖θ − θ∗‖+Bdt

≤ A+M‖Z‖2 +M‖θ − θ∗‖2 +
B

2
‖Z‖2 +

B

2
‖θ − θ∗‖2 +B

≤M0‖Z‖2 +A0 +M0‖θ − θ∗‖2,

where the constants M0 = M + B
2 , and A0 = A + B. Then, similar to Gao et al. (2021), for

0 < λ < min{ 1
4 ,

m0

2M0+η2/2}, Assumption 3.3 gives us

〈Z,∇ZFD(Z,θ)〉 ≥m0‖Z‖2 − b−
1

2
M2‖θ − θ∗‖2 ≥ λ(2M0 +

η2

2
)‖Z‖2 − b− 1

2
M2‖θ − θ∗‖2

≥2λ(FD(Z,θ) +
η2

4
‖Z‖2)− A1

β
− (

1

2
M2 + 2λM0)‖θ − θ∗‖2,

(S14)
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where the constant A1 = β(2λA0 + b) > 0.

For Z(k) and v(k), we have

E‖Z(k+1)‖2 =E‖Z(k)‖2 + ε2k+1E‖v(k)‖2 + 2εk+1E〈Z(k),v(k)〉, (S15)

E‖v(k+1)‖2 = E‖(1− εk+1η)v(k) − εk+1∇Z F̂D(Z(k),θ(k))‖2 + 2εk+1ηβ
−1E‖e(k+1)‖2

+
√

8εk+1ηβ−1E〈(1− εk+1η)v(k) − εk+1∇ZFD(Z(k),θ(k)), ek+1〉

=E‖(1− εk+1η)v(k) − εk+1∇Z F̂D(Z(k),θ(k))‖2 + 2εk+1ηβ
−1dz

=E‖(1− εk+1η)v(k) − εk+1∇ZFD(Z(k),θ(k))‖2 + 2εk+1ηβ
−1dz

+ ε2k+1E‖∇ZFD(Z(k),θ(k))−∇Z F̂D(Z(k),θ(k))‖2

≤E‖v(k)‖2 + (ε2k+1η
2 − 2εk+1η)E‖v(k)‖2 − 2εk+1(1− εk+1η)E〈v(k),∇ZFD(Z(k),θ(k))〉

+ ε2k+1E‖∇ZFD(Z(k),θ(k))‖2 + 2ςε2k+1(M2E‖Z(k)‖2 +M2E‖θ(k) − θ∗‖2 +B2) + 2εk+1ηβ
−1dz.
(S16)

Therefore, we have

E‖Z(k+1) + η−1v(k+1)‖2 = E‖Z(k) + η−1v(k) − εk+1η
−1∇Z F̂D(Z(k),θ(k)) +

√
2εk+1β−1η−1e(k)‖2

=E‖Z(k) + η−1v(k) − εk+1η
−1∇ZFD(Z(k),θ(k))‖2 + 2εk+1β

−1η−1dz

+ ε2k+1E‖∇ZFD(Z(k),θ(k))−∇Z F̂D(Z(k),θ(k))‖2

≤E‖Z(k) + η−1v(k)‖2 − 2εk+1η
−1E〈Z(k),∇ZFD(Z(k),θ(k))〉

− 2εk+1η
−2〈v(k),∇ZFD(Z(k),θ(k))〉+ ε2k+1η

−2‖∇ZFD(Z(k),θ(k))‖2

+ 2εk+1β
−1η−1dz + 2ςε2k+1(M2E‖Z(k)‖2 +M2E‖θ(k) − θ∗‖2 +B2).

(S17)

Similarly, for θ(k+1), we have

E‖θ(k+1) − θ∗‖2

=E‖θ(k) − θ∗‖2 − 2γk+1E〈θ(k) − θ∗, H(Z(k+1),θ(k))〉+ γ2
k+1E‖H(Z(k+1),θ(k))‖.

Recall that h(θ) = E(H(Z,θ)) , we have

E〈θ(k) − θ∗, H(Z(k+1),θ(k))〉 =E〈θ(k) − θ∗, H(Z(k+1),θ(k))− h(θ))〉+ E〈θ(k) − θ∗, h(θ))〉
=E〈θ(k) − θ∗, h(θ))〉 ≥ δE‖θ(k) − θ∗‖2.

Then we have

E‖θ(k+1) − θ∗‖2 ≤(1− 2γk+1δ)E‖θ(k) − θ∗‖2 + γ2
k+1E‖H(Z(k+1),θ(k))‖2. (S18)

For FD(Z(k),θ(k)), we have

FD(Z(k+1),θ(k+1))− FD(Z(k),θ(k))

=FD(Z(k+1),θ(k+1))− FD(Z(k+1),θ(k)) + FD(Z(k+1),θ(k))− FD(Z(k),θ(k))

=

∫ 1

0

〈∇θFD(Z(k+1),θ(k) + tγk+1H(Z(k+1),θ(k))), γk+1H(Z(k+1),θ(k))〉dt

+

∫ 1

0

〈∇ZFD(Z(k) + tεk+1v
(k),θ(k)), εk+1v

(k)〉dt.
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Then, by Assumption 3.2,

|FD(Z(k+1),θ(k+1))− FD(Z(k),θ(k))|
≤|〈∇θFD(Z(k+1),θ(k)), γk+1H(Z(k+1),θ(k))〉+ 〈∇ZFD(Z(k),θ(k)), εk+1v

(k)〉|

+

∫ 1

0

‖∇θFD(Z(k+1),θ(k) + tγk+1H(Z(k+1),θ(k)))−∇θFD(Z(k+1),θ(k))‖‖γk+1H(Z(k+1),θ(k))‖dt

+

∫ 1

0

‖∇ZFD(Z(k) + tεk+1v
(k),θ(k))−∇ZFD(Z(k),θ(k))‖‖εk+1v

(k)‖dt

≤|〈∇θFD(Z(k+1),θ(k)), γk+1H(Z(k+1),θ(k))〉+ 〈∇ZFD(Z(k),θ(k)), εk+1v
(k)〉|

+
1

2
Mγ2

k+1‖H(Z(k+1),θ(k)‖2 +
1

2
Mε2k+1‖v(k)‖2,

which implies

EFD(Z(k+1),θ(k+1))

≤EFD(Z(k),θ(k)) + (
1

2
Mγ2

k+1 +
1

2
γk+1)E‖H(Z(k+1),θ(k)‖2 +

1

2
γk+1E‖∇θFD(Z(k+1),θ(k)‖2

+
1

2
Mε2k+1E‖v(k)‖2 + εk+1E〈∇ZFD(Z(k),θ(k)),v(k)〉.

(S19)

Now, let’s consider

L(k) = E
[
FD(Z(k),θ(k)) +

3M2 + λη+G

2δ
‖θ(k) − θ∗‖2 +

1

4
η2(‖Z(k) + η−1v(k)‖2 + ‖η−1v(k)‖2 − λ‖Z(k)‖2)

]
,

where G is a constant and it will be defined later. Note that for our model, FD(Z,θ) ≥ 0. Then it is
easy to see that

L(k) ≥ max{3M2 + λη+G

2δ
E‖θ(k)−θ∗‖2, 1

8
(1−2λ)η2E‖Z(k)‖2, 1

4
(1−2λ)E‖v(k)‖2}. (S20)

We only need to provide uniform bound for L(k). To complete this goal, we first study the relationship
between L(k + 1) and L(k):

L(k + 1)− L(k) ≤ (
1

2
Mγ2

k+1 +
1

2
γk+1)E‖H(Z(k+1),θ(k)‖2 +

1

2
γk+1E‖∇θFD(Z(k+1),θ(k)‖2

+
1

2
Mε2k+1E‖v(k)‖2 + εk+1E〈∇ZFD(Z(k),θ(k)),v(k)〉

− (3M2 + λη+G)γk+1E‖θ(k) − θ∗‖2 +
(3M2 + λη+G)γ2

k+1

2δ
E‖H(Z(k+1),θ(k)‖2

− 1

2
εk+1ηE〈Z(k),∇ZFD(Z(k),θ(k))〉 − 1

2
εk+1E〈v(k),∇ZFD(Z(k),θ(k))〉+

1

4
ε2k+1E‖∇ZFD(Z(k),θ(k))‖2

+
1

2
εk+1β

−1ηdz +
1

2
ςη2ε2k+1(M2E‖Z(k)‖2 +M2E‖θ(k) − θ∗‖2 +B2)

+
1

4
(ε2k+1η

2 − 2εk+1η)E‖v(k)‖2 − 1

2
εk+1(1− εk+1η)E〈v(k),∇ZFD(Z(k),θ(k))〉

+
1

4
ε2k+1E‖∇ZFD(Z(k),θ(k))‖2 +

1

2
εk+1ηβ

−1dz +
1

2
ςε2k+1(M2E‖Z(k)‖2 +M2E‖θ(k) − θ∗‖2 +B2)

− 1

4
λη2ε2k+1E‖v(k)‖2 − 1

2
λη2εk+1E〈Z(k),v(k)〉

≤(
1

2
Mγ2

k+1 + γk+1 +
(3M2 + λη+G)γ2

k+1

2δ
)(3M2(2E‖Z(k)‖2 + 2ε2k+1E‖v(k)‖2) + 3M2E‖θ(k) − θ∗‖2 + 3B2)

+ (−1

2
ηεk+1 + (

1

2
M +

1

4
η2 − 1

4
λη2)ε2k+1)E‖v(k)‖2 +

1

2
ηε2k+1E〈v(k),∇ZFD(Z(k),θ(k))〉

(−(3M2 + λη+G)γk+1 + (
1

2
ςM2η2 +

1

2
ςM2)ε2k+1)E‖θ(k) − θ∗‖2 − 1

2
εk+1ηE〈Z(k),∇ZFD(Z(k),θ(k))〉

+
1

2
ε2k+1(3M2E‖Z(k)‖2 + 3M2E‖θ(k) − θ∗‖2 + 3B2) + (

1

2
ςM2η2 +

1

2
ςM2)ε2k+1E‖Z(k)‖2

− 1

2
λη2εk+1E〈Z(k),v(k)〉+ εk+1β

−1ηdz + (
1

2
ςB2η2 +

1

2
ςB2)ε2k+1
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≤(6M2(
1

2
Mγ2

k+1 + γk+1 +
(3M2 + λη+G)γ2

k+1

2δ
) + (

1

2
ςM2η2 +

1

2
ςM2 +

3

2
M2)ε2k+1)E‖Z(k)‖2

+ (−(
1

2
− 1

4
λ)ηεk+1 + (

1

2
M +

1

4
η2 − 1

4
λη2 + 6M2(

1

2
Mγ2

k+1 + γk+1 +
(3M2 + λη+G)γ2

k+1

2δ
))ε2k+1)E‖v(k)‖2

+ (−(λη+G)γk+1 +
3M2(Mδ + 3M2 + λη+G)γ2

k+1

2δ
+ (

3

2
+

1

2
ςη2 +

1

2
ς)M2ε2k+1

+
1

4
η(M2 + 4λM0)εk+1)E‖θ(k) − θ∗‖2 +

1

4
ηε2k+1(E‖v(k)‖2 + 3M2E‖Z(k)‖2 + 3M2E‖θ(k) − θ∗‖2 + 3B2)

− ληεk+1E‖FD(Z(k),θ(k))‖ − 1

4
λη3εk+1E‖Z(k) + η−1v(k)‖2

+ (dz −
1

2
A1)β−1ηεk+1 + (

1

2
ςB2η2 +

1

2
ςB2)ε2k+1 + 3B2(

1

2
Mγ2

k+1 + γk+1 +
(3M2 + λη+G)γ2

k+1

2δ
+

1

2
ε2k+1)

≤(6M2γk+1(2 +
Mδ + 3M2 + λη+G

δ
γk+1) + (ςM2(η2 + 1) +

3

2
M2(2 + η))ε2k+1)(E‖Z(k) + η−1v(k)‖2 + Eη−2‖v(k)‖2)

+ (−1

4
ηεk+1 + (

1

2
M +

1

4
η2 − 1

4
λη2 + η + 6M2γk+1(1 +

Mδ + 3M2 + λη+G

2δ
)γk+1)ε2k+1)E‖v(k)‖2

+ (−(λη+G)γk+1 +
3M2(Mδ + 3M2 + λη+G)γ2

k+1

2δ
+ (

3

2
+

1

2
ςη2 +

1

2
ς +

3

4
η)M2ε2k+1

+
1

4
η(M2 + 4λM0)εk+1)E‖θ(k) − θ∗‖2 − ληεk+1E‖FD(Z(k),θ(k))‖ − 1

4
λη3εk+1E‖Z(k) + η−1v(k)‖2

+ (dz −
1

2
A1)β−1ηεk+1 + (

1

2
ςη2 +

1

2
ς +

3

2
+

3

4
η)B2ε2k+1 + 3B2(

1

2
Mγ2

k+1 + γk+1 +
(3M2 + λη+G)γ2

k+1

2δ
),

where the first inequality is from inequalities (S19), (S18), (S17), (S16) and (S15); the second
inequality uses bounds in S13 and E‖Z(k+1)‖2 ≤ 2E‖Z(k)‖2 + 2ε2k+1E‖v(k)‖2; the third inequality
uses 2E〈v(k),∇ZFD(Z(k),θ(k))〉 ≤ E‖v(k)‖2 + E‖∇ZFD(Z(k),θ(k))‖2, the bound in (S13) and
the dissipative condition in (S14); and the last inequality uses E‖Z(k)‖2 ≤ 2E‖Z(k) + η−1v(k)‖2 +
2Eη−2‖v(k)‖2.

For notational simplicity, we can define

G0 =
δλη

3M2 + λη+G
,

G1 =
1

4
η,

G2 = η−2(ςM2(η2 + 1) +
3

2
M2(2 + η)) +

1

2
M +

1

4
η2 − 1

4
λη2 + η + 6M2(1 +

Mδ + 3M2 + λη+1

2δ
),

G3 = 6M2η−2(2 +
Mδ + 3M2 + λη+1

δ
) +

δλη

4(3M2 + λη)
,

G4 =
1

2
λη,

G5 =
3M2(Mδ + 3M2 + λη+1)

2δ
,

G6 =
3M2

2
+

1

2
ςM2η2 +

1

2
ςM2 +

3

4
M2η,

G7 =
1

4
η(M2 + 4λM0)

G8 = λη,

G9 =
1

4
λη3,

G10 =
δλη

3M2 + λη
,

G11 = ςM2(η2 + 1) +
3

2
M2(2 + η),

G12 = 6M2η−2(2 +
Mδ + 3M2 + λη+1

δ
) +

δλη3

4(3M2 + λη)
,

G13 = (dz −
1

2
A1)β−1η + (

1

2
ςη2 +

1

2
ς +

3

2
+ 3η)B2 + 3B2(

1

2
M + 1 +

(3M2 + λη+1)

2δ
).
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Consider decaying step size sequences εk = Cε
ce+kα

, γk =
Cγ

cg+kα for some constants α ∈ (0, 1),
ce ≥ 0 and cg ≥ 0, where

Cε = min

{
1,

G1

2G2
,
G10

2G11

}
, Cγ = min

{
1,
G1Cε
2G3

,
G1Cεcg
2G3ce

,
G8Cε
G9

,
G8Cεcg
G9ce

,
G10Cε
2G12

,
G10Cεcg
2G12ce

,

(
G4

2G5

)2
}
.

Let G = max{G7Cε
Cγ

,
G7Cεcg
Cγ

ce}, and let k0 be an integer such that ce + (k0 + 1)α >

max{ 2G6C
2
ε

G4Cγ
,

2G6C
2
ε cg

G4Cγce
} and cg + (k0 + 1)α > GC2

γ . Then for k ≥ k0, we have

L(k + 1)− L(k) ≤ −G0γk+1L(k) + (−G1εk+1 +G2ε
2
k+1 +G3γk+1)E‖v(k)‖2

+ (−(G4+G)γk+1 +G5γ
3
2

k+1 +G6ε
2
k+1+G7εk+1)E‖θ(k) − θ∗‖2 + (−G8εk+1 +G9γk+1)E‖FD(Z(k),θ(k))‖

+ (−G10εk+1 +G11ε
2
k+1 +G12γk+1)E‖Z(k) + η−1v(k)‖2 +G13εk+1,

and

−G1εk+1 +G2ε
2
k+1 +G3γk+1 ≤ 0,

− (G4+G)γk+1 +G5γ
3
2

k+1 +G6ε
2
k+1 +G7εk+1 ≤ 0,

−G8εk+1 +G9γk+1 ≤ 0,

−G10εk+1 +G11ε
2
k+1 +G12γk+1 ≤ 0.

LetCL = max{G13Cε
G0Cγ

,
G13Cεcg
G0Cγce

,L(0), L(1), . . . , L(k0)}, we can prove by induction thatL(k) ≤ CL
for all k.

By the definition of CL, L(k) ≤ CL for all k ≤ k0. Assume that L(i) ≤ CL for all i ≤ k for some
k ≥ k0. Then we have

L(k + 1) ≤ L(k)−G0γk+1L(k) +G13εk+1 ≤ CL −G0
G13Cε
G0Cγ

γk+1 +G13εk+1 ≤ CL.

By induction, we have L(k) ≤ CL for all k.

Then, by inequality (S20), we can give uniform L2 bounds for E‖θ(k)‖2, E‖v(k)‖2 and E‖Z(k)‖2:
there exist constants Cθ = 2δCL

3M2+λη+G , CZ = 8CL
(1−2λ)η2 , Cv = 4CL

1−2λ such that supi≥0 E
∥∥v(i)

∥∥2 ≤

Cv , supi≥0 E
∥∥∥Z(i)

∥∥∥2

≤ CZ , and supi≥0 E
∥∥∥θ(i)

∥∥∥2

≤ Cθ hold. The proof is completed. �

Remark S1 As pointed out in the proof of Theorem S1, the values of λ′0 and k0 depend only on δ and
the sequence {γk}. The second term of λ0 characterizes the effects of the constants (M,B,m, b, δ, ζ2)
defined in the assumptions, the friction coefficient η, the learning rate sequence {εk}, and the step
size sequence {γk} on the convergence of θ(k). In particular, η, {εk}, and {γk} affects on the
convergence of θ(k) via the upper bounds Cθ and CZ .

3.2 Proof of Theorem 3.2

The convergence of Z(k) is studied in terms of the 2-Wasserstein distance defined by

W2(µ, ν) := inf{(E‖Z −Z ′‖2)1/2 : µ = L(Z), ν = L(Z ′)},

where µ and ν are Borel probability measures on Rdz with finite second moments, and the infimum
is taken over all random couples (Z,Z ′) taking values from Rdz × Rdz with marginals Z ∼ µ and
Z ′ ∼ ν. To complete the proof, we make the following assumption for the initial distribution of
Z(0):

Assumption B7 The probability law µ0 of the initial value Z(0) has a bounded and strictly positive
density p0 with respect to the Lebesgue measure, and κ0 := log

∫
e‖Z‖

2

p0(Z)dZ <∞.
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Recall that for the purpose of sufficient dimension reduction, we need to consider the convergence of
Algorithm 1 under the case that the full dataset is used at each iteration. In this case, the discrete-time
Markov process (16) can be viewed as a discretization of the continuous-time underdamped Langevin
diffusion at a fixed value of θ, i.e.,

dv(t) = −ηv(t)dt−∇ZFD(Z(t),θ)dt+
√

2η/βdB(t),

dZ(t) = v(t)dt,
(S21)

where {B(t)}t≥0 is the standard Brownian motion in Rdz .

Let µD,k denote the probability law of (Z(k),v(k)) given the datasetD, let νD,t denote the proba-
bility law of (Z(t),v(t)) following the process above, and let πD denote the stationary distribution
of the process. Following Gao et al. (2021), we will first show that the SGHMC sample (Z(k),v(k))
tracks the continuous time underdamped Langevin diffusion in 2-Wasserstein distance. With the
convergence of the diffusion to πD, we will then be able to estimate the 2-Wasserstein distance
W(µD,k, πD).

Let Tk =
∑k−1
i=0 εi+1. Following the proof of Lemma 18 in Gao et al. (2021), we have Theorem S2,

which provides an upper bound forW2(µD,k, νD,Tk).

Theorem S2 Suppose Assumptions B1-B7 hold. Then for any k ∈ N,

W2(νD,Tk , µD,Tk) ≤
√
C5 log(Tk)

√C̃(k) +

(
C̃(k)

2

)1/4
+

√√√√C6Tk

k−1∑
j=1

ε2j+1,

where C̃(k) = C1T
2
k

k−1∑
j=1

ε2j+1 + C2

k−1∑
j=1

εj+1γj + C3ςTk + C4

k−1∑
j=1

ε2j+1, (S22)

and C1, C2, C3, C4, C5, C6 are some constants.

PROOF: Our proof follows the proof of Lemma 18 in Gao et al. (2021). Recall that Tk =
∑k
i=1 εk.

Let T̄ (s) = Tk for Tk ≤ s < Tk+1, k = 1, . . . ,∞. We first consider an auxiliary diffusion process
(Z̃(t), Ṽ (t)):

ṽ(t) =v(0)−
∫ t

0

ηṽ(T̄ (s))ds

−
∫ t

0

∇Z F̂D

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)
ds+

√
2ηβ−1

∫ t

0

dB(s), (S23)

Z̃(t) =Z(0) +

∫ t

0

ṽ(s)ds, (S24)

where θ̄(s) = θk for Tk ≤ s < Tk+1. By the definition of ṽ(t),
(
Z(0) +

∫ Tk
0
ṽ(T̄ (s))ds, ṽ(Tk)

)
has the same law as µD,k. Let P be the probability measure associated with the underdamped
Langevin diffusion (Z(t),v(t)) and P̃ be the probability measure associated with the (Z̃(t), ṽ(t))
process. Let Ft denote the natural filtration up to time t. Then by the Girsanov theorem, the
Radon-Nikodym derivative of P w.r.t. P̃ is given by

dP
dP̃

∣∣∣∣
Ft

= e
−
√

β
2η

∫ t
0

(
ηṽ(s)−ηṽ(T̄ (s))+∇ZFD(Z̃(s),θ∗)−∇Z F̂D

(
Z(0)+

∫ T̄ (s)
0 ṽ(T̄ (u))du,θ̄(s)

))
·dB(s)

· e−
β
4η

∫ t
0

∥∥∥ηṽ(s)−ηṽ(T̄ (s))+∇ZFD(Z̃(s),θ∗)−∇Z F̂D

(
Z(0)+

∫ T̄ (s)
0 ṽ(T̄ (u))du,θ̄(s)

)∥∥∥2
ds
.
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Let Pt and P̃t denote the probability measures P and P̃ conditional on the filtration Ft. Then

D(P̃t‖Pt) := −
∫
dP̃t log

dPt
dP̃t

=
β

4η

∫ t

0

E

∥∥∥∥∥ηṽ(s)− ηṽ(T̄ (s)) +∇ZFD(Z̃(s),θ∗)−∇Z F̂D

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)∥∥∥∥∥
2

ds

≤ β

2η

∫ t

0

E

∥∥∥∥∥∇ZFD
(
Z(0) +

∫ T̄ (s)

0

ṽ(u)du, ,θ∗
)
−∇Z F̂D

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)∥∥∥∥∥
2

ds

+
β

2η

∫ t

0

E
∥∥ηṽ(s)− ηṽ(T̄ (s))

∥∥2
ds

≤ 3β

2η

∫ t

0

E

∥∥∥∥∥∇ZFD
(
Z(0) +

∫ T̄ (s)

0

ṽ(u)du,θ∗
)
−∇ZFD

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du,θ∗
)∥∥∥∥∥

2

ds

+
3β

2η

∫ t

0

E

∥∥∥∥∥∇ZFD
(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, ,θ∗
)
−∇ZFD

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)∥∥∥∥∥
2

ds

+
3β

2η

∫ t

0

E

∥∥∥∥∥∇ZFD
(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)
−∇Z F̂D

(
Z(0) +

∫ T̄ (s)

0

ṽ(T̄ (u))du, θ̄(s)

)∥∥∥∥∥
2

ds

+
β

2η

∫ t

0

E
∥∥ηṽ(s)− ηṽ(T̄ (s))

∥∥2
ds,

which implies

D(P̃Tk‖PTk )

≤ 3β

2η

k−1∑
j=0

εj+1ED
∥∥∥∥∇ZFD (Z(0) +

∫ Tj

0

ṽ(u)du,θ∗
)
−∇ZFD

(
Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ∗
)∥∥∥∥2

+
3β

2η

k−1∑
j=0

εj+1E
∥∥∥∥∇ZFD (Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ∗
)
−∇ZFD

(
Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ(j)

)∥∥∥∥2

+
3β

2η

k−1∑
j=0

εj+1E
∥∥∥∥∇Z F̂D (Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ(j)

)
−∇ZFD

(
Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ(j)

)∥∥∥∥2

+
β

2η

k−1∑
j=0

∫ Tj+1

Tj

E
∥∥ηṽ(s)− ηṽ(T̄ (s))

∥∥2
ds

= (I) + (II) + (III) + (IV ).
(S25)

We first bound the term (I) in (S25):

(I) ≤ 3β

2η

k−1∑
j=0

M2εj+1E
∥∥∥∥∫ Tj

0

(
ṽ(u)− ṽ(T̄ (u))

)
du

∥∥∥∥2

≤ 3β

2η

k−1∑
j=0

M2εj+1Tj

∫ Tj

0

E
∥∥ṽ(u)− ṽ(T̄ (u))

∥∥2
du

=
3β

2η

k−1∑
j=0

M2εj+1Tj

j−1∑
i=0

∫ Ti+1

Ti

E
∥∥ṽ(u)− ṽ(T̄ (u))

∥∥2
du.

For Ti < u ≤ Ti+1, we have

ṽ(u)−ṽ(T̄ (u)) = −(u−Ti)ηv(i)−(u−Ti)∇ZFD
(
Z(i),θ(i)

)
+
√

2ηβ−1(B(u)−B(Ti)), (S26)
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in distribution. Therefore,

E
∥∥ṽ(u)− ṽ(T̄ (u))

∥∥2

= (u− Ti)2E
∥∥∥ηv(i) +∇ZFD

(
Z(i),θ(i)

)∥∥∥2

+ 2ηβ−1(u− Ti)

= (u− Ti)2E
∥∥∥ηv(i) +∇ZFD

(
Z(i),θ∗

)∥∥∥2

+ (u− Ti)2E
∥∥∥∇ZFD (Z(i),θ(i)

)
−∇ZFD

(
Z(i),θ∗

)∥∥∥2

+ 2ηβ−1(u− Ti)

≤ 2ε2i+1E
∥∥∥ηv(i)

∥∥∥2

+ 2ε2i+1E
∥∥∥∇ZFD (Z(i),θ∗

)∥∥∥2

+ ε2i+1(M2E
∥∥∥θ(i) − θ∗

∥∥∥2

) + 2ηβ−1εi+1

≤ 2η2ε2i+1E
∥∥∥v(i)

∥∥∥2

+ 6ε2i+1

(
M2E

∥∥∥Z(i)
∥∥∥2

+B2

)
+ λ0M

2ε2i+1γi + 2ηβ−1εi+1. (S27)

This implies

(I) ≤ 3β

2η

k−1∑
j=0

M2εj+1Tj

j−1∑
i=0

∫ Ti+1

Ti

E
∥∥ṽ(u)− ṽ(T̄ (u))

∥∥2
du

≤ 3M2β

2η

k−1∑
j=0

εj+1Tj

j−1∑
i=0

(
2η2ε3i+1 sup

i≥0
E
∥∥∥v(i)

∥∥∥2

+ 6ε3i+1

(
M2 sup

i≥0
E
∥∥∥Z(i)

∥∥∥2

+B2

)
+ λ0M

2ε3i+1γi + 2ηβ−1ε2i+1

)
.

We can bound the term (II) in (S25):

(II) ≤ 3β

2η

k−1∑
j=0

εj+1M
2E
∥∥∥θ(j) − θ∗

∥∥∥2

≤ 3λ0M
2β

2η

k−1∑
j=0

εj+1γj .

We can bound the term (III) in (S25):

(III) ≤ 3β

2η

k−1∑
j=0

εj+12ς

M2

∥∥∥∥∥Z(0) +

∫ Tj

0

ṽ(T̄ (u))du,θ(j)

∥∥∥∥∥
2

+M2E
∥∥∥θ(j) − θ∗

∥∥∥2

+B2


=

3β

2η

k−1∑
j=0

εj+12ς

(
M2E

∥∥∥Z(j)
∥∥∥2

+M2E
∥∥∥θ(j) − θ∗

∥∥∥2

+B2

)

≤ 3β

2η

k−1∑
j=0

εj+12ς

(
M2 sup

i≥0
E
∥∥∥Z(i)

∥∥∥2

+M2 sup
i≥0

E
∥∥∥θ(j) − θ∗

∥∥∥2

+B2

)
.

Finally, let us bound the term (IV) in (S25) as follows:

(IV ) ≤ βη

2

k−1∑
j=0

(
2η2ε3j+1 sup

≥0
E
∥∥∥v(i)

∥∥∥2

+ 6ε3j+1

(
M2 sup

i≥0
E
∥∥∥Z(i)

∥∥∥2

+B2

)
+ λ0M

2ε3j+1γi + 2ηβ−1ε2j+1

)
,

where the estimate in (S27) is used.

In the proof of Theorem 3.1, we have shown that E
∥∥v(j)

∥∥2
, E
∥∥∥Z(j)

∥∥∥2

and E
∥∥∥θ(j) − θ∗

∥∥∥2

are
bounded by some constants Cv, CZ and Cθ. Then for decaying step size sequence {εk+1} and
{γk+1} with ε0 < 1 and γ0 < 1, there exists some constant C1, C2, C3 such that

D(P̃Tk‖PTk) ≤ C1T
2
k

k−1∑
j=1

ε2j+1 + C2

k−1∑
j=1

εj+1γj + C3ςTk + C4

k−1∑
j=1

ε2j+1 := C̃(k),
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where

C1 =
3M2β

2η
(2η2Cv + 6M2CZ + 6B2 + 2ηβ−1),

C2 =
3λ0M

2β

2η
,

C3 =
3β

η
(M2CZ +M2Cθ +B2),

C4 =
βη

2
(2η2Cv + 6M2CZ + 6B2 + λ0M

2 + 2ηβ−1).

(S28)

For any two Borel probability measures µ, ν on R2d with finite second moments, we can apply the
result of Bolley and Villani (2005) to connectW2(µ, ν) and D(µ‖ν):

W2(µ, ν) ≤ Cν

[√
D(µ‖ν) +

(
D(µ‖ν)

2

)1/4
]
,

where

Cν = 2 inf
λ>0

(
1

λ

(
3

2
+ log

∫
R2d

eλ‖w‖
2

ν(dw)

))1/2

.

Using the results in Lemma 17 and Lemma 18 of Gao et al. (2021), we have C2
νD,Tk

≤ C5 log(Tk)

for some constant

C5 =
2
√

2
√
α0

(
5

2
+ log

(∫
R2dz

e
1
4αV(Z,v)µ0(dZ, dv) +

1

4
e
α(dz+A1)

3λ αη(dz +A1)

))1/2

,

where α = λ(1−2λ)
12 , α0 = α

64
(1−2λ)βη2 + 32

β(1−2λ)

, and the Lyapunov function

V(Z,v) := βFD(Z,θ∗) +
β

4
η2(‖Z + η−1v‖2 + ‖η−1v‖2 − λ‖Z‖2). (S29)

Then we have

W2(P̃Tk , νD,Tk) ≤
√
C5 log(Tk)

√C̃(k) +

(
C̃(k)

2

)1/4
 .

Finally, let us provide a bound forW2(µD,k, P̃Tk). Note that by the definition of Ṽ , we have that(
Z(0) +

∫ Tk
0
ṽ(T̄ (s))ds, ṽ(Tk)

)
has the same law as µz,k, and we can compute that

E

∥∥∥∥∥Z̃(Tk)−Z(0)−
∫ Tk

0

ṽ(T̄ (s))ds

∥∥∥∥∥
2

= E

∥∥∥∥∥
∫ Tk

0

ṽ(s)− ṽ(T̄ (s))ds

∥∥∥∥∥
2

≤Tk
∫ Tk

0

E
∥∥ṽ(s)− ṽ(T̄ (s))

∥∥2
ds

≤Tk
j−1∑
k=0

(
2η2ε3i+1 sup

i≥0
E
∥∥∥v(i)

∥∥∥2

+ 6ε3i+1

(
M2 sup

i≥0
E
∥∥∥Z(i)

∥∥∥2

+B2

)
+ λ0M

2ε3i+1γi + 2ηβ−1ε2i+1

)

≤C6Tk

k−1∑
j=1

ε2j+1,

where constant C6 = 2η2Cv + 6M2CZ + 6B2 + λ0M
2 + 2ηβ−1. Therefore

W2(P̃Tk , µD,Tk) ≤

√√√√C6Tk

k−1∑
j=1

ε2j+1.
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Then we have

W2(νD,Tk , µD,Tk) ≤ W2(P̃Tk , νD,Tk) +W2(P̃Tk , µD,Tk)

≤
√
C5 log(Tk)

√C̃(k) +

(
C̃(k)

2

)1/4
+

√√√√C6Tk

k−1∑
j=1

ε2j+1.

�

Remark S2 The constant ς in (S22) comes from Assumption B4, which controls the difference
between ∇Z F̂D(Z,θ) and ∇ZFD(Z,θ). When the full data is used at each iteration of Algorithm
1, ∇Z F̂D(Z,θ) = ∇ZFD(Z,θ) and thus the term C3ςTk disappears. In this case, for any fixed
time Tk = t and for any decaying sequences {εk} and {γk}, we have

∑k−1
j=0 ε

2
j+1 ≤ Tkε1 and∑k−1

j=0 εj+1γj ≤ Tkγ1. Therefore, we can make W2(νD,Tk , µD,Tk) arbitrarily small by setting
smaller values of ε1 and γ1.

The convergence of νD,Tk to its stationary distribution can be quantified by Theorem 19 of Gao et al.
(2021):

Lemma S2 (Gao et al. (2021)) Suppose Assumptions B1-B7 hold. Then there exist constants C and
µ∗ such thatW2(νD,Tk , πD) ≤ C

√
Hρ(µ0, πD)e−µ∗Tk , whereHρ is a semi-metric for probability

distributions, andHρ(µ0, πD) measures the initialization error.

Please refer to Theorem 19 in Gao et al. (2021) for more details about the constant C andHρ(µ0, πD).
Together, we have

W2(µD,Tk , πD) ≤ W2(µD,Tk , νD,Tk ) +W2(νD,Tk , πD)

≤ C
√
Hρ(µ0, πD)e−µ∗Tk +

√
C5 log(Tk)

(√
C̃(k) +

(
C̃(k)

2

)1/4
)

+

√√√√C6Tk

k−1∑
j=1

ε2j+1,
(S30)

which can be made arbitrarily small by choosing a large enough value of Tk and small enough values
of ε1 and γ1, provided that {εk} and {γk} are set as in Theorem S1. This completes the proof of
Theorem 3.2.

4 Parameter Settings Used in Numerical Experiments

For all these datasets, we use n to denote the sample size of the training set.

4.1 Binary Classification Examples

thyroid The StoNet consisted of one hidden layers with q hidden units, where ReLU was used
as the activation function, σ2

n,1 was set as 10−7, and σ2
n,2 was set as 10−9. For HMC imputation,

tHMC = 25, η = 100. In the θ-training stage, we set the mini-batch size as 64 and trained the model
for 500 epochs, γk,1 = (3e− 5)/n and εk = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate εk was set as 1

1000+k0.6 and the step

size γk,1 was set as 1/n
1/(3e−5)+k0.6 .

breastcancer The StoNet consisted of one hidden layers with q hidden units, where ReLU was
used as the activation function, σ2

n,1 was set as 10−5, and σ2
n,2 was set as 10−6. For HMC imputation,

tHMC = 25, η = 100. In the θ-training stage, we set the mini-batch size as 32 and trained the model
for 100 epochs, γk,1 = (1e− 4)/n and εk = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate εk was set as 1

1000+k0.6 and the step

size γk,1 was set as 1/n
10000+k0.6 .

flaresolar The StoNet consisted of one hidden layers with q hidden units, where ReLU was used
as the activation function, σ2

n,1 was set as 10−5, and σ2
n,2 was set as 10−6. For HMC imputation,
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tHMC = 25, η = 100. In the θ-training stage, we set the mini-batch size as 32 and trained the model
for 100 epochs, γk,1 = (7e− 5)/n and εk = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate εk was set as 1

1000+k0.6 and the step

size γk,1 was set as 1/n
1/(7e−5)+k0.6 .

heart, german The StoNet consisted of one hidden layers with q hidden units, where Tanh was
used as the activation function, σ2

n,1 was set as 10−7, and σ2
n,2 was set as 10−8. For HMC imputation,

tHMC = 25, η = 100. In the θ-training stage, we set the mini-batch size as 64 and trained the model
for 100 epochs, γk,1 = (5e− 5)/n and εk = 0.001 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate εk was set as 1

1000+k0.6 and the step

size γk,1 was set as 1/n
20000+k0.6 .

waveform The StoNet consisted of one hidden layers with q hidden units, where ReLU was used
as the activation function, σ2

n,1 was set as 10−3, and σ2
n,2 was set as 10−6. For HMC imputation,

tHMC = 25, η = 10. In the θ-training stage, we set the mini-batch size as 64 and trained the model
for 30 epochs, γk,1 = (7e− 4)/n and εk = 0.01 for all k. In the SDR stage, we trained the model
with the whole dataset for 30 epochs. Besides, the learning rate εk was set as 1

1000+k0.6 and the step

size γk,1 was set as 1/n
1/(7e−4)+k0.6 .

We used the module LogisticRegression of sklearn in Python to fit the logistic model.

4.2 Multi-label Classification Example

Hyperparameter settings for the StoNet The StoNet consisted of one hidden layers with q hidden
units, where Tanh was used as the activation function, σ2

n,1 was set as 10−3, and σ2
n,2 was set as

10−6. For HMC imputation, tHMC = 25, η = 10. In the θ-training stage, we set the mini-batch size
as 128 and trained the model for 20 epochs, γk,1 = (7e− 4)/n and εk = 0.01 for all k. In the SDR
stage, we trained the model with the whole dataset for 30 epochs. Besides, the learning rate εk was
set as 1

100+k0.6 and the step size γk,1 was set as 1/n
1/(7e−4)+k0.6 .

Hyperparameter settings for the autoencoder We trained autoencoders with 3 hidden layers
and with 400, q, 400 hidden units, respectively. We set the mini-batch size as 128 and trained the
autoencoder for 20 epochs. Tanh was used as the activation function and the learning rate was set to
0.001.

Hyperparameter settings for the neural network We trained a feed-forward neural network on
the dimension reduction data for the multi-label classification task and another neural network on
the original dataset as a comparison baseline. The two neural networks have the same structure, one
hidden layer with 50 hidden units, and have the same hyperparameter settings. We set the mini-batch
size as 128 and trained the neural network for 300 epochs. Tanh was used as the activation function
and the learning rate was set to 0.01.

4.3 Regression Example

Hyperparameter settings for the StoNet The StoNet consisted of 2 hidden layers with 200 and q
hidden units, respectively. Tanh was used as the activation function, σ2

n,1 was set as 10−5, σ2
n,2 was

set as 10−7, and σ2
n,3 was set as 10−9. For HMC imputation, tHMC = 25, η = 10. In the θ-training

stage, we set the mini-batch size as 800 and trained the model for 500 epochs, set γk,1 = (7e− 5)/n,
γk,2 = (7e− 6)/n and εk = 0.01 for all k. In the SDR stage, we trained the model with the whole
dataset for 30 epochs. Besides, the learning rate εk was set as 1

100+k0.6 , the step size γk,1 was set as
1/n

1/(7e−5)+k0.6 , and γk,2 was set as 1/n
1/(7e−6)+k0.6 .

Hyperparameter settings for the autoencoder We trained autoencoders with 3 hidden layers and
with 200, q, 200 hidden units, respectively. We set the mini-batch size as 800 and trained the neural
network for 20 epochs. Tanh was used as the activation function and the learning rate was set to 0.01.
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Hyperparameter settings for the neural network We trained a feed-forward neural network on
the dimension reduction data for making predictions and another neural network on the original
dataset as a comparison baseline. The two neural networks have the same structure, one hidden layer
with 100 hidden units, and have the same hyperparameter settings. We set the mini-batch size as
32 and trained the neural network for 300 epochs. Tanh was used as the activation function and the
learning rate was set to 0.03.
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