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Abstract

This is the first attempt at considering human influence in the reinforcement learn-
ing control of a robotic lower limb prosthesis toward symmetrical walking in real
world situations. We propose a collaborative multi-agent reinforcement learning
(cMARL) solution framework for this highly complex and challenging human-
prosthesis collaboration (HPC) problem. The design of an automatic controller of
the robot within the HPC context is based on accessible physical features or mea-
surements that are known to affect walking performance. Comparisons are made
with the current state-of-the-art robot control designs, which are single-agent based,
as well as existing MARL solution approaches tailored to the problem, including
multi-agent deep deterministic policy gradient (MADDPG) and counterfactual
multi-agent policy gradient (COMA). Results show that, when compared to these
approaches, treating the human and robot as coupled agents and using an estimated
human adaption in robot control design can achieve lower stage cost, peak error,
and improved symmetry to ensure better human walking performance. Addition-
ally, our approach accelerates learning of walking tasks and increases learning
success rate. The proposed framework can potentially be further developed to
examine how human and robotic lower limb prosthesis interact, an area that little
is known about. Advancing cMARL toward real world applications such as HPC
for normative walking sets a good example of how AI can positively impact on
people’s lives.

1 Introduction

The concept, design, and applications of human-robot cooperation have advanced rapidly due to new
demands in AI-enabled applications fueled by powerful deep learning and reinforcement learning
algorithms [1, 2, 3]. Human-robot collaboration can take on a variety of forms depending on tasks to
be solved, how information is shared [1, 2], and the nature of interaction [3]. Examples of complex
collaborative tasks may include picking up or carrying objects together [4, 5], cooperating on a
production line, in which cases a robot can learn to imitate human demonstrations [6, 7, 8]. Other
application scenarios may include intermittent robotic correction of human driving, or vice versa [9].
In essence, most of these recent studies involve interactions between a human and a robot in a way
such that there is either space between the agents, or there is time for predictive counter measures
to interfere. By contrast, in the HPC problem the human and robot agents are physically coupled
together, and there is often little time for the human agent to react to prevent from falling or injury.
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As a result, innovative solution frameworks are needed to first address the design, analysis, and testing
of complex control systems to restore locomotion for amputees. Based on these platforms, human-
robot interactions can be studied, and fundamental issues such as user preference and prosthesis
embodiment can be examined. The knowledge in turn, will further help design seamless automatic
robot control systems. As such, challenges arising from controlling a wearable robotic lower limb
prosthesis to meet the human user’s needs are unique, and in some aspects, these challenges are
greater than what have been studied [10, 11, 12, 13].

State-of-the-art automatic control of robotic prosthesis has been reported recently with successful
human subject testing [14, 15, 16, 17]. These approaches are single agent-based reinforcement
learning controls, specific tasks such as level ground and ramp walking were accomplished via
designer prescribed or specified robotic joint movement profiles [14, 15]. A most recent progress in
single-agent based reinforcement learning solution demonstrated that human amputee subject can
perform level ground and ramp walking with the robot controller aimed at mimicking the intact joint
movement [17]. Note, however, that all previous results have not directly considered human influence
on the human-robot system performance in tuning the robotic prosthesis controller, a phenomena that
has direct impact not only on restoring walking but also on human health [18].

Achieving normative walking is fundamentally a real time control problem that involves continuous
states and continuous controls of the human-robot system. Continuous state and control problem has
received great attention. Approaches based on (deep) reinforcement learning have shown promise
to substantively address real world applications. Several algorithms, such as Deep Deterministic
Policy Gradient (DDPG) [19], Proximal Policy Optimization (PPO) [20], Soft Actor-Critic (SAC)
[21], and Twin Delayed DDPG (TD3) [22], have demonstrated success with solving complex control
problems. For example, in simulated human locomotion control [23, 24], deep reinforcement learning
solved over 20 independent control signals to facilitate a humanoid robot to achieve different walking
tasks. Additional single agent-based continuous control has also demonstrated promise in engineering
applications such as stabilization, tracking, and reconfiguring control of Apache helicopters [25, 26,
27], stabilization and control of large power grids [28, 29, 30], robotic manipulation and locomotion
via MuJoCo and OpenAI Gym [31, 32], and wearable robots with human in the loop [14, 15, 16, 17].

While these works are encouraging toward solving realistic single-agent continuous control problems,
it is not obvious how they can directly address the multi-agent human-robot normative walking
problem as needed when we consider human influence in the robot control design. From a physical
human-robot interaction (pHRI) perspective, robotic upper-limb control has undergone intense
development, especially in the realms of patient rehabilitation [33] and industrial applications [34].
However, this type of pHRI problems differ fundamentally from the human-robot walking problem,
as their control target usually consists of well-defined end points generated by a decoupled trajectory
generation exosystem [35]. On the other hand, human-robot walking tasks are difficult to associate
with an end point task goal due to tight dynamic coupling between the human and the robotic lower
limb, and many factors can affect the human’s performance goal. As such, even though multi-agent
reinforcement learning (MARL) control is a natural candidate to address our HPC challenge, a
feasible solution is yet to be developed.

2 Related Work and Challenges

Single agent RL for automatic control of a robotic limb. Simulation. Most state-of-the-art
RL control design approaches to enable continuous human-robot walking are single-agent based.
Important milestones have been achieved by two major classes of RL algorithms: actor-critic
algorithms including direct heuristic dynamic programming (dHDP) [36, 37, 38, 39], and variants
of policy iteration algorithms such as flexible policy iteration (FPI) [40]. Both types of single-
agent based control algorithms were developed and demonstrated in simulated environments first.
Human Tests. Then these algorithms were tested on human subjects walking with a robotic knee
prosthesis [15, 16, 41]. Note that all of the above methodologies and tests used designer-prescribed
robot joint movement profiles generated a priori for the specific subjects and walking tasks. In
real-world use scenarios, joint movement profiles evolve dynamically in real-time to accommodate
internal human walking objectives [14, 42]. A more recent single-agent RL control work [17] replaced
designer-prescribed joint movement profiles with the intact joint motion. Note also that, none of
the above results have directly taken into account human influence on human-robot walking in the
control design, a novel contribution of this work. Multi-agent reinforcement learning (MARL).
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A general cMARL problem usually cannot be transformed to an equivalent single-agent problem,
as additional agent(s) and their control policies introduce uncertainties and/or non-stationarity to
the environment [43]. Partial observability is common in cMARL problems, which are usually
addressed by the decentralized POMDP framework. Centralized training decentralized execution
(CTDE) is a popular paradigm to address multi-agent coordination problems. A central feature
of most CTDE approaches is factorization of the joint state-action value function into individual
utility functions. MADDPG [44] is a popular CTDE-based method to solve both cooperative and
competitive MARL problems. COMA [45] is another popular MARL algorithm which utilizes a
single centralized critic by using global state information and actions of all agents. We therefore use
them in benchmark evaluations. Shared Autonomy (SA). The human-prosthesis problem under our
consideration falls into the area of physical human-robot interaction (pHRI) as the human and the
robotic prosthesis are physically coupled at all times. It is not, however, the extensively studied pHRI
problem archetype (e.g., cooperative object manipulation, human operating in a remote environment),
wherein interactions are usually mediated by a third object. For similar reasons, our pHRI problem is
different in several important aspects from the approaches to the existing shared autonomy, such as
cross-training [46], bounded memory adaptation [47], predict and blend [48], and model-free RL [49].
The wearable exoskeleton control problem seems relevant to our HPC problem. Yet, there are still
fundamental differences. Recent exoskeleton approach also takes into account human-exoskeleton
interacting effects [50, 51]. However, these exoskeletons mainly focus on end point performance
of a foot or lower limb joints where user intent is quantified by estimating human joint torque or
interactive torque. Thus, human-exoskeleton system performance goal is for the robot to produce
a well-defined joint or endpoint trajectory [52, 53, 54]. For HPC problem we consider, there is no
clear end point goal as there is in most existing current pHRI problems, including robotic upper limb
that has been intensively addressed in literature. Therefore, how to define a performance goal for
our HPC problem is a challenge. We address this study from existing limited yet proved knowledge
[14, 42, 55]. Modeling Challenges. The HPC walking problem involves two strongly coupled
agents, the interacting dynamics of which are difficult or nearly impossible to describe by ordinary
difference or differential equations in large part because there is no clear performance goal in HPC as
in studied cases of shared autonomy. HPC may be affected by several factors, such as lower limb
mechanics, inter-limb neuromechemical coupling, and physical structure of the human body including
the lower limb [56, 57]. Physical and physiological differences in individual human subjects further
complicates modeling and control design. Even though our knowledge of human motor control and
motor learning in cases such as post-stroke or general loss of normative locomotion capabilities
have expanded greatly [58], little is known about how an active robotic prosthesis, not a traditional
stick-type passive prosthesis, affects human and vice versa in walking tasks. This is because that the
human-robotic prosthesis interacts continuously, the intricate human neurocontrol circuits including
sensing, perception and feedback control, which are necessary to facilitate normative walking, is
disrupted after amputation. Human Utility Challenges. Because of the reasons above, also because
of no clear end point target as performance goals as in most studied shared autonomy cases, seamless
collaboration between a robotic lower limb prosthesis serially attached to its human user poses new
issues that requires to be answered [10, 11]. In this study, we based on latest understanding on the
HPC problem, to provide an innovative solution approach to account for human influence in HPC.

Contributions. Human-robot collaborative tasks will continue to play an increasingly vital role
in modern life, and existing single- and multi-agent control frameworks have only covered a small
subset of the problems. The contributions of this work are as follows. 1) We introduce an innovative
approach to automatically control a robotic lower limb prosthesis by treating the human user as a
collaborating agent. We thus address a new challenge in the domain of shared autonomy problems.
2) To solve the control problem, we introduce a new cMARL approach to solve our HPC problem, a
problem that cannot be readily solved to satisfaction by existing MARL approaches such as COMA
or MADDPG. 3) This is the very first attempt in the field of wearable lower limb robots that human
influence is explicitly considered in the robot control design.

3 Fundamental control problem statement

In powered lower limb prosthesis, the finite state impedance control (FS-IC) framework most
frequently serves to provide intrinsic control of a robotic joint, i.e., it is the built-in controller from
robotic prosthesis manufacturers. While position control is common in industrial robots, when a
human is affixed to a robotic joint, robot trajectory tracking using position control may preclude any
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Figure 1: Left: human gait and prosthesis FS-IC characteristics. Right: cMARL solution approach
to the HPC problem.

dynamic interaction of the robot with its human user and the environment [59]. This may cause an
amputee to react to the awkwardness of the prosthesis rather than to interact constructively with it
[60]. As FS-IC impedance control framework is considered to provide compliant control for human
use of the robot, it is expected to generate stable and predictable human-robot walking behavior, and
thus, it is adopted in this study which aims for its controller designs at real world applications.

The FS-IC treats a gait cycle, or a step, as four consecutive gait phases (Figure 1, Left): stance
flexion (STF) as Phase 1, stance extension (STE) as Phase 2, swing flexion (SWF) as Phase 3,
and swing extension (SWE) as Phase 4. In what follows, we design four individual controllers for
each of the four phases. Since the four controllers are conceptualized similarly and designed using
the same approach, for the sake of clarity we carry out subsequent discussion without explicitly
referring to the specific phase numbers (but we emphasize that each of the four phases requires its
own independently-trained controller). Additional details on FS-IC such as phase detection and
transition are provided in Appendix A.3,

At the k-th gait cycle, a robot controller (solved by cMARL in this paper) is to determine three
impedance parameters, Ik = [Kk, Bk, (θe)k]

T ∈ R3 under the FS-IC framework, representing
stiffness Kk, damping coefficient Bk, and equilibrium position (θe)k, respectively. The prosthetic
joint motor torque Tk ∈ R is then generated based on joint kinematics (knee joint angle θ and angular
velocity ω) according to the following impedance control law,

Tk = Kk(θ − (θek)) +Bkω. (1)

The control problem formulation requires automatically determining 12 control inputs or impedance
control parameters (3 for each of the 4 gait phases) for individual users aiming at walk in real world
situations. The initial set of feasible baseline impedance control parameters I0 can be obtained from
manufacturers or rehabilitation clinics. Impedance updates take place according to

Ik+1 = Ik + uk, (2)

where uk ∈ R3 is to be determined from our proposed cMARL approach.

4 Method

The human user and the robotic limb are considered collaborating agents. Our cMARL solution
approach toward human-robot symmetrical walking problem is formulated based on physical features
and measurements that have been shown affecting human-robot walking performance, and they are
respectively available to the human and the robot, but not necessarily to each other.

State and control variables. Refer to Figure 1. At the k-th gait cycle, let τ ik and λi
k, respectively,

represent the stance time (time of foot on the ground) and step length (length between two consecutive
steps when toe touching the ground) of the human intact leg. Similarly, τpk and λp

k, respectively, for
the prosthetic leg. Let ∆τk, ∆λk denote respectively the difference of stance time and step length,

∆τk = τpk − τ ik, ∆λk = λp
k − λi

k. (3)
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We thus define human state variable zk ∈ R2 as zk = [∆τk,∆λk]
T .

Robot states include kinematic features determined from the knee movement profiles as well as step
length and stance time (or zk). For robot kinematic state variables, we extract gait kinematic features
from knee motion profiles of both limbs (Figure 1). Let P i

k and Di
k represent the knee angle and

time duration of the intact limb, and similarly, P p
k and Dp

k for the prosthetic limb. Let ∆Pk and ∆Dk

denote the error of peak knee angles and the error of duration time between the intact and the robotic
knees, respectively,

∆Pk = P p
k − P i

k, ∆Dk = Dp
k −Di

k. (4)

We then define robot state xk ∈ R4 to include the following four variables, the first two of which are
shared between the human and the robot, xk = [∆τk,∆λk,∆Pk,∆Dk]

T .

As such, human states are available to the robot, but a subset of the robot state (the kinematic features)
is not available to the human. This reasonably reflects practical situations in real life applications.

The robot control policy is a state feedback law from robot state to robot impedance control parameters,
namely, control uk consists of increments to the impedance control parameters (Eq. 2),

uk = [∆Kk,∆Bk, (∆θe)k]
T
. (5)

Determining human control policy which originates from human neurocontrol circuit is a daunting
task, especially now that sensing, perception and feedback control circuits are interrupted after a
lower limb amputation. While agents’ policy solutions are solved from Bellman optimality-like
equations, a human cannot interpret and implement an MARL solution via their complicated neural
circuits. But this is not our intention. We instead use the human control variable as an estimated input
to the robot controller design, i.e., the robot is informed by an estimated human influence when they
share the same goal of symmetrical walking.

As the very first step to demonstrate this idea, we consider the human user of the wearable robot
intentionally or voluntarily walk at a reference step length, which may also be from an instructional
feedback. For real life scenarios, such behavioral cues can change over time, task, or environment.
But it is important to validate such formulation of considering human influence in the robot control
design. Toward this end, we consider a practical reference cue denoted as a desired step length
λo. We let vk represent an endogenous control signal of the human which is a function of human
physical and mental states that involve activities ranging from neural level to muscular and joint level.
Accordingly, we represent the endogenous human influence solved from the MARL design as a step
length λd

k. We therefore define human control as,

vk = λd
k − λo. (6)

Including this estimated human control into the problem of robot control design, we take into account
human influence on human-robot walking performance while they share the same symmetrical
walking goal.

Symmetrical walking as shared task goal.

We consider the stage cost to be shared between the human and the robot.

U(xk, vk, uk) = xT
kRxxk +Rvv

2
k + uT

kRuuk + µh2
k, (7)

where Rx ∈ R4×4 and Ru ∈ R3×3 are positive semi-definite weighting matrices, Rv and µ are
positive weighting constants, and hk = vk − v̄k. In the above, the difference between actual human
step length λi

k and reference λo, denoted as v̄k = λi
k − λo, is considered practical and available.

In this formulation, the shared control objective is represented in two ways. First, the robot kinematic
state variables in xk are to match the intact knee, i.e., the robotic joint angle profile is to match
that of the intact joint. Additionally, a walking symmetry measure is directly considered by the
differences in step length and stance time between human and robot, commonly used gait symmetry
measures [61, 62, 63]. The human is assumed to perceive the gait symmetry but do not have access
to or understand robot kinematic data (peak knee deflection error ∆Pk and peak knee time error
∆Dk). The works [14, 64] show from test subject data that human control and adaptation has a
direct influence on robot kinematics through dynamic interactions [59]. To account for this dynamic
learning phenomenon, this framework penalizes the estimation error hk = vk − v̄k = λd

k − λi
k
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between human perceived difference in step length. An unexpected or undesired human action will
increase the cost represented by hk, while a diminishing hk indicates that human input that originated
from the neuromuscular system matches actual human performance. Minimal controller energy
expenditures are also included in the cost structure.

The human-robot control objective to be solve by MARL as a function of the state variables
and the the controls is formulated as an infinite horizon, discounted cost Q(xk, vk, uk) =∑∞

j=k γ
j−kU(xj , vj , uj) where γ (0 < γ < 1) is the discount factor for the infinite-horizon problem.

Solutions to control actions. Let vk = πv(zk) and uk = πu(xk), where πv and πu are the human
and the robot control policies solved from cMARL, respectively. Solving optimal control policies π∗

v
and π∗

u requires solving the optimal Q function that satisfies Bellman optimality equation:

Q∗(xk, vk, uk) = U(xk, vk, uk) + γQ∗(xk+1, π
∗
v(zk+1), π

∗
u(xk+1)). (8)

When using a neural network-based actor-critic solution framework, we approximately solve the
optimal control problem using the following iterative procedure (i is the iteration index),

Qi+1(xk, vk, uk) = U(xk, vk, uk) + γQi(xk+1, πvi(zk+1), πui(xk+1)). (9)

where πvi(zk) = argminvk Qi(xk, vk, uk), and πui
(xk) = argminuk

Qi(xk, vk, uk), and
Qi(xk, vk, uk) are iterative actor policies and iterative Q value function.

During training, the actor and critic back-propagate their respective squared error to update their
weights. The prediction error of actor eav,k, eau,k ∈ R is,

eav,k = eau,k =
1

2
(Qi (xk, vk, uk))

2. (10)

The prediction error for the critic ec,k is formulated based on the Bellman error,

ϵc,k = U + γQi(xk+1, πvi(zk+1), πui
(xk+1))−Qi+1 (xk, vk, uk) , (11)

and the critic neural network is trained to minimize ec,k = 1
2ϵ

2
c,k.

The optimal state-action cost-to-go function Q∗(xk, vk, uk) is approximated by a critic neural network
which learns the Q function by minimizing the Bellman error on the shared cost signal, not on a
local cost signal for either the human or the robot as the human and the robot are physically coupled.
We use our established direct heuristic dynamic programming (dHDP) algorithm [36] to solve this
approximation dynamic programming problem. The critic neural network is a three-layer MLP
with 6 hidden units and uses linear activation function in the output layer. Therefore, we have the
approximated cost to go value represented by:

Q̂i(xk, uk) = Wc2,iφ
(
Wc1,i

[
xT
k , u

T
k

]T)
, (12)

where Wc1,i ∈ R6×8 denotes the weight matrix between the input layer and the hidden layer, and
Wc2,i ∈ R1×6 the weight matrix between the hidden layer and the output layer during the ith learning
update. The weight updates of the hidden layer matrix Wc2 are according to

∆Wc2,i = lc

[
− ∂ec,k
∂Wc2

]
, (13)

and the weight updates of the input layer matrix Wc1 are according to

∆Wc1,i = lc

[
− ∂ec,k
∂Wc1

]
, (14)

where lc > 0 is the learning rate of the critic network.

Similar to the critic network, the actor networks for the human and the robot, respectively are three-
layer MLP with 6 hidden units with hyperbolic activation function in the output layer to bound the
action output. The same SGD optimizer [36] can be applied to the actor networks as well.

The two actors, u and v, respectively are

uk = φ (Wau2,i ∗ φ (Wau1,ixk)) ,

vk = φ (Wav2,i ∗ φ (Wav1,izk)) ,
(15)
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where Wau1 ∈ R6×4, Wav1 ∈ R6×2, Wau2 ∈ R3×6 and Wav2 ∈ R1×6 are the weight matrices, and
φ(·) is the hyperbolic tangent activation function used in the hidden layer and the output layer. The
weight updates of the hidden layer matrix Wa2,i are according to

∆Wau2,i = la

[
− ∂eau,k

∂Wau2,i

]
,

∆Wav2,i = la

[
− ∂eav,k

∂Wav2,i

]
.

(16)

The weight updates of the input layer matrix Wa1,i are according to

∆Wau1,i = la

[
− ∂eau,k

∂Wau1,i

]
,

∆Wav1,i = la

[
− ∂eav,k

∂Wav1,i

]
,

(17)

where la > 0 is the learning rate of the actor.

Further details on the cMARL automatic control solution are provided in Appendix D.

5 Experiment

We conduct design evaluations of the proposed cMARL for symmetrical walking using OpenSim, a
well-established open source biomechanical modeling tool for conducting biomechanics research and
motor control science [65]. The robot knee control is realized within an FS-IC framework. In real life,
initial impedance parameters can be selected based on manufacturer and/or rehabilitation clinician’s
recommendations. Similar care is given to OpenSim simulated walking yet in all evaluations, the
initial impedance values vary from a large range of settings for fair examination. As in [37], we
enforce realistic safety constraints to prevent the human from stumbling or falling. Impedance
parameters are reset to initial impedance values if any of the state variables exceed the safety bounds.
The safety protocols followed in this work are fully described in Appendix A.4.

To make the simulations reflective of real world conditions, sensor and actuator noise data extracted
from real human experimental testing sessions is applied to all the simulations in this study. Appendix
A.2 provides the complete procedure followed of extracting noise data from experiments involving
human subjects and injecting it into all the simulations.

In this section, we provide results of a large set of simulation studies aiming at answering the following
questions: 1) Does our cMARL solution framework provide better performance than state-of-the-art
baselines, including MADDPG and COMA? 2) Does including human influence in robot control
design accelerate learning and improve success rate of policy in comparison to single-agent based
approach (wout/human)? 3) Is our cMARL applicable to different and realistic walking tasks? To
provide answers, we show three sets of evaluations: benchmark, ablation and reliability. Benchmark
and ablation evaluations are based on a level ground walking task with a pace of 1m/s. Reliability
evaluations are based two new walking tasks: slope walking on a 11.5 degree ramp and level ground
walking at an increased pace of 1.12m/s.

Performance Criteria. In order to ensure that amputee subjects walk safely and continuously,
we consider several performance metrics: 1) As an optimal control problem, the objective is to
minimize state regulation cost (smaller is better). 2) Peak knee error can directly reflect amputee
safety, preventing falling and stumbling (smaller is better). 3) Symmetry in walking can prevent
secondary injury (closer to 0 is better). 4) Fast learning in terms of fewer tuning steps is practically
important to amputees (fewer steps is better). 5) High success rate boosts amputees’ confidence and
hence walking performance (higher is better). Details of how the data was obtained can be found in
Appendix E.2. The main evaluation results are presented in Table 1. The second value in each entry
(i.e., after the ± symbol) represents the standard deviation of the performance metrics.

Benchmark study. MADDPG and COMA differ from our proposed cMARL approach toward
symmetry walking. MARL problems can vary greatly, same are expected of their solutions [66, 67].

To perform benchmark studies, we tailor MADDPG and COMA, respectively to our HPC problem.
Details are provided in Appendix D.
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Table 1: Performance of the implemented algorithms in terms of the five performance criteria. The
results of the best-performing algorithm for each criterion are boldfaced

Performance w/human wout/human COMA MADDPG
Stage Cost 0.002 ± 0.001 0.008± 0.003 0.004± 0.002 0.38± 0.306
Peak Error 0.003 ± 0.001 0.007± 0.002 0.003± 0.001 0.025± 0.014
Symmetry 0.001 ± 0.001 0.006± 0.003 0.003± 0.002 0.022± 0.012
Converge Steps 97 ± 88.3 187.5± 105.2 136± 121.8 −
Success Rate 0.7 0.58 0.5 −

Figure 2: The total number of steps needed to reach convergence in training (left). The success rate
during evaluation (right).

Figure 2 shows that our cMARL solution has the best convergence profile and success rate over the
baselines. Further results on training and evaluation are shown in Figures 3 and 4 which compare
the environment sample efficiency as well as algorithm performances. To answer the first question
based on benchmarking, our cMARL solution outperforms the baselines both in terms of kinematic
and symmetry measurements as shown in Figures 3 and 4, center and right panels for training and
evaluation, respectively. Additionally, the left panels of Figures 2, 3 and 4 show that our cMARL
solution outperforms benchmarks with at least 30% less environment samples.

Tr
ai
ni
ng
 S
ta
ge
 C
os
t

300

Figure 3: Learning curves of stage cost during training (left), peak angle error (middle) and sym-
metry of step length (right) for benchmark (w/human, COMA, MADDPG) and ablation (w/human,
wout/human) studies. Each learning curve is averaged over 16 different random seeds and shaded by
their respective 95% confidence interval.

Ablation study. To gain insights on how human control influences human-robot walking performance,
an ablation study is carried out with direct human influenced terms removed, including hk and vk,
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Figure 4: Learning curves of averaged total cost (terms associated with human influence removed)
during evaluation (left), peak angle error (middle) and symmetry of step length (right) for benchmark
(w/human, COMA) and ablation (w/human, wout/human) studies. Each (smoothed) learning curve is
averaged over 5 different random seeds and shaded by their respective 95% confidence interval.

from the problem formulation. This only leaves the kinematics and symmetry measurements in the
stage cost. Similar to the benchmark study, the ablation study has a training session and evaluation
session. For comparable results, the total cost in evaluation is obtained as U = (x)T (Rx)x+uTRuu.
Figures 3 and 4 show that with an estimated human control influence accounted for in the robot
control design, our cMARL solution (the green curves) outperforms the one without it (orange curves).
Treating human and robot as collaborating agents toward a shared performance goal, our cMARL
solution approach achieves increased success rate and accelerated learning speed (Figure 2). This
result makes sense as an estimated human control provides a predictive signal to the robot control
which aims at duplicating the intact human joint movement. Additional information on the quality of
estimated human control is given in Appendix B.2.

Reliability study. To make the proposed cMARL method practical and useful in real life, we setup
two new walking tasks: (1) slope walking (11.5 degree ramp) and (2) walking at an increased pace
(1.12m/s). They will result in different walking patterns from those used in the baseline study, and
thus different knee joint profiles. For slope walking, knee flexion will be more pronounced during the
stance phase since it walks inclined. In the case of faster pace, stance time will be compressed. To
carry out the tests, the same training procedure is used as in benchmark and ablation studies.

Figure. 5 shows the performance of cMARL during slope walking and increased pace walking tasks.
Performance of the two new tasks follow the same trend as that of the level ground walking at a
nominal pace. These results again validate our design approach of using the intact knee movement
trajectory as the target for the robotic knee to copy. By doing so, we have removed a major control
design barrier in the way of performing different walking tasks by automatic control.

Figure 5: Learning curves of stage cost during training (Left), peak angle error (Middle) and symmetry
of step length (Right) for different walking tasks (level ground walking at increased pace and ramp
walking). Each learning curve is averaged over 16 different random seeds and shaded by their
respective 95% confidence interval.
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Limitations of This Study. Here we conduct an in-depth simulation-based analyses as an important
first step to evaluate this novel cMARL solution to the HPC problem. Simulations are critically
important as exploration of problem formulation, control algorithm design, and systematic evaluation
are necessary to be performed prior to human experiment due to factors such as human fatigue,
human safety, human loss of interest/confidence caused by repeated trial-and-error, time spent, and
significant cost associated with testing amputee subjects. However, our framework is still to be
tested in human experiment. Based on several important works in the literature [37, 40, 68, 69],
extensive simulation studies followed by real life human test studies [41, 17, 70] have proven a highly
successful development procedure for human/robot control. This will be the next step of this study.

For scenarios in which the terrain or task has changed significantly, a task planner will become
necessary, making the problem a planning and control problem (as opposed to automatic control,
the focus of this work). This expanded automatic control algorithm must be extensively verified in
simulation and then in human tests before it can be integrated into a real-world planning framework
for daily use cases. Such planning frameworks constitute intended future works.

6 Conclusion and discussion

1) In the US, approximately 1.7 million people live with limb loss. The amputee population is
expected to double by 2050 as the population ages and incidence of dysvascular disease increases. As
most lower limb amputees use prosthetic legs to restore basic bipedal locomotion, our solution to the
prosthesis control problem can potentially help improve the function and quality of life of lower limb
amputees. 2) In this work, we develop a novel cMARL framework towards systematically integrating
the human and robot as collaborative agents to achieve normative walking toward solving real world
problems. With reaching symmetric locomotion as shared control performance goal, we demonstrate
improved walking performance. 3) Symmetry is selected as the shared goal for the collaborating
agents because asymmetric walking has been linked to secondary health complications including
back pain and osteoarthiritis [71, 72, 73]. Although human-robot walking performance goals are
difficult to systematically catalogue, additional considerations such as embodiment of the robot into
the human will be considered in future works. 4) By breaking apart the shared cost for the human and
the robot (cf. Section 5.1), the symmetrical walking task is treated and evaluated by MADDPG and
COMA, respectively. Simulation results show that the factorization-based CTDE paradigm struggles
to address the human-robot problem. The observed performance issues with factorization likely stem
from the intrinsic coupling between the human and robot agents. 5) While ensuring human user safety
has been carefully considered during control design, additional analysis of important properties such
as convergence of learning, (sub)optimality of control policy, and human-robot closed-loop stability
is still needed for this framework. Encouragingly, previous related works [74, 75, 76, 77] indicate
that these theoretical results are very likely to be provable.
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Appendix A Human-robot walking simulation using OpenSim

A.1 OpenSim environment

OpenSim is a well-established open source biomechanical modeling tool for conducting biomechanics
research and motor control science [65]. In this study, a five rigid-segments bipedal model including
a pelvis, two thighs and two shanks is implemented on a rigid level platform to simulate level ground
walking, up hill walking, and walking at a different (fast) pace. This simulation platform has been
used in reports of previous single-agent based reinforcement learning control of the robotic knee. The
simulation validated conceptualization of the solution approaches as well as the resulted controller
structures have consequently been adopted in and adapted to human experiments.

The pelvis segment is linked to the ground platform using a slider joint, which allows the body to
move relative to the ground. The thigh segments are linked to the pelvis using one-degree-of-freedom
pin joints (hip joints). A pre-prescribed motion according to a well-established, normative data set
[78] is applied to the hip joints. The shank segments are attached to the thighs using one-degree-of-
freedom pin joints (knee) as well. Two torque actuators are applied to the knee joints for both sides so
that the knee motion can be controlled by the torque. How torque control takes place via impedance
controller and how impedance value updates are described in in appendix A.6. At the end of the
shank segments, a contact sphere is set to simulate the ground reaction force between the foot and
the ground using Hunt and Crossley contact force model. The range of hip joints is limited between
[-100,100] degrees while the knee joint is limited in [-140,0] degrees to avoid over extension of the
knee. Additional model settings, such as segment length, body mass and inertial parameters, are
according to the lower limb OpenSim model in [79]. The left limb is designated as human controlled
while the right limb as robot learning controlled [78]. Both knees are set to 0 degree at initialization
and the initial angular velocities are -3.58 degree/s (right) and -3.32 degree/s (left), respectively.

In experimental evaluations, to simulate up hill walking, the ground is set as a 11.5 degree inclined
ramp. To simulate walking at a different pace, the pre-prescribed hip motion is adjusted to allow a
speed up to 112%. The rest of the settings are the same as the level walking task described above.

Figure 6: The OpenSim simulation platform of human-prosthesis walking with cMARL control.
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A.2 From real human experiment data to extract sensor noise and use them in simulations

To simulate state variables as if they were measured from experiments, we add noise to the simulated
states. The sensor noise profiles were generated based on gait-to-gait variances of human-robot
walking data captured from able-bodied subjects walking with prosthesis during stable and continuous
walking of a single-agent based study. All experiments were approved by the Institutional Review
Board. A total of 120 gait cycles of the knee joint movement trajectories were recorded in a level
ground test during which the subject was required to walk wearing a prosthesis with a fixed impedance
parameter after tuning. A goniometer was attached to measure the intact side knee motion. The
prosthesis knee motion was directly read from the built-in sensors. The feature points (peak angle P p,
P i and phase duration Dp, Di) of each gait cycle as shown in Figure 1 were collected. The standard
deviations of intact and prosthetic knee feature points (P p, P i, Dp, Di) were computed. The actuator
noise was set at the same level as that of hardware instrumentation precision level which is 1% of the
respective normative values of the impedance parameters.

The sensor and actuator noise are added as a white Gaussian noise with the standard deviation
obtained from the above procedures. The standard deviations are 0.64 degree and 0.29 degree for
P i and P p, respectively. For Di and Dp, the standard deviations are 0.5% and 0.24%, respectively.
The sensor noise is added to the state xk at each simulated step and the actuator noise is added to the
action vk and uk at the output of the respective actor networks. The white noise added in each phase
follows the same noise profile (i.e., the same Gaussian white noise) because the hardware does not
change among phases.

A.3 Finite State Impedance Control (FS-IC)

The FS-IC is the most employed intrinsic control framework for wearable lower limb prosthesis.
Impedance control, also known as “compliance control”, is well-established as a safe and reliable
control strategy for lower limb prosthesis [59]. It allows a human to interact with a robot, rather
than a position control that forces the amputee to react to the prosthesis. Almost all commercially
available computer-controlled prostheses incorporate impedance control. In this study, impedance
control of prosthesis joints mimics how humans control their biological joints in legs in walking.
The finite state machine is used to mimic periodic gait cycles where each gait cycle is partitioned
into four phases. For each phase, the prosthetic system mimics a passive spring-damper-system with
predefined impedance [4, 5, 6] (i.e. stiffness K, damping coefficient B, and equilibrium position θe)
that matched the biological knee impedance.

Refer to Figure 6, a gait cycle is divided into four phases in the FS-IC: stance flexion (STF, m = 1),
stance extension (STE, m = 2), swing flexion (SWF, m = 3) and swing extension (SWE, m = 4).
The phase transitions are determined by knee motion and gait events (heel strike and toe-off) [7,
8] that are obtained from vertical ground reaction forces of both legs. According to Figure 6, the
transition from STF to STE is made when the knee angular velocity ω is less than 0.5 degree per
second and the knee angle θ greater than 5 degree. Similar condition is set for the transition from
SWF to SWE as the angle threshold is set to 10 degrees. On the other hand, the transition between
stance and swing is made according to the ground reaction force. Specifically, the transition from
SWE to STF is triggered when the ground reaction force Fz,L greater than a small threshold , 0.05
(5%) of Body Weight (BW), which is set to avoid false detection caused by noise. And the transition
from STE to SWF is triggered when the contralateral limb hits the ground (Fz,R > 0.05BW ).

For each of the four FS-IC phases m, there is a cMARL controller (Figure 6) to generate the respective
control um which is the adjustment to the current impedance values Im ([stiffness K, damping B,
and equilibrium position θe]). Therefore, 12 impedance parameters, 3 for each of the 4 phases,
(I = [I1, I2, I3, I4] ), are needed to simulate a gait in OpenSim where the prosthetic knee (right) is
controlled by FS-IC with impedance setting I .

A.4 Safety and reliability

In our real-world setting, safety and reliability for an integrated human-robot system are our con-
sideration and Three safety features were implemented in the experiment to prevent "un-natural"
control.
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First and foremost, RL control is built on top of the finite state machine (FSM) impedance control ,
also known as “compliance control” (refer to Appendix A.3), which allows human to interact with
robot, unlike position control that forces amputee to react to the prosthesis [60].

Next, safety bounds on knee angle and phase duration, step length and stance time are placed within
FSM [40]. If a potential fall is detected, the RL controller is reset to the initial stabilizing controller.
Specifically, as shown in Table 2, the safety bound is set at 1.5 times the standard deviations of the
respective knee kinematic peak values observed in each phase [80]. If a state exceeds the safety
bound, which means the prosthetic knee may place subjects into an unsafe situation, the impedance
parameters of the prosthetic knee will be reset back to the initialized impedance values, but the actor
and critic network weights are kept and will carry on with further training.

Lastly, actions generated from RL are bounded, a consideration which also reflects realistic constraints
on actuation to limit control gain and avoid significant jump in impedance parameters.

Table 2: Safety bounds and tolerance bounds

Phase 1 Phase 2 Phase 3 Phase 4
Safety Bounds[

Angle(◦) Duration(%)
StepLength(m) StanceT ime(s)

] [
10.5 12
0.2 0.2

] [
7.2 12
0.2 0.2

] [
9 12
0.2 0.2

] [
6 12
0.2 0.2

]
Tolerance Bounds[

Angle(◦) Duration(%)
StepLength(m) StanceT ime(s)

] [
1.5 2
0.02 0.02

] [
1.5 2
0.02 0.02

] [
1.5 2
0.02 0.02

] [
1.5 2
0.02 0.02

]

A.5 Setting up human control prior to simulating human-robot as collaborating agents

To simulate an intact limb controlled by a human during walking, we design an impedance controller
so that the simulated human-robot walks at a designated step length of λ0 as in Eq. 6. This procedure
is performed prior to cMARL control design implemented in OpenSim.

Both left and right knee controls are enabled by FS-IC in OpenSim. The right knee (prosthesis)
is controlled by a fixed set of impedance parameters that correspond to a normative gait profile.
This set of impedance parameters does not go through learning. The left knee (intact) control goes
through learning and adaptation. A single agent reinforcement learning controller (without human
involvement) is implemented. The state variable s is defined as the difference between the actual
step length and the desired step length, i.e., s = λi − λ0. The action is still the same as in Eq. 5,
i.e., u = [∆K,∆B, (∆θe)]

T .The stage cost is defined as U = sRss+ usRuus, where Rs = 1 and
Ru = diag(0.01, 0.01, 0.01). The tolerance bound for state variable s is ±0.015 from the desired
step length λ0 = 0.75.

Three training trials, each with 300 steps, with different random seeds are used to sequentially update
the intact knee control. Namely, the impedance parameters are kept from one trial transitioning into
the next but the network weights are randomly initialized to enable exploration. This procedure has
resulted in a reliable human controlled knee. With this controller, the simulated human walking is
then enabled by this set of impedance parameters, which results in a step length of 0.75. This set of
impedance control parameters remain unchanged to carry out the study.

A.6 Integrating cMARL controller into FS-IC and OpenSim simulation of walking

Figure 6 is the overall structure based on which we have performed the evaluations. First of all,
the bipedal model OpenSim environment is initialized according to Appendix A.1. Secondly, the
knee joint torque actuator is enabled by an FS-IC controller which parses a gait cycle into 4 phases
according to Appendix A.3. A random but stabilizing initial set of impedance parameters is given to
the FS-IC to enable walking. Then, a cMARL controller is initialized for each of four phases.

Once initialized, OpenSim simulation proceeds by passing the state xm and stage cost Um the
cMARL, which triggers learning as shown in Algorithm in Appendix D. The control actions um

for each of the four phases, with the same form as in Eq. 5 but from respectively different cMARL
controllers, are placed into the FS-IC. Then FS-IC will update the impedance parameters by Eq. 2
and provide continuous torques based on Eq. 1 to the knee actuator. Finally, OpenSim simulated
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gait provides the state xm and stage cost Um to cMARL. The above procedure repeats until cMARL
learning terminates by reaching into the state xm the tolerance bound in Table 1.

Appendix B Additional Results

B.1 Batch v.s. online implementation

In most of deep reinforcement learning applications such as humanoid in MuJoCo and many others,
researchers usually train reinforcement learning modules in millions of steps and with memory size
at a million level as well. Batch training with batch size of hundreds or thousands have been very
effective, efficient and successful. However, in real world application like our human-robot cMARL
problem, it is unrealistic to ask an amputee subject to walk millions of steps wearing a prosthesis. We
therefore need to perform training in several gait cycles at the level of hundreds. As such, using batch
training in our control framework, especially with in FS-IC, may not result in anticipated outcome as
in deep neural network training. We therefore performed all experiments in this study using online
learning. However, we have also performed an evaluation of training using batch vs. online modes.
Figure (7) shows training performance of an implementation using a batch size of 3 and an online
implementation. Comparisons are under the same comparable conditions including initial conditions.
Results are based on 6 consecutive trails, each having 300 steps. Online learning converges faster
than batch learning most likely due to that the network weights are updated more frequently.

Figure 7: A comparison of online vs batch (batch size 3) training

B.2 About estimated human control

Figure 8: A comparison between the estimated human control vk and the actual human control v̄k
during evaluation.
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We make use of an estimated human control vk in the design of robot control, all under a cMARL
problem construct of shared control objective between a human and a robot. It is therefore important
to know if the estimated human control vk is able to capture human action. Figure 8 shows that the
estimated human action vk and the actual measured action v̄k of an evaluation trial, based on a fully
trained policy. It indicates that the estimated human action vk learns to approach actual human action
v̄k. Moreover, vk fluctuates less than the actual, a phenomenon which suggests that vk may have
become an inference bias of the human through learning to provide foresight on the ultimate goal, i.e.
to optimize the shared objective function of cMARL by human and robot.

B.3 Converged impedance parameters

task STF STE SWF SWE
K B θe K B θe K B θe K B θe

level 2.09 0.10 -0.27 0.21 0.12 -0.02 0.042 0.0055 -1.03 0.055 0.0054 -0.24
level 2.00 0.09 -0.31 0.18 0.11 -0.03 0.053 0.0059 -1.05 0.060 0.0058 -0.26
level 2.12 0.12 -0.27 0.17 0.09 -0.22 0.034 0.0049 -1.02 0.056 0.0061 -0.21
level 2.40 0.12 -0.31 0.22 0.14 -0.05 0.086 0.0084 -0.90 0.074 0.0076 -0.21
level 1.77 0.10 -0.29 0.21 0.11 -0.03 0.037 0.0043 -1.00 0.047 0.0052 -0.26
slope 1.48 0.12 -0.26 0.16 0.10 -0.13 0.042 0.0069 -1.02 0.046 0.0048 -0.26
slope 1.79 0.24 -0.28 0.24 0.21 0.11 0.049 0.0072 -1.10 0.048 0.0071 -0.06
slope 2.48 0.13 -0.29 0.19 0.09 -0.09 0.044 0.0059 -1.04 0.036 0.0045 -0.24
slope 2.08 0.10 -0.30 0.23 0.07 -0.23 0.041 0.0066 -1.03 0.044 0.0047 -0.28
slope 1.97 0.10 -0.21 0.19 0.02 -0.04 0.088 0.0067 -0.84 0.146 0.0210 -0.03
Pace 2.04 0.10 -0.32 0.18 0.11 -0.06 0.013 0.0039 -1.07 0.055 0.0051 -0.30
Pace 2.44 0.10 -0.31 0.17 0.10 -0.14 0.033 0.0036 -0.75 0.046 0.0057 -0.27
Pace 2.18 0.13 -0.33 0.17 0.08 -0.05 0.044 0.0067 -1.06 0.056 0.0058 -0.26
Pace 1.49 0.13 -0.36 0.15 0.09 -0.09 0.044 0.0062 -1.12 0.037 0.0049 -0.21
Pace 2.15 0.10 -0.29 0.15 0.07 -0.20 0.032 0.0051 -1.04 0.045 0.0060 -0.19

Table 3: This table shows the final converged impedance parameters for all 4 phases from three
different tasks described in 5

Table 3 summarizes all 12 impedance control parameters. Note however, such comparison may
not yield much insight due to redundancy in human joint actuation space, and also strong coupling
among parameters. On a side note, the current state-of-the-art practice in clinics is to manually tune 1
impedance at a time, a practice that cannot take into account of coupling, nor it is possible to tune all
12 parameters simultaneously best achieving a tuning goal.

Appendix C Simulated human environment

C.1 Setting up Matlab scripting environment

Although OpenSim has a dedicated GUI interface, in this study we are using the OpenSim API to
implement the environment in Matlab. Please follow the instructions provided by SimTK with the
link below :https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scripting+with+Matlab

Here are the key steps of configuration
1. Launch MATLAB in administrator mode.
2. Run the configureOpenSim.m under OpenSim/script directory
3. Choose the installation path of OpenSim in the dialog
4. Restart Matlab
5. Load OpenSim library by command: Import org.opensim.modeling.*

C.2 Bipedal walking model building

The walking model was based on a bipedal model provided by SimTK. The model consists of a
rigid platform and a four-link walker. The platform is connected to the ground by a pin joint that
permits rotation about the Z-axis. The pelvis of the walker is connected to the platform by a FreeJoint
object, which allows 6-degree-of-freedom (i.e., unconstrained) motion between the pelvis and the
platform.PinJoint objects are used to connect the thighs to the pelvis and the shanks to the thighs. Two
torque actuators are applied to the knee joints for both sides so that the knee motion can be controlled
by the torque. At the end of the shank segments, a contact sphere is set to simulate the ground reaction
force between the foot and the ground using Hunt and Crossley contact force model. The range of
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Figure 9: OpenSim hu-
man model

hip joints is limited between [-100,100] degrees while the knee joint is
limited in [-140,0] degrees to avoid over extension of the knee. Additional
model settings, such as segment length, body mass and inertial parameters,
can be configured through the .osim model configuration file in a xml
format.

In this study, the left limb is designated as human controlled while the
right limb as robot learning controlled. The torque actuator was added
under tag <forceSet>/<objects>/< TorqueActuator>.

The original osim file can be downloaded from the link below.

https://simtk-confluence.stanford.edu:8443/display/OpenSim33/

From+the+Ground+Up %3A+Building+a+Passive+Dynamic+Walker+Model

C.3 Scripting OpenSim with Matlab

During the implementation, the following scripts was
implemented as described below. The example file
can be downloaded from the link: https://simtk-
confluence.stanford.edu:8443/pages/viewpage.action?pageId=28777060

We customized some scripts to realize the desired function. We attached the modified code at the end
of the appendix to help replicate the simulation environment. Table C.3 shows the scripts’ name and
their description to help reader understand their functionalities.

Script Name Description
IntergateQpenSimPlant.m This function runs (and optionally visualizes) a forward

simulation using one of Matlab’s integrators. The script
creates a plant function which returns state derivatives
given a model and state values. This plant function can then
be passed to any of the built-in integration tools in Matlab.
The function IntegrateQpenSimPlant allows you to quickly
run a simulation from the default values of the model in
a single line. This function requires OpenSimPlantFunction.

OpenSimPlantControls The function calculates a set of control values which are input
Function.m to OpenSim muscles and actuators.
OpenSimPlantFunction.m This function creates an interface which calculates the

state derivatives for an OpenSim Model object and a OpenSim
State object. This function can be passed to a Matlab integrator
such as ode15s.

C.4 Structure of simulation environment

cMARL
Lower_limb.

m

Model 
initialization

IntegrateOpenSimPlant.m (by ode15s)

Forward 
dynamics

OpenSimPlantF
unction.m

OpenSimPlantCon
trolsFunction.m 
(implemented 
FSM)

Knee 
torque

Knee 
profile

Motion 
data

impedance impedance

Figure 10: The OpenSim simulation platform of human-prosthesis walking with cMARL control.

Figure 10 shows the code structure of the simulation. The customized script will displayed in red
box while the API script was in blue box. Lower_limb.m is the interface between Agent and the
OpenSim. Agent feeds the updated impedance parameters through lower_limb and obtained the
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knee profile as feedback. Lower_limb.m will call the OpenSim API by a ODE solver (ode15s)
to compute the forward dynamics of the human locomotion. The communication rate between
Agent and Lower_limb is once per gait cycle. And the communication rate between lower_limb and
OpenSim is decided by ode15s solver. In the OpenSim, OpenSimPlantFunction.m will execute the
customized function OpenSimPlantControlsFunction.m which contains the FSM-IC controller. All
the customized codes were shared at the end of the Appendix.

Appendix D Baseline and ablation study implementation

In this study we compare cMARL with DDPG, COMA and cMARL without human agent (dHDP).

Figure 11: MADDPG (left) and COMA (right) tai-
lored to solve the human-robot symmetrical walk-
ing problem.

The code of DDPG and COMA was modified
based on the public code to fit into our environ-
ment. By loading the corresponding class of
algorithm in the main.m line 14, user can choose
the different formation of cost and learning rule.
Or customized by themselves. The example code
of the controller will be released (with a URL
to the github repository) along with the camera-
ready version.

For MADDPG, we allow human and robot have
different stage cost as Uv = zTRzz + Rvv

2 +
µh2 and Uu = (x−)T (Rx−)x− + uTRuu, re-
spectively where x− only includes the robotic
joint kinematic variables. These stage costs re-
spectively go to update critic Qv and Qu Qv =∑∞

j=k γ
j−kUv and Qu =

∑∞
j=k γ

j−kUu for hu-
man and robot. Human policy (πv) (function of
z) and robot policy (πu) (function of x−) are determined accordingly. using Qv and Qu functions,
respectively. Respective policies will execute based on their local observation z and x−. For COMA,
we train a single centralized critic Q =

∑∞
j=k γ

j−kU with joint stage cost U = Uv + Uu where
Uv, Uu are the same as in MADDPG. Policies will execute locally. We update the policies using
respective TD errors in place of a non-biased advantage function [45] because we are dealing with a
strongly coupled human-robot system. Therefore it does not make sense to implement the counter-
factual advantage function as in COMA. Also note that, we use real-time training instead of batch
memory because collecting batch data for policy update requires an amputee subject to endure multi-
ple gait cycles before one learning update. This may not be realistic for practical use. Nonetheless,
an evaluation is performed (Appendix B.1). Details on the derivations and implementations of the
tailored MADDPG and COMA are in Appendix D.

D.1 cMARL without human agent

In the ablation study, we remove the human agent to study how effective of the human agent in the
learning process. This turns the problem into a single agent approach (dHDP) [36].

Learning Algorithm. We consider the stage cost as

U(xk, uk) = xT
kRxxk + uT

kRuuk, (18)

where Rx ∈ R4×4 and Ru ∈ R3×3 are positive semi-definite weighting matrices.

Solving optimal control policies π∗
v and π∗

u requires solving the optimal Q function that satisfies
Bellman optimality equation:

Q∗(xk, uk) = U(xk, uk) + γQ∗(xk+1, π
∗
u(xk+1)). (19)

When using a neural network-based actor-critic solution framework, we approximately solve the
optimal control problem using the following iterative procedure (i is the iteration index),

Qi+1(xk, uk) = U(xk, uk) + γQi(xk+1, πui
(xk+1)), (20)

where πui
(xk) = argminuk

Qi(xk, vk, uk),
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Figure 12: Actor-critic networks for benchmark evaluation and ablation evaluation. Clockwise: our
proposed cMARL, COMA solution, MADDPG solution, and our approach without considering
human or single-agent approach in the ablation study.

and Qi(xk, uk) are iterative actor policies and iterative Q value function.

During training, the actor and critic back-propagate their respective squared error to update their
weights. The prediction error of actor eau,k ∈ R is,

eau,k =
1

2
(Qi (xk, uk))

2. (21)

The prediction error for the critic ec,k is formulated based on the Bellman error,

ϵc,k = U + γQi(xk+1, πui
(xk+1))−Qi+1 (xk, uk) , (22)

and the critic neural network is trained to minimize ec,k = 1
2ϵ

2
c,k.

Network architecture. For the ablation study, a single agent based on dHDP with one critic network
and one actor network was implemented. To represent our neural shape, we use a 3-layer MLP
with 6 hidden units for all networks. The critic network uses linear activation function in the output
layer while the actor network uses hyperbolic function to bound the action output. The network was
optimized by our own optimizer that based on stochastic gradient descent with back-propagation.

Training parameters. Since training speed is critical in a real human experiment, when optimizing
the single agent, a learning rate of η = 1 × 10−2 was used to train both critic and actor network.
The optimization target error was ϵ = 1 × 10−3. The discount factor γ = 0.95 was used for
all scenarios and ablation study. We initialize the network weights uniformly in the range [-1,1].
we set the weighting matrices in the stage cost Eq. 1 to be: Rx = diag(1, 1, 0.25, 0.25), Ru =
diag(0.1, 0.1, 0.1), and Rv = 0.1.

The convergence of criteria was set as 1.5 degree for knee angle error and 2% for duration error which
was decided by the device sensor accuracy in the real life and normal human noise. The observation
and action noise were added to the simulation experiment. The detail of the human noise is mentioned
in Appendix A.2.

Each training trail contains 300 gait cycles. Evaluations are conducted every 2 gaits during the first
50 gaits and then every 10 gaits afterwards, each using the latest policy at the time of evaluation.

D.2 cMARL

Our cMARL method has been reported in the paper with its actor-critic network prediction errors
described in Eqs. 10 and 11. During training, the actor and critic networks back-propagate their
respective squared errors to update their weights.

Learning Algorithm. We consider the stage cost to be shared between the human and the robot.

U(xk, vk, uk) = xT
kRxxk +Rvv

2
k + uT

kRuuk + µh2
k, (23)
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where Rx ∈ R4×4 and Ru ∈ R3×3 are positive semi-definite weighting matrices, Rv and µ are
positive weighting constants, and hk = vk − v̄k. In the above, the difference between actual human
step length λi

k and reference λo, denoted as v̄k = λi
k − λo, is considered practical and available.

Solving optimal control policies π∗
v and π∗

u requires solving the optimal Q function that satisfies
Bellman optimality equation:

Q∗(xk, vk, uk) = U(xk, vk, uk) + γQ∗(xk+1, π
∗
v(zk+1), π

∗
u(xk+1)). (24)

When using a neural network-based actor-critic solution framework, we approximately solve the
optimal control problem using the following iterative procedure (i is the iteration index),

Qi+1(xk, vk, uk) = U(xk, vk, uk) + γQi(xk+1, πvi(zk+1), πui(xk+1)), (25)
where πvi(zk) = argminvk

Qi(xk, vk, uk), πui
(xk) = argminuk

Qi(xk, vk, uk), and
Qi(xk, vk, uk) are iterative actor policies and iterative Q value function.

During training, the actor and critic back-propagate their respective squared error to update their
weights. The prediction error of actor eav,k, eau,k ∈ R is,

eav,k = eau,k =
1

2
(Qi (xk, vk, uk))

2. (26)

The prediction error for the critic ec,k is formulated based on the Bellman error,
ϵc,k = U + γQi(xk+1, πvi(zk+1), πui

(xk+1))−Qi+1 (xk, vk, uk) , (27)

and the critic neural network is trained to minimize ec,k = 1
2ϵ

2
c,k.

Network architecture. As figure shows, cMARL contains one critic network and two actor networks.
Same as single agent, we use a 3-layer MLP with 6 hidden units for all networks. The actor-critic
code was built upon dHDP code. The critic network uses linear activation function in the output layer
while the actor network uses hyperbolic function to bound the action output. The stage cost was
defined in Eq. 6. The corresponding error functions were defined in Eq.9 and Eq.10.

Training parameters. Due to the training speed is critical in the real human experiment, when
optimizing the cMAR, a learning rate of η = 1×10−2 was used to train both critic and actor network.
The optimization target error was ϵ = 1× 10−3. The discounted factor γ = 0.95 .The convergence
criteria are same as single agent dHDP.

D.3 COMA

COMA is popular MARL algorithm which utilizes a single centralized critic by using global state
information and actions of all agents. Additionally, COMA addresses the multi-agent credit as-
signment challenge by using a counterfactual baseline which keeps all other agents’ actions fixed
while treating a single marginalized agent. In game-playing problems, COMA significantly im-
proves performance over other MARL methods such as independent Q-learning [81], multiagent
bidirectionally-coordinated nets [82], and variant DQN [83]. However, due to the heavy dynamic
coupling between the human and prosthesis, it is impossible to keep one agent action fixed and
marginalize out the other agent’s action. As a result, this counterfactual baseline is not appropriate
for our problem, either. Our Mathlab version of COMA is based on [45] and weights updates using
our own optimizer on E.6

Learning Algorithm. The original COMA uses a single centralized critic based on global states
and actions. Additionally, COMA addresses the challenge of multi-agent credit assignment problem
by using a counterfactual baseline that marginalises out a single agent’s action while keeping other
agents’ actions fixed. However, in our cMARL human-robot symmetrical walking problem, human
and prosthesis are tightly coupled both in time and space. It is impossible to break apart the two
agents, i.e., it is not suitable for an implementation using counterfactual function. Therefore, we keep
the single centralized critic but instead of using counterfactual advantage function, we use a TD error
as a non-biased advantage function while each agent acts locally. The stage cost is represented by

U = Uv + Uu, (28)
where Uv and Uu have the same structure as those in the above MADDPG solution. Additionally, our
COMA implementation executes locally based on local observations. The centralized critic prediction
error is

ϵc,k = U + γQi(xk+1, πvi(zk+1), πui
(x−

k+1))−Qi+1

(
xk, vk, u

−
k

)
, (29)
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and the critic neural network is trained to minimize ec,k = 1
2ϵ

2
c,k. Additionally, the prediction error

of actor for human eav,k and prostheses eau,k shared the TD error with the critic,

eav,k = eau,k = ec,k, (30)

where during training, the actor and critic back-propagate their respective squared error to update
their weights.

Network architecture. As figure 12 shows, COMA shared the same architecture from cMARL. Our
code is modified upon the public COMA code to fit in our environment. To fair comparison, the
shape of network which are 3-layer MLP. The stage cost was defined in Eq. 11. The corresponding
error functions were defined in Eq. 12 and 13.

Training parameters. To fair comparison, COMA use the same hyperparameter as cMARL which
the learning rate of η = 1× 10−2 was used to train both critic and actor network. The optimization
target error was ϵ = 1× 10−3. The discounted factor γ = 0.95. The convergence criteria are same
as cMARL.

D.4 MADDPG

MADDOPG is another popular CTDE-based method to solve both cooperative and competitive
MARL problems. Agents are assumed to communicate complete and perfect information with
each other, so a centralized critic is trained from global state/action data, allowing agents to have
individual reward functions. However, since it is unrealistic for the human to have direct access
to robot kinematic sensor data, this structure is not immediately appropriate for the human-robot
collaborative walking problem. Our Mathlab version of MADDPG is based on [44] and weights
updates using our own optimizer on E.6

Learning Algorithm. The MADDPG was proposed to solve both cooperative and competitive
learning problems by using different reward structures for each agent. Therefore, during training,
each agent learns a centralized critic based on observations and actions of all agents. But for
execution, each agent acts locally. In order to implement MADDPG, we make the human and the
robot only use their local information, respectively. Specifically, we separate state xk into zk and
x−
k = [∆Pk,∆Dk]

T , signifying local observations for human and prosthesis, respectively. Therefore,
the local actors πv and πu take local observations to generate actions vk and u−

k , respectively.
Additionally we formulate stage costs for human Uv and prosthesis Uu, respectively as

Uv = zTk Rzzk +Rvv
2
k + µh2

k,

Uu = (x−
k )

T (Rx−)x−
k + u−

k

T
Ruu

−
k ,

(31)

where Rv and Ru have the same weights as our cMARL method, Rx− = diag(1, 1) only takes the
respective weights for prosthesis in Rx, and Rz = diag(0.25, 0.25) which also, only extracts the
weights for human in Rx.

During training, the actor and critic back-propagate their respective squared errors below to update
their weights.

The prediction errors for human actor eav,k and prostheses actor eau,k, respectively are

eav,k =
1

2
(Qv,i

(
xk, vk, u

−
k

)
)2,

eau,k =
1

2
(Qu,i

(
xk, vk, u

−
k

)
)2,

(32)

where Qv,i and Qu,i are respectively the Q values of human and prosthesis during the ith iteration.

The prediction errors for the human critic Qv and prosthesis critic Qu are formulated based on their
respective Bellman-like errors,

ϵv,k = Uv + γQv,i(xk+1, πvi(zk+1), πui(x
−
k+1))−Qv,i+1

(
xk, vk, u

−
k

)
,

ϵu,k = Uu + γQu,i(xk+1, πvi(zk+1), πui
(x−

k+1))−Qu,i+1

(
xk, vk, u

−
k

)
.

(33)

The critic neural networks Qv and Qu are trained to minimize ev,k = 1
2ϵ

2
v,k and eu,k = 1

2ϵ
2
u,k,

respectively.
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Network architecture. As figure12 shows, each agent in MADDPG contain independent critic
network and actor network. Our code is modified upon the public MADDPG code to fit in our
environment. To fair comparison, the shape of network which are 3 layer MLP. The stage cost was
defined in Eq. 14. The corresponding error functions were defined in Eq.32 and Eq.33.

Training parameters. To fair comparison, MADDPG use the same hyperparameter as cMARL
which the learning rate of η = 1 × 10−2 was used to train both critic and actor network. The
optimization target error was ϵ = 1 × 10−3. The discounted factor γ = 0.95. The convergence
criteria are same as cMARL.

D.5 Run time comparison

We use Matlab for all implementation and evaluation all of our methods using our computer consisting
of a AMD 5900x CPU. The simulation environment was built upon OpenSim 3.3 simulator.

cMARL dHDP COMA MADDPG
Time (seconds) 2285 2405 2300 2525

Table D.5 shows the total training time of a single trial. In general, we observe that the training time
is bottle-necked by the OpenSim forward dynamic simulation. Simulation time of each gait was
significantly greater than the computing time of each weights updating (≈980% run time on sim,
≈2% on weight updates)

D.6 Optimizer

In this study, we use a customized SGD with back-propagation optimizer to train the weights in the
actor and critic MLP networks. As described in Appendix D, the algorithm is based on an actor-critic
structure, the direct heuristic dynamic programming (dHDP) [36].

D.6.1 Critic network

The critic network is a three-layer MLP. It takes a state-action pair as input x ∈ Rm×1 and u ∈ Rn×1.
The approximated cost to go value:

Q̂i(x, u) = Wc2,iφ
(
Wc1,i

[
xT , uT

]T)
(34)

where Wc1,i ∈ R6×m+n was the weight matrix between the input layer and the hidden layer, and
Wc2,i ∈ R1×6 was the weight matrix between the hidden layer and the output layer at ith update.
And,

ηc1 = Wc1,i

[
xT , uT

]T
(35)

hc1 = φ (ηc1) (36)

φ(η) =
1− exp(−η)

1 + exp(−η)
(37)

where φ(·) was the tan-sigmoid activation function, and hc1 was the hidden layer output.

The prediction error ec ∈ R of the critic network at k steps can be written as.

ec,k = γQ̂i(xk+1, π(xk+1))− [Q̂i+1(xk, uk)− U(xk, uk)] (38)

To correct the prediction error, the weight update objective was to minimize the squared prediction
error Ec, denoted as

Ec,k =
1

2
(ec,k)

2 (39)
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The weight update rule for the CNN was a gradient-based adaptation given by

Wi+1 = Wi +∆Wi (40)

The weight updates of the hidden layer matrix Wc2 were

∆Wc2,i = lc

[
− ∂Ec

∂Wc2

]
= lc

[
−∂Ec

∂ec

∂ec

∂Q̂

∂Q̂

∂Wc2

] (41)

The weight updates of the input layer matrix Wc1 were

∆Wc1,i = lc

[
− ∂Ec

∂Wc1

]
= lc

[
−∂Ec

∂ec

∂ec

∂Q̂

∂Q̂

∂hc1

∂hc1

∂ηc1

∂ηc1
∂Wc1

] (42)

where lc > 0 was the learning rate of the critic network.

D.6.2 Actor network

The actor network is a three-layer MLP. It takes a state as input x ∈ Rm×1. The action output is
u ∈ Rn×1

u = φ (Wa2 ∗ φ (Wa1x)) (43)

where Wa1 ∈ R6×m and Wa2 ∈ Rn×6 were the weight matrices, and φ(·) was the tan-sigmoid
activation function of the hidden layer and output layer. the prediction error of actor is

ea,k =
1

2
(Qi (xk, uk))

2 (44)

The squared prediction error Ea, k, denoted as

Ea,k =
1

2
(ea,k)

2 (45)

Similarly, the weight matrix was updated based on gradient descent:

Wi+1 = Wi +∆Wi (46)

The weight updates of the hidden layer matrix Wa2,i were

∆Wa2,i = la

[
− ∂Ea

∂Wa2,i

]
= lc

[
−∂Ea

∂ea

∂ea

∂Q̂

∂Q̂

∂hc1

∂hc1

∂ηc1

∂ηc1
∂u

∂u

∂Wa2,i

] (47)

The weight updates of the input layer matrix Wa1,i were

∆Wa1,i = la

[
− ∂Ea

∂Wa1,i

]
= la

[
−∂Ea

∂ea

∂ea

∂Q̂

∂Q̂

∂hc1

∂hc1

∂ηc1

∂ηc1
∂u

∂u

∂ha2

∂ha2

∂ηa1

∂ηa1
∂Wa1,i

] (48)

where la > 0 is the learning rate of the actor.
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Appendix E Performance evaluation

E.1 Training and evaluation

A trial consists of 300 gait cycles of continuous walking, which is chosen according to published
results based on single-agent design studies using simulations and human experiments. Each gait
cycle will generate one data tuple (xk, uk, vk, Uv, Uu, xk+1). A trial is considered successful if all
state variables in xk reach their respective error tolerance bound (Appendix A.4, Table 2, bottom row).
Additionally, one gait phase at a time, if 8 out of 10 consecutive gaits meet the state error tolerance
bound condition, training has converged. If all 4 phases have converged within 300 gait cycles, the
trial is a success. Results reported in this paper are based on 16 trials of OpenSim simulations for
each study below.

Each of the three approaches used the same random seeds during training and evaluation. Evaluation
trials are performed on 5 randomly selected ones out of the 16 training trials, and evaluations are
conducted every 2 gaits during the first 50 gaits and then every 10 gaits afterwards, each using
the latest policy at the time of evaluation. Due to very low success rate of the tailored MADDPG
method and very low chance of retrieving a successful policy (Figure 3, grey lines), also that its
current implementation may be viewed as a decomposed COMA, we have removed MADDPG from
evaluation.

E.2 Evaluation metrics

In order to ensure that amputee subjects walk safely and continuously, we consider several perfor-
mance metrics: 1) This is an optimal control problem and thus the objective is to minimize regulation
cost (close to 0 is better). 2) Peak angle can directly reflect amputee safety, as small peak angle
difference prevents amputee stumbling in swing phase and unbalance in stance phase (close to 0 is
better). 3) Symmetry in walking can prevent secondary injury to the amputee (close to 0 is better).
4) Faster learning in terms of fewer tuning steps is practically important to amputees wearing a
prosthesis (fewer steps is better). 5) High success rate boosts amputees’ confidence to our method and
thus perform more natural walking pattern (higher is better). 6) Standard division for each metrics
above are a common measure in RL (smaller is better).

1) This is an optimal control problem and thus the objective is to minimize regulation cost, which is
unlike game problems to achieve maximum scores. As such, learning convergence is based on the
same criteria in Appendix Table 2, We thus can compare learning and success rates by reaching the
same convergence level

2) Additionally, maintaining human-prosthesis stability during walking is a must and is ensured in
our design (AppendixA.4 for safety consideration) . We consider this is a qualitative measure, which
is partially reflected in 2) success rate.

3) Faster learning means less tuning steps which is practically important to amputees wearing a
prosthesis. They will use less effort and high success rate boosts amputees’ confidence and thus
natural walking patterns. Symmetry is to prevent secondary injury, while variance reduction is a
common measure in RL. As a reference point, in current clinical practice, a highly skilled prosthesis
needs to spend hours and multiple clinic visits to arduously hand-tune the impedance parameters for
each user for a small number of walking tasks (most of which considered in our study).

Note that Energy consumption measure may not be appropriate for amputees. This measurement
is too slow and may not be reliable for human-prosthesis control updates (requires X10 minutes
per sample) as it susceptible to various contamination due to several confounding factors stemming
from a person’s physical, physiological, and psychological condition. Additional uncertainty in using
energy cost for amputee subjects can come from prosthesis fitting and related conditions.

Even though some applications such as exoskeleton control (for healthy subjects) use energy as
performance goal, it is chosen rather intuitively as it is unclear whether it is influenced by human
and/or robot. One important note is that metabolic cost has not been successfully demonstrated in the
control of wearable robotic prostheses in walking [84].
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Appendix F Summary of common approaches to shared autonomy

The human-prosthesis problem under our consideration falls into the area of physical human-robot
interaction (pHRI) as the human and the robotic prosthesis are in direct contact at all times. It is not,
however, the extensively studied pHRI problem archetype (e.g., cooperative object manipulation,
human operating in a remote environment), wherein interactions are usually mediated by a third
object.

For similar reasons, our pHRI problem is different in several important aspects from the scope of
shared autonomy problems. We illustrate below why the problem cannot be solved by existing
approaches in the literature.

1) Cross-training, such as [46] in which the cooperative tasks of placing screws and drilling screws
are switched between the human and robot, cannot be applied to the human-prosthesis problem. The
human and prosthesis have distinct (cooperative) roles, and there is no way to partition the walking
task for role interchange.

2) Bounded memory adaptation, used in a cooperative table clearing task [47] and a moving-a-table-
through-door task [85], is also not applicable. In these studies, the control was designed with the
robot having specific preferences and adapting based on direct human input. In our application, the
exact numerical values of the impedance parameters are not intuitive for the human to edit/update
directly.

3) The predict and blend approach [86, 48] to enable robot autonomy and user input or blend the
two is also problematic in this setting. In these studies, the human has the lead role (e.g. specifying
what pose to catch or which object to catch), and robot’s role is to facilitate completing the task.
In locomotion, there is no clear single goal from the perspective of the human, and it is difficult to
furnish user inputs which substantively inform the controller to improve gait synchronization (cf.
Point P4 of Common Issues).

4) Lastly, model-free deep RL [49], where shared autonomy is achieved by training an end-to-end
mapping from states and user inputs to agent action choices, is not conformable to our problem either.
Fundamentally, in these methods the robot’s role is reactive to the states/controls generated by the
human, and attention is not paid to the human learning and its intrinsic coupling to the robot learning.
In locomotion, human and robot are equal partners and learn simultaneously.

As shown, our pHRI control problem does not fit into those extensively studied frameworks. Ad-
ditionally, the first 3 approaches require a known dynamic model, a set of possible goals, and a
known user policy under a specific goal. These are too restrictive or unrealistic for human-prosthesis
problem. Modeling a human-robotic prosthesis system is challenging if not at all possible. Neither
do we know how human and a robotic leg interact. Even though the 4th approach does not require
a model as it rely on big data, it is still not feasible for amputee subjects as big data for individual
subjects is not available, and scaling from 12 control to hundreds if we are to design controls of knee,
ankle and hip joints would be unscalable.

Appendix G Publicly Available Code

Code for creating the human-robot environment and the original dHDP actor-critic learning algorithm
are provided at https://github.com/JennieSi-Lab-RLOC/NeurIPS2022/tree/main/OpenSim%20Model
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