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Abstract

Neural Collapse refers to the remarkable structural properties characterizing
the geometry of class embeddings and classifier weights, found by deep nets
when trained beyond zero training error. However, this characterization only
holds for balanced data. Here we thus ask whether it can be made invariant
to class imbalances. Towards this end, we adopt the unconstrained-features
model (UFM), a recent theoretical model for studying neural collapse,
and introduce Simplex-Encoded-Labels Interpolation (SELI) as an invariant
characterization of the neural collapse phenomenon. We prove for the UFM
with cross-entropy loss and vanishing regularization that, irrespective of
class imbalances, the embeddings and classifiers always interpolate a simplex-
encoded label matrix and that their individual geometries are determined
by the SVD factors of this same label matrix. We then present extensive
experiments on synthetic and real datasets that confirm convergence to
the SELI geometry. However, we caution that convergence worsens with
increasing imbalances. We theoretically support this finding by showing that
unlike the balanced case, when minorities are present, ridge-regularization
plays a critical role in tweaking the geometry. This defines new questions
and motivates further investigations into the impact of class imbalances on
the rates at which first-order methods converge to their preferred solutions.

1 Introduction
What are the unique structural properties of models learned by training deep neural networks
to zero training error? Is there an implicit bias towards solutions of certain geometry? How
does this vary across training instances, architectures, and data? These questions are at
the core of understanding the optimization landscape of deep-nets. Also, they are naturally
informative about the role of models since different parameterizations might affect preferred
geometries. Ultimately, such understanding makes progress towards explaining generalization
of overparameterized models.
Recently, remarkable new progress in answering these questions has been made by Papyan et al.
[26], who empirically discover and formalize the so-called Neural-collapse (NC) phenomenon.
NC describes geometric properties of the learned embeddings (aka last-layer features) and of
the classifier weights of deep-nets, trained with cross-entropy (CE) loss and balanced data
far into the zero training-error regime. The NC phenomenon produces a remarkably simple
description of a particularly symmetric geometry: (i) The embeddings of each class collapse
to their class mean (see (NC) property); and (ii) The class means align with the classifier
weights and they form a simplex equiangular tight frame (see (ETF) property). Importantly,
as noted by Papyan et al. [26], this simple geometry appears to be “cross-situational invariant”
across different architectures and different balanced datasets.
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Figure 1: Visualizing and contrasting the SELI and ETF geometries for k = 4 classes.

In this paper, we study Neural collapse with imbalanced classes: Is there a (ideally equally
simple) description of the geometry that is invariant across class-imbalanced datasets?
Contributions. We propose a new description capturing the geometric structure of learned-
embeddings and classifier-weights on possibly class-imbalanced data, which we call the Simplex-
Encoded-Labels Interpolation (SELI) geometry. This new geometry is a generalization of
the ETF geometry: It recovers the latter when data are balanced or when there are only
two classes, and also, unlike ETF, it remains invariant across different imbalance levels.
Importantly, it too, has a simple description: The matrix of learned logits interpolates a
simplex-encoded label (SEL) matrix Ẑ, and, the individual geometries of the embeddings
and classifiers are determined by the SVD factors of this same SEL matrix. Because the
particular arrangement of columns of the SEL matrix changes with the imbalance level, this
also impacts the geometric arrangement of the embedding and classifier vectors. Overall,
the norms and angles of these vectors admit simple closed-form expressions in terms of the
imbalance characteristics and the number of classes.
We use an example to illustrate this. Fig. 1a depicts the SEL matrix Ẑ ∈ R4×110 for a
STEP-imbalanced k = 4-class dataset with two majority classes of 50 examples each, and,
two minority classes of 5 examples each. Each column of Ẑ includes the k learned logits
for each one of the 110 examples in the dataset. Each such column has exactly one entry
equal to 1 − 1/k = 0.75 and three entries equal to −1/k = −0.25. The corresponding geometry
of the embeddings and classifiers, shown in the 3D plot, is found by an SVD of Ẑ: the
left eigenvectors determine the classifiers and the right ones the embeddings. Note that Ẑ
is rank 3, hence the geometry is 3D. Since embeddings collapse to their class means (see
(NC) property), we only show the four class-mean embeddings and the corresponding four
classifiers. Two of each correspond to majorities (“●” marker) and two to minorities (“+”
marker). The radii of the two concentric spheres are equal to the norms of the minority
classifiers (red sphere) and of the minority embeddings (blue sphere), respectively. Note that
the norms of minorities and majorities are different, and so are the angles. Moreover, the
classifiers are not aligned with the embeddings. Overall, the geometry is different compared
to the ETF geometry seen in the balanced case, which is shown in Fig. 1b. What remains
invariant across class-imbalances is that the logits (i.e. inner products between classifiers and
embeddings) only take values either 1 − 1/k or −1/k, so that the logit matrix is equal to the
SEL matrix. Equivalently, the learned model interpolates the simplex-encoding of the labels.
Below we explain the conception of this geometry and our contributions in detail. The initial
major challenge was: Assuming a class-imbalance-invariant geometry exists, how to find it?
To answer this question, we adopted the Unconstrained Feature Model (UFM ) previously
introduced as a two-layer proxy model to theoretically justify neural collapse [24, 3, 41].
Motivated by deep-learning practice and by studies on implicit bias of gradient descent (GD)
for unregularized CE minimization, we analyze the geometry of solutions to an unconstrained-
features Support Vector Machines (UF-SVM) problem. We prove, for STEP-imbalanced
data, any solution of the UF-SVM follows the SELI geometry. Thus, the learned end-to-end
model always interpolates a simplex labels encoding. We show that (ETF)Ô⇒ (SELI).
However, (SELI) /Ô⇒ (ETF) unless classes are balanced or there is just two of them (k = 2).
Next, we analyze training of the UFM with ridge-regularized CE. Unlike previous studies,
we find in the presence of imbalances that regularization matters as it changes the geometry
of solutions. In fact, we show that there is no finite regularization that leads to the SELI
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Figure 2: Convergence of learned classifiers, embeddings and corresponding logits to the SELI (solid
lines) vs ETF (dashed lines) geometries, measured using a ResNet-18 model, trained far beyond zero
training error on STEP-Imbalanced CIFAR10, MNIST and Fashion-MNIST, for different imbalance
ratios R; see Sec. 5 for metrics and discussion.

geometry. However, we also show that as regularization vanishes, the solutions do interpolate
the SEL matrix (after appropriate normalization.) Finally, we show that the SELI geometry
differs from the minority-collapse phenomenon [3], since the latter does not correspond to
solutions with zero training error. In fact, we show minority collapse: (i) does not occur
for small finite regularization and finite imbalance ratio, and (ii) occurs asymptotically for
vanishing regularization, but only asymptotically as the imbalance ratio grows.
We numerically test convergence to the SELI geometry in both synthetic and real class-
imbalanced datasets. For different imbalance levels, the learned geometries approach the SELI
geometry significantly faster compared to the ETF geometry (Fig. 2). However, convergence
worsens with increasing level of imbalance. A plausible theoretical justification is that as
we show regularization plays critical role under imbalances. We also consistently get better
convergence rate for the classifiers. We believe our observations strongly motivate further
investigations regarding potential frailties of “asymptotic” implicit bias characterizations
and how these might vary in multiclass and possibly imbalanced settings.

1.1 Related works
The original contribution by Papyan et al. [26] has attracted lots of attention resulting in
numerous followups within short time period, e.g., [41, 12, 3, 9, 21, 24, 5, 40, 32]. (See also
[9, Sec. E] for a review of the recent literature.) Several works have proposed and/or used
the UFM with CE training to analyze theoretical abstractions of NC [41, 12, 3, 5]. Other
works analyze the UFM with square loss [24, 9, 40, 32] and recent extensions accounting for
additional layers are studied in [32]. Here, we drove particular inspiration from Zhu et al. [41],
who presented a particularly transparent and complete analysis of the optimization landscape
of ridge-regularized CE minimization for the UFM under balanced data. In the same spirit,
we also relied on the UFM. However, our work is, to the best of our knowledge, the first
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Geometry of global minimizers for UFM
UF-RidgeCE (Eqn. (1)) UF-SVM (Eqn. (2))

Balanced ETF
[21, 5, 41, 3, 32]

ETF
[12], [Cor. 1.3]

Imbalanced
∀λ: NO SELI [Prop. 1]
λ→ 0: SELI [Prop. 2]

λ < 1
2 : NO minority collapse [Sec. H]

SELI
[Thm. 1]

Table 1: Summary of contributions and comparison to most-closely related work.

explicit geometry analysis for class-imbalanced data. See also Table 1 for a comparison.
The only previous work on neural collapse with imbalances is [3], which was the first to
note that collapse of the embeddings is preserved, but otherwise the geometry might skew
away from ETF. Also, Fang et al. [3] first proposed studying the new geometry using the
UFM and appropriate convex relaxations. With this setup, they presented an intriguing
finding, which they termed minority collapse: for asymptotically large imbalance levels, the
minorities’ classifiers collapse to the same vector. Instead, we derive an explicit geometric
characterization of both embeddings and classifiers for both majorities and minorities and for
all imbalance levels. Specializing these findings to vanishing regularization and imbalance
ratio growing to infinity recovers and gives new insights to minority collapse. Our results
also draw from and relate to the literatures on implicit bias, matrix factorization, and
imbalanced deep-learning. We defer a detailed discussion on these to Sec. I of the SM.
Notation. For matrix V ∈ Rm×n, V[i, j] denotes its (i, j) entry, vj denotes the j-th column,
VT its transpose and V† its pseudoinverse. We denote ∥V∥F , ∥V∥2, ∥V∥∗ the Frobenius,
spectral, nuclear norms of V. tr(V) denotes the trace of V. ⊙ and ⊗ denote Hadammard
and Kronecker products. V ≻ 0 denotes V is positive semidefinite and V ≥ 0 that V has
nonnegative entries. ∇VL ∈ Rm×n is the gradient of a scalar function L with respect to V.
1m denotes an m-dimensional vector of all ones and Im the m-dimensional identity matrix.
For vectors/matrices with all zero entries, we simply write 0, with dimensions understood
from context. ej denotes a column with a single non-zero entry of 1 in the j-th entry.

2 Problem setup
We adopt the unconstrained feature model (UFM) [24, 3] in a k-class classification setting.
Let Wd×k = [w1,w2,⋯,wk] be the matrix of classifier weights corresponding to the k classes.
Here, d is the feature dimension. We assume throughout that d ≥ k − 1. Next, we let
Hd×n = [h1,h2,⋯,hn] denote a matrix of n feature embeddings, each corresponding to a
different example in the training set. We assume each class c ∈ [k] has nc ≥ 1 examples
(thus, nc embeddings) so that ∑c∈[k] nc = n. Without loss of generality, we assume examples
are ordered. Formally, we assume that examples i = 1, . . . , n1 have labels yi = 1, examples
i = n1 + 1, . . . , n1 + n2 have labels yi = 2, and so on. The UFM trains the features hi, i ∈ [n]
(jointly with the weights wc, c ∈ [k]) without any further constraints, i.e., by minimizing the
ridge-regularized cross-entropy (CE) loss as follows [41]:

(Ŵλ, Ĥλ) ∈ arg minW,H L(WTH) + λ∥W∥2
F /2 + λ∥H∥2

F /2, (1)

where L(WTH) ∶= ∑i∈[N] log(1 +∑c≠yi e−(wyi
−wc)Thi) is the CE loss.

UFM as 2-layer linear net. The formulation above does not explicitly specify inputs.
Alternatively, consider training a 2-layer linear net with hidden dimension d, first / second
layers H / W, over n examples with n-dim. inputs xi = ei ∈ Rn, i ∈ [n] and labels as above.
Unconstrained-features SVM (UF-SVM). Since neural-collapse is observed when train-
ing with small / vanishing regularization [26], it is reasonable to consider an unregularized
version of (1). In this special case, gradient descent (with sufficiently small step size) on (1)
produces iterates that diverge in norm, but converge in direction [22, 12]. In fact, it has been
recently shown that the GD solutions converge in direction to a KKT point of the following
max-margin classifier [22, 12]:
(Ŵ, Ĥ) ∈ arg minW,H ∥W∥2

F /2 + ∥H∥2
F /2 sub. to (wyi −wc)Thi ≥ 1, i ∈ [n], c ≠ yi. (2)

For convenience, we refer to the optimization in (2) as unconstrained-features SVM (UF-
SVM). This minimization (unlike ‘standard’ SVM) is non-convex. Hence, KKT points (thus,
GD convergence directions) are not necessarily global minimizers; see discussion in Sec. 6.
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Class-imbalance model. To streamline the presentation, we focus on a setting with STEP
imbalances. This includes balanced data as special case by setting R = 1.
Definition 1 ((R,ρ)-STEP imbalance). In a (R,ρ)-STEP imbalance setting with label-
imbalance ratio R ≥ 1 and minority fraction ρ ∈ (0, 1), the following hold. All minority (resp.
majority) classes have the same sample size nmin (resp. Rnmin). There are (1−ρ)k majority
and ρk minority classes. Without loss of generality, classes {1, . . . , (1 − ρ)k} are majorities.

3 Global structure of the UF-SVM: SELI geometry

In this section, we show that the global minimizers of the non-convex program in (2) take a
particularly simple form that is best described in terms of a simplex-encoding of the labels.
Definition 2 (SEL matrix). The simplex-encoding label (SEL) matrix Ẑk×n is such that

∀c ∈ [k], i ∈ [n] ∶ Ẑ[c, i] = {1 − 1/k , c = yi
−1/k , c ≠ yi

. (3)

Onwards, let ẐT = UΛVT be the compact SVD of ẐT . Specifically, Λ is a positive (k − 1)-
dimensional diagonal matrix and Un×(k−1), Vk×(k−1) have orthonormal columns.

Each column ẑi ∈ Rk of Ẑ represents a class-membership encoding of datapoint i ∈ [n]. This
differs from the vanilla one-hot encoding ŷi = eyi in that ẑi = ŷi − 1

k
1k. Specifically, Ẑ has

exactly k different and affinely independent columns, which together with the zero vector
form a k-dimensional simplex, motivating the SEL name. Finally, note that ẐT1k = 0; thus,
rank(Ẑ) = k − 1. We gather useful properties about the eigenstructure of Ẑ in Sec. A.
Theorem 1 (Structure of the UF-SVM minimizers). Suppose d ≥ k − 1 and a (R,ρ)-STEP
imbalance setting. Let (Ŵ, Ĥ) be any solution and p∗ the optimal cost of the UF-SVM in
(2). Then, p∗ = ∥Ẑ∥∗ = ∥Ĥ∥2

F = ∥Ŵ∥2
F . Moreover, the following statements characterize the

geometry of global minimizers in terms of the the SEL matrix and its SVD.

(i) For the optimal logits it holds that ŴT Ĥ = Ẑ.
(ii) The Gram matrices satisfy ĤT Ĥ = UΛUT and ŴTŴ = VΛVT .

(iii) For partial orthonormal matrix R ∈ R(k−1)×d, Ŵ = RTΛ1/2VT and Ĥ = RTΛ1/2UT .

We outline the theorem’s proof in Sec. 3.3 and defer the details to Sec. C.1. The theorem
provides an explicit characterization of the geometry of optimal embeddings and classifiers
around the key finding that the optimal logit matrix is always equal to the SEL matrix.
Simplicity. The lack of symmetry in the imbalanced setting, makes it a priori unclear
whether a simple geometry description is still possible, as in the balanced case. But, the
theorem shows this to be the case. The key observation is that the optimal logit matrix
ŴT Ĥ equals Ẑ (cf. Statement (i)). Then, the Gram matrices of embeddings and classifiers
are given simply in terms of the singular factors of the SEL matrix (cf. Statements (ii),(iii)).
Invariance to imbalances. Equality of the optimal logit matrix to the SEL matrix is
the key invariant characterization across changing imbalances. This also implies that at
optimality all margins are equal irrespective of the imbalance type. The description of Gram
matrices in terms of the SVD of Ẑ is also invariant. Of course, the particular arrangement of
columns of Ẑ itself depends on the values of (R,ρ). In turn, the singular factors determining
the geometry of embeddings and classifiers depend implicitly on the same parameters. Thus,
the geometry differs for different imbalance levels; see Fig. 1 for an example.

3.1 Invariant properties: NC and SELI

Here, we further discuss the geometry of embeddings and classifiers induced by the SVD of
the SEL matrix. The first realization is that the embeddings collapse under all settings.
Corollary 1.1. The UF-SVM solutions satisfy the following irrespective of imbalance:
(NC) The embeddings collapse to their class means ĥi = µ̂c ∶= 1

nc
∑j∶yj=c ĥj , ∀c ∈ [k], i ∶ yi = c.
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This can be inferred from Theorem 1 (specifically from Statement (iii) and that U has
repeated columns.) A more straightforward argument is by directly inspecting (2) is as
follows. For any fixed (say optimal) Ŵ, the minimization over hi is: (i) separable and
identical for all i ∶ yi = c in same class c, and (ii) strongly convex. Hence, for all i ∶ yi = c,
there is unique minimizer corresponding to the fixed Ŵ; this must be their class mean.
Beyond (NC), Theorem 1 specifies the exact geometry of solutions.
Definition 3 (SELI geometry). The embedding and classifier matrices Hd×n and Wd×k
follow the simplex-encoded-labels interpolation geometry when for some scaling α > 0:

(SELI) [W
T

HT ] [W H] = α [VΛVT Ẑ
ẐT UΛUT ] , where Ẑ = VΛUT is the SEL matrix.

Corollary 1.2. The UF-SVM solutions follow the SELI geometry, irrespective of imbalance.

The (SELI) geometry specifies (up to a global positive scaling) the Gram matrices GW ∶=
WTW and GH ∶= HTH, and the logit matrix Z ∶= WTH: The diagonals of the Gram
matrices specify the norms 2, and together with their off-diagonal entries, they further
specify the angles between classifiers and between embeddings. Because of (NC), the norms
and angles of the embeddings are uniquely determined in terms of the norms and angles of
the mean-embeddings; thus, for all i ∈ [n], GH[i, j] = GH[i, `] if yj = y`. Finally, the norms
together with the entries of the logit matrix determine the angles between the two sets of: (a)
the k classifiers and (b) the k mean embeddings. Thus, they specify the degree of alignment
between the two sets of vectors. In the next section, we show that it is in fact possible to
obtain explicit closed-form formulas describing the norms, angles and alignment of classifier
and embedding vectors, in terms of the imbalance characteristics and the number of classes.
Remark 3.1 (Why “SELI”?). For the UFM, Z = WTH is the learned end-to-end model.
According to its definition, the SELI geometry implies WTH = αẐ. Thus, the learned model
interpolates (a scaling of) the SEL matrix, motivates the naming in Definition 3.

3.1.1 Special case: Balanced or binary data
For the special cases of balanced or binary data, Theorem 1 recovers the ETF structure, i.e.
(SELI)≡(ETF). Let M̂ = [µ̂1, . . . , µ̂k] denote the matrix of mean embeddings.
Corollary 1.3 (R = 1 or k = 2). Assume balanced data (R = 1) or binary classification
(k = 2). Then, any UF-SVM solution (Ŵ, Ĥ) follows the ETF geometry as defined in [26]:
(ETF) Ŵ = M̂ and M̂TM̂ = ŴTŴ = Ik − 1

k
1k1

T
k .

Thus, when data are balanced or binary: (i) the norms of the classifiers and of the embeddings
are all equal; (ii) the angles between any two classifiers or any two embeddings are all equal
to −1/k − 1; and, (iii) the set of classifiers and the set of embeddings are aligned. See Fig. 1b.

3.2 How the SELI geometry changes with imbalances
For k > 3, R > 1, (SELI) /Ô⇒ (ETF) and geometry is determined in terms of the SVD
factors of the SEL matrix. Sec. A in the SM explicitly characterizes these SVD factors and
leads to explicit closed-form formulas for the norms, angles and alignment in terms of R,ρ
and k,nmin in Sec. B. For example, the following lemma gives a formula for the ratio of
majority and minority norms. For simplicity, assume equal majorities and minorities.
Lemma 3.1 (Norm ratios). Assume (R, 1/2)-STEP imbalance. Suppose (W,H) satisfies
the (SELI) property. Let wmaj,hmaj (resp. wminor,hminor) denote majority (resp. minority)
classifiers and embeddings, respectively. Then,

∥wmaj∥22
∥wminor∥22

=

(1 − 2/k)
√

R +
√
(R+1)/2
k

(1 − 2/k) +
√
(R+1)/2
k

and
∥hmaj∥22
∥hminor∥22

=

1√
R
(1 − 2/k) + 1

k
√
(R+1)/2

(1 − 2/k) + 1
k
√
(R+1)/2

.

Thus, ∥wmaj∥2 ≥ ∥wminor∥2 and ∥hmaj∥2 ≤ ∥hminor∥2, with equalities iff R = 1 or k = 2.
2We assume throughout that the regularization strength is same for embeddings and classifiers. For
completeness we treat the general case in Sec. C.3 in the SM, where it is shown that different
regularization values do not change the SELI geometry as per Definition 3 apart from introducing
a (global) relative scaling factor between the norms of the embeddings and classifiers.
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The fact that CE learns majority classifiers of larger norm has been empirically observed in the
imbalanced deep-learning literature [17, 18]. Lemma 3.1 provides a theoretical justification
and precisely quantifies the ratio, not only for classifiers, but also for the learned embeddings.
As another example of closed-form formulas, the angles between any two majority (resp.
minority) classifiers wmaj,w′

maj (resp. wminor,w′
minor) satisfy (see Sec. B.1.2):

Cos(wmaj, w′
maj) =

−2
√

R +
√

(R + 1)/2
(k − 2)

√

R +
√

(R + 1)/2
and Cos(wminor, w′

minor) =
−2 +

√

(R + 1)/2
k − 2 +

√

(R + 1)/2
. (4)

Both formulas evaluate to −1/(k − 1) for R = 1. Also, the first is strictly decreasing and the
second strictly increasing in R, i.e. with larger R majority classifiers go further away from
each other, while minority classifiers come closer; see Fig. 1 and Fig. 6 in the SM.
Remark 3.2 (Asymptotics). While we focus on finite values of R, computing limits for
our formulas gives asymptotic characterizations as R →∞. As an example, it is easy to see
from (4) that the angle between the minority classifiers collapses to zero in that limit. This
phenomenon is called “minority collapse” by Fang et al. [3]. Here, we recover it as a special
case of Theorem 1 and of SELI. Note also that the rate at which the minority angle collapses
is rather slow (see also Fig. 6c in the SM). Additional details are included in Sec. B.

3.3 Proof sketch

We start from the following standard convex relaxation of the UF-SVM [31, 8, 41, 3]:
min

Z∈Rk×n
∥Z∥∗ subj. to Z[yi, i] −Z[c, i] ≥ 1, ∀c ≠ yi, i ∈ [n]. (5)

The relaxation follows by setting Z = WTH, thus Z is the logit matrix (also, the end-to-
end model) of the non-convex UF-SVM. Our key technical innovation is proving that Ẑ
is the unique minimizer of (5). There are three key ingredients in this. First, is a clever
re-parameterization of the dual program to (5), introducing the SEL matrix Ẑ in the dual:

max
B∈Rn×k

tr(ẐB) sub. to ∥B∥2 ≤ 1, B1k = 0, B⊙ ẐT ≥ 0 . (6)

Second, we prove that B̂ = UVT is the unique maximizer of the re-parameterized dual
problem in (6). While it is not hard to check that B̂ optimizes a relaxation of (6), it is far
from obvious that B̂ is unique, and, even more that it satisfies the third constraint. The key
technical challenge here is that the third constraint acts entry-wise on B. In fact, to proceed
with the proof we need that the constraint is not active, i.e. B̂⊙ ẐT > 0, or equivalently, that
the sign pattern of the entries of B̂ agrees with the sign pattern of the transpose SEL matrix
ẐT . We prove this by an explicit construction of the singular factors U,V exploiting the
structure of the SEL matrix. Once we have shown that B̂ is the unique maximizer and is
strictly feasible, we use the KKT conditions to prove that Ẑ is the unique minimizer of the
nuclear-norm relaxation in (5). To do this, we leverage that strict feasibility of B̂ implies by
complementary slackness all constraints in the primal (5) must be active at the optimum.
The proof of the theorem completes by arguing that the relaxation (6) is tight when d ≥ k − 1
allowing us to connect the UF-SVM minimizers to the SEL matrix Ẑ. Sec. C.1 for details.
Remark 3.3 (Comparison to literature). The common analysis strategy in all other related
works is deriving tight bounds on the CE loss (or related quantities, such as the minimum
margin), and, then identifying the structure in the parameters that achieves those bounds.
For example, [41, 5, 3] lower bound the CE loss and [12] upper bounds the minimum margin,
all using a similar elegant argument based on Cauchy-Schwartz and Jensen inequalities. The
ETF geometry is then uncovered by recognizing that it uniquely achieves those bounds. It is
not clear how to employ such exercises in the presence of imbalances, due to the absence of
symmetry properties (e.g. alignment of classifiers with embeddings). Our proof of Theorem 1
is more direct and is in large enabled by identifying the key role played by the logit matrix.

4 The role of regularization

In this section, we study the geometry of solutions (Ŵλ, Ĥλ) of ridge-regularized CE
minimization in (1), as a function of both the imbalance and the regularization parameter λ.
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4.1 Global minimizers as solutions to a convex relaxation

The regularized CE minimization in (1) is non-convex. Yet, its landscape is benign and the
global solution can be described in terms of the solution to a convex relaxation program [41].
Theorem 2 (Reformulated from [41]). Let λ > 0, d > k − 1 and (R,ρ)-STEP imbalance. Let
Ẑλ ∈ Rk×n be the unique minimizer of the convex nuclear-norm-regularized loss minimization,

Ẑλ ∶= arg min
Z
L(Z) + λ∥Z∥∗ , (7)

and, denote Ẑλ = VλΛλUT
λ its SVD. Any stationary point of (1) satisfies exactly one of the

following two. Either it is a strict saddle, or, it is a global minimizer (Ŵλ, Ĥλ) and satisfies

[Ŵ
T
λ

ĤT
λ

] [Ŵλ Ĥλ] = [Vλ

Uλ
]Λλ [VT

λ UT
λ ] . (8)

This ensures that any first-order method escaping strict saddles finds a stationary point
that is a global minimizer [41]. Moreover, it describes the structure of the global minimizers
of (1) in terms of Ẑλ, the solution to the convex minimization in (7). Structurally, the
characterization in (8) resembles the characterization in Theorem 1 regarding the UF-SVM.
However, Theorem 1 goes a step further and gives an explicit form for the logit matrix,
namely the SEL matrix Ẑ. Instead, Ẑλ in Theorem 2 is given implicitly as the solution to a
convex program. In the remaining of this section, we ask: how does Ẑλ compare to Ẑ for
different values of the regularizer? Also, how does the answer depend on the imbalance level?
Remark 4.1. Although not stated explicitly in this form, Theorem 2 is essentially retrieved
from the proof of [41, Theorem 3.2] with two small adjustments. First, Zhu et al. [41] only
considers balanced data. Here, we realize their proof actually carries over to the imbalanced
setting. Second, we relax their assumption d > k to d > k − 1 thanks to a simple observation:
1Tk∇ZL(Z) = 0, hence the CE gradient drops rank (see Sec. E.1 for details).

4.2 Regularization matters

For balanced data, the minimizers Ŵλ, Ĥλ of (1) satisfy the (NC) and (ETF) properties
(up to scaling by a constant) for every value of the regularization parameter λ > 0 [41] (see
also [5, 3, 21].) In our language, for all λ > 0, there exists scalar αλ such that a scaling
(αλŴλ, αλĤλ) of any global solution of the regularized CE minimization in (1) satisfies
the ETF geometry. Thus, for balanced data, up to a global scaling, the geometry is: (i)
insensitive to λ > 0 and (ii) the same as that of the UF-SVM minimizers.
Here, we show that the situation changes drastically with imbalances: the regularization
now plays a critical role and the solution is never the same as that of UF-SVM for finite λ.
Proposition 1 (Imbalanced data: Regularization matters). Assume imbalanced data and
k > 2. There does not exist finite λ > 0 and corresponding scaling αλ such that the scaled
solution (αλŴλ, αλĤλ) of (1) follows the (SELI) geometry. Equivalently, there does not
exist λ > 0 and αλ such that a scaling of the UF-SVM solution solves (1).

Proof. The proof relies on Theorem 1 as follows. For the sake of contradiction assume there
exists λ > 0 and some αλ > 0 such that the scaled UF-SVM minimizer (αλŴ, αλĤ) solves (1).
Since then (αλŴ, αλĤ) is a stationary point, it satisfies ∇WL(α2

λŴT Ĥ) + λαλŴ = 0 Ô⇒
αλĤ (∇ZL(α2

λŴT Ĥ))T = −λŴ Ô⇒ αλŴT Ĥ (∇ZL(α2
λŴT Ĥ))T = −λŴTŴ. But, by

Theorem 1: ŴT Ĥ = Ẑ and ŴTŴ = VΛVT . Moreover, thanks to the special structure of
Ẑ we can check that ∇ZL(α2

λẐ) = −α′λẐ for α′λ ∶= k/(exp(α2
λ) + k − 1); see Lemma A.1(v).

With these, and denoting α′′λ ∶= αλα′λ, we arrive at the following about the singular values of
Ẑ: α′′λẐẐT = λŴTŴ Ô⇒ α′′λVΛ2VT = λVΛVT Ô⇒ α′′λΛ2 = λΛ Ô⇒ Λ = (λ/α′′λ)Ik−1.

Thus, all singular values of Ẑ must be the same. However, we show in Lemma A.3 that this
is not the case unless data are balanced or k = 2. Thus, we arrive at a contradiction.
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Figure 3: Numerical study of global solutions (Ŵλ, Ĥλ) of (1) across the regularization path.

4.3 Vanishing regularization
As λ vanishes, it is not hard to check that minimizers diverge in norm and the relevant
question becomes: where do they converge in direction? The following answers this.
Proposition 2 (Regularization path leads to UF-SVM). Suppose d > k−1 and (R,ρ)-STEP
imbalance. It then holds that limλ→0 ŴT

λ Ĥλ/(∥Ŵλ∥2
F /2+∥Ĥλ∥2

F /2) = Ẑ/∥Ẑ∥∗.

Put together with the content of the previous section: For balanced data, the solution is
always the same up to global scaling. However, for imbalanced data, the solution changes
with λ and only in the limit of λ→ 0 does it align with that of the UF-SVM. Regarding the
proof of the proposition: thanks to Theorems 1 and 2, it suffices that the solution Ẑλ of
(7) converges in direction to the SEL matrix Ẑ; see Proposition 3 in Sec. D. To show this,
we critically use from Theorem 1 that Ẑ is unique minimizer of (5) (see Sec. E.3). Closely
related results are [28, 16], who studied the regularization path of p-norm regularized CE.
4.4 Imbalance emphasizes the impact of non-convexity
Recall interpreting the UFM as a two-layer linear net trained on the standard basis ei ∈ Rn.
Suppose instead that we train a simple k-class linear classifier Ξk×n on the same data by
minimizing ridge regularized CE: minΞ L(Ξ)+ λ

2 ∥Ξ∥2
F . It is easy to check that (after scaling)

Ẑ satisfies first-order optimality conditions. Thus, the optimal linear classifier is such that for
all λ > 0, there exists αλ such that Ξ̂λ = αλẐ. Contrasting this to Proposition 1, we find that
the end-to-end models minimizing ridge-regularized CE for a linear versus a two-layer linear
network are the same (in direction) when data are balanced, but differ under imbalances.

5 Experiments
In the experiments, we choose (R, 1/2)-STEP imbalances with varying R and we measure
convergence to either the (SELI) or the (ETF), in terms of the three metrics below
corresponding to classifiers, embeddings, and logits, respectively. Denote A = A/∥A∥F the
Euclidean normalization and GA = ATA the Gram matrix of matrix A. Classifiers:
We measure ∥GW − ĜW∥F , where ĜETF

W = Ik − 1
k
1k1

T
k =∶ G⋆ and ĜSELI

W = VΛVT (see
Definition 3). Embeddings: Because of (NC), it suffices to work with the matrix M of
mean embeddings (see Sec. 3.1.) Specifically, we measure ∥GM − ĜM∥F , where ĜETF

M = G⋆

and ĜSELI
M is computed from the n-dimensional ĜSELI

H = UΛUT by only keeping the k
columns/rows corresponding to the first example of each class. In the deep-net experiments,
we employ an additional centering of the class means with their (balanced) global mean;
see Sec. G. Logits: We measure ∥WTM −G⋆∥F . Note that, when NC holds this metric is
essentially analogous to measuring ∥WTH − Ẑ∥F .
UFM: Global minimizers. Fig. 3 investigates the global minimizers of regularized CE
(1) for the UFM and k = 4 classes. Thanks to Theorem 2, we obtain such minimizers by
solving (7) with CVX [6], and then, using (8) to infer the Gram matrices GW,GM and
logits WTH. Fig. 3c shows that the distance to ETF is large and not approaching zero for
any value of λ. On the other hand, Fig. 3a numerically validates Propositions 1 and 2: the
distance to SELI for all three metrics is non-zero for any finite λ > 0, but converges to zero
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Figure 4: Geometry of SGD solutions on minimizing CE for the UFM; SELI(Solid)/ETF(Dashed).

as λ→ 0. However, this convergence is slow and the rate becomes even worse as R increases.
Finally, Fig. 3b depicts the minimum margins of solutions across λ. For all sufficiently small
λ, the minimum margin is strictly positive (see Lemma D.4 in Sec. D.2). As a byproduct,
this shows that “minority collapse” [3] can only possibly occur for large λ; see also Sec. H.
UFM: SGD solutions. Fig. 4 investigates whether the solutions found by SGD are
consistent with the prediction of Theorem 1 about global minimizers of the UF-SVM. We fix
k = 4 and, for each R, we select nmin so that n = ((R + 1)/2)knmin ≈ 400. The weights of the
UFM are optimized using SGD with constant learning rate 0.4, batch size 4 and no weight
decay. We train for 105 epochs, much beyond zero training error and plot the distance to
SELI and ETF over time. We observe the following: (i) SGD iterates favor the SELI, instead
of the ETF geometry. As a matter of fact, the distance to SELI is decreasing with epochs,
suggesting an implicit bias of SGD towards global minimizers of the UF-SVM. (ii) However,
convergence is rather slow and rates get worse with increasing imbalance. (iii) Also, the
embeddings convergence is more elusive compared to that of the classifiers. Interestingly,
the last two observations are reminiscent of the trends we observed in Fig. 3a, suggesting
connections between regularization path and (S)GD iterates, worth investigating further.
Refer to Sec. F for additional numerical results on the UFM.
Deep-learning experiments. We investigate convergence to SELI in deep-net training
of (R,ρ = 1/2)-STEP imbalanced MNIST, Fashion-MNIST and CIFAR10 datasets with
ResNet-18 [10] and VGG-13 [29]; see Sec. G.1.1 for implementation details. The convergence
to SELI and ETF for the classifiers, (centered) mean-embeddings, and logits is illustrated
in Fig. 2 for ResNet and Fig. 11 in the SM for VGG. The vertical dashed lines mark the
zero-training-error epoch; see Sec. G.1.3. In all plots, the distance to SELI decreases as
training evolves and convergence is consistently better compared to the ETF. However,
convergence slows down for increasing imbalance (see R = 100). Also, convergence is worse
for the embeddings compared to classifiers. See Sec. G in the SM for additional results.

6 Outlook: Imbalance troubles and opportunities
We propose (SELI) as the class-imbalance-invariant geometry of classifiers and embeddings
learnt by overparameterized models when trained beyond zero training error. We arrive at it
after showing that the UF-SVM global minimizers follow this geometry. Subsequently, we
conjecture and show experiments supporting that: (C1) GD on the UFM leads to solutions
approaching the SELI asymptotically in the number of epochs (Sec. I.2 for connection to
implicit bias); (C2) training of deep-nets learns models that approach the SELI geometry
(Sec. G for additional experiments). We hope our results motivate further theoretical
and experimental investigations, especially since data imbalances appear frequently across
applications. Beyond that, we believe that further similar studies on identifying geometric
structures of learned embeddings and classifiers could offer new perspectives on generalization.
Our results could pave that way since they uncover different geometries (aka SELI for different
R values), each leading to different generalization (worse for increasing R [1]). Relatedly,
we envision that further such studies lead to algorithmic contributions in imbalanced deep-
learning as they can facilitate studying the implicit-bias effect of CE adjustments and
post-hoc techniques tailored to imbalanced data [2, 23, 39, 18, 17, 19, 20].
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