
Simplified Graph Convolution with Heterophily

Sudhanshu Chanpuriya
University of Massachusetts Amherst

schanpuriya@cs.umass.edu

Cameron Musco
University of Massachusetts Amherst

cmusco@cs.umass.edu

Abstract

Recent work has shown that a simple, fast method called Simple Graph Convolu-
tion (SGC) (Wu et al., 2019), which eschews deep learning, is competitive with
deep methods like graph convolutional networks (GCNs) (Kipf & Welling, 2017)
in common graph machine learning benchmarks. The use of graph data in SGC
implicitly assumes the common but not universal graph characteristic of homophily,
wherein nodes link to nodes which are similar. Here we confirm that SGC is indeed
ineffective for heterophilous (i.e., non-homophilous) graphs via experiments on
synthetic and real-world datasets. We propose Adaptive Simple Graph Convolution
(ASGC), which we show can adapt to both homophilous and heterophilous graph
structure. Like SGC, ASGC is not a deep model, and hence is fast, scalable, and
interpretable; further, we can prove performance guarantees on natural synthetic
data models. Empirically, ASGC is often competitive with recent deep models at
node classification on a benchmark of real-world datasets. The SGC paper ques-
tioned whether the complexity of graph neural networks is warranted for common
graph problems involving homophilous networks; our results similarly suggest
that, while deep learning often achieves the highest performance, heterophilous
structure alone does not necessitate these more involved methods.

1 Introduction

Data involving relationships between entities arises in biology, sociology, and many other fields, and
such data is often best expressed as a graph. Therefore, models of graph data that yield algorithms
for common graph machine learning tasks, like node classification, have wide-reaching impact. Deep
learning (LeCun et al., 2015) has enjoyed great success in modeling image and text data, and graph
convolutional networks (GCNs) (Kipf & Welling, 2017) attempt to extend this success to graph data.
Various deep models branch off from GCNs, offering additional speed, accuracy, or other features.
However, like other deep models, these algorithms involve repeated nonlinear transformations of
inputs and are therefore time and memory intensive to train.

Recent work has shown that a much simpler model, simple graph convolution (SGC) (Wu et al.,
2019), is competitive with GCNs in common graph machine learning benchmarks. SGC is much
faster than GCNs, partly because the role of the graph in SGC is restricted to a feature extraction
step in which node features are smoothed across the graph; by contrast, GCNs include graph
convolution steps as part of an end-to-end model, resulting in expensive backpropagation calculations.
However, the feature smoothing operation in SGC implicity assumes the common but not universal
graph characteristic of homophily, wherein nodes mostly link to similar nodes; indeed, recent
work (NT & Maehara, 2019) suggests that many GCNs may assume such structure. We ask whether
a feature extraction approach, that, like SGC, is free of deep learning, can tackle heterophilous (i.e.,
non-homophilous) graph structure. We see this work as extending the following broader research
question introduced by the SGC paper to a wider range of graphs:

Are nonlinearities, end-to-end backpropagation, and other characteristics of deep
learning essential to effective learning on graphs?

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Contributions We confirm that SGC, which uses a fixed smoothing filter, can indeed be ineffective
for heterophilous features via experiments on synthetic and real-world datasets. We propose adaptive
simple graph convolution (ASGC), which fits a different filter for each feature. These filters can be
smoothing or non-smoothing, and thus can adapt to both homophilous and heterophilous structures.
Like SGC, ASGC is not a deep model, instead being based on linear least squares, and hence is fast,
scalable, and interpretable. We propose a natural synthetic model for networks with a node feature,
Featured Stochastic Block Models (FSBMs), and prove that ASGC denoises the network feature
regardless of whether the model is set to produce homophilous or heterophilous networks, in contrast
to SGC, which we show is inappropriate for the heterophilous setting. Finally, we show that the
performance of ASGC is superior to that of SGC at node classification on real-world heterophilous
networks, and generally competitive with recent deep methods on a benchmark of both heterophilous
and homophilous networks. The SGC paper suggested that deep learning is not necessarily required
for good performance on common graph learning tasks and benchmarks involving homophilous
networks; our results suggest that simple methods can also be competitive for heterophilous networks.

2 Background

Preliminaries We first establish common notation for working with graphs. An undirected, possibly
weighted graph on n nodes can be represented by its symmetric adjacency matrix A ∈ Rn×n

≥0 . Letting
1 denote an all-ones column vector, d = A1 is the vector of degrees of the nodes; the degree matrix
D is the diagonal matrix with d along the diagonal. The normalized adjacency matrix is given by
S = D−1/2AD−1/2, while the symmetric normalized graph Laplacian is L = I −S, where I is an
identity matrix. Note that the eigenvectors of L are exactly the eigenvectors of S. It is a well known
fact that the eigenvalues of S are contained within [−1,+1]. It follows that the eigenvalues of L are
within [0, 2], so L is positive semidefinite.

Consider a feature x ∈ Rn on the graph, that is, a real-valued vector where each entry is associated
with a node. The quadratic form over L is known to have the following equivalency:

x⊤Lx = 1
2

∑
(i,j)∈[n]2

Aij

(
1√
di
xi − 1√

dj
xj

)2

.

Up to a reweighting based on the nodes’ degrees, this expression is the sum of squared differences of
the feature’s values between adjacent nodes. Hence, the quadratic form has a low value, near 0, if
the feature x is ‘smooth’ across the graph, that is, if adjacent nodes have generally similar values
of the feature. Similarly, the quadratic has a high value if the feature is ‘rough’ across the graph,
if adjacent nodes have generally differing values of the feature. When x is an eigenvector of L,
these ‘smooth’ and ‘rough’ cases correspond to the eigenvalue being low or high, respectively. (In
terms of eigenvalues of S, the opposite is true, with positive eigenvalues being smooth and negative
eigenvalues being rough.) More generally, decomposition of an arbitrary feature vector x as a linear
combination of the eigenvectors of L separates x into components ranging from ‘smooth’ to ‘rough’
across the graph. In the graph signal processing literature (Ortega et al., 2018; Huang et al., 2016;
Stanković et al., 2019), these smooth and rough components are also called low and high frequency
‘modes,’ respectively, based on the eigenvalues of L.

Simple graph convolution Our work is primarily inspired by the simple graph convolution (SGC)
algorithm (Wu et al., 2019). SGC comprises logistic regression after the following feature extraction
step, which can be interpreted as smoothing the nodes’ features across the graph’s edges:

xSGC = S̃Kx. (1)

This equation shows how a single raw feature x is filtered to produce the smoothed feature xSGC.
Here S̃ ∈ Rn×n is the normalized adjacency matrix after addition of a self-loop to each node (that
is, addition of the identity matrix to the adjacency matrix), and K ∈ Z+ is a hyperparameter; K
determines the radius of the filter, that is, the maximum number of hops between two nodes whose
features can directly influence others’ features in the filtering process. Wu et al. (2019) show that
the addition of the self-loop increases the minimum eigenvalue of S; intuitively, the self-loop limits
the extent to which a feature can be ‘rough’ across the graph. This results in the highest magnitude
eigenvalues of the normalized adjacency S̃ tending to be positive (smooth). Because the eigenvalues
of S̃ all have magnitude at most 1, powering up S̃ results in a filter which generally attenuates the

2

feature x, but does so least along these high magnitude, smooth eigenvectors. Hence the SGC filter
smooths out the feature locally along the edges. Since it attenuates the high-frequency modes more
than the low-frequency ones, SGC is described as a ‘low-pass’ filter.

Heterophily If node features are used for node classification or regression, smoothing the features
of nodes along edges encourages similar predictions along locally connected nodes. This seems
sensible when locally connected nodes should be generally similar in terms of features and labels; if
the variance in features and labels between connected nodes is generally attributable to noise, then
this smoothing procedure acts as a useful denoising step. Graphs in which connected nodes tend
to be similar are called homophilous or assortative. An example would be a citation network of
papers on various topics: papers concerning the same topic tend to cite each other. Much of the
existing work on graph models has an underlying assumption of network homophily, and there has
been significant recent interest (discussed further in Section 6) on the limitations of graph models at
addressing network heterophily/disassortativity, wherein connections tend to be between dissimilar
nodes. An example would be a network based on adjacencies of words in text, where the labels are
based on the part of speech: adjacent words tend to be of different parts of speech. For disassortative
networks, smoothing a feature across connections as in SGC may not be sensible, since encouraging
predictions of connected nodes to be similar is contrary to disassortativity.

3 Methodology

Adaptive SGC In our method, we replace the fixed feature propagation step of SGC (Equation 1)
with an adaptive one, which may or may not be smoothing based on the feature and graph. We
produce a filtered version xASGC of the raw feature x by multiplying x with a learned polynomial of
the normalized adjacency matrix S; this polynomial is set so that xASGC ≈ x:

xASGC =

(∑K

k=0
βkS

k

)
x ≈ x, (2)

where K is a hyperparameter which, as in SGC, controls the radius of feature propagation, and the
coefficients β ∈ RK+1 are learned by minimizing the approximation error in a least squares sense.
Note that, unlike SGC, we do not add self-loops to S. This approximation error would be trivially
minimized with β0 = 1 and all other coefficients set to zero, resulting in xASGC = S0x = x, so we
regularize the magnitude of β0.

More concretely, let T ∈ Rn×(K+1) denote the Krylov matrix generated by multiplying a feature
vector x ∈ Rn by the normalized adjacency matrix S up to some K ∈ Z>0 times:

T =
(
S0x;S1x;S2x; . . . ;SKx

)
. (3)

Here the leftmost column of T is just the raw feature x, and each column represents the feature
generated by propagating the feature vector to its left across the graph, i.e., by multiplying once by S.
We produce a filtered version xASGC of the raw feature x by linear combination of the columns of
T . That is, xASGC = Tβ, and we set the combination coefficients β ∈ Rk+1 by minimizing a loss
function as follows:

min
β

(
∥Tβ − x∥22 + (Rβ0)

2
)
. (4)

The term on the right is L2 regularization applied to the zeroth combination coefficient β0 (which
multiplies the raw feature S0x), and R ∈ R≥0 if a hyperparameter which controls the strength of
this regularization. Equation 4 is solved for the optimal coefficents β using linear least squares.

Intuition As noted above, if we set the regularization R = 0, or more generally in the limit as
R→ 0, the approximation error in Equation 4 is trivially minimized and results in xASGC = x; that
is, the learned filter just ignores the graph structure and maps the input feature through unchanged.
Nonzero regularization forces the least squares reconstruction to use the graph structure as it approxi-
mates the raw, unpropagated feature. Ideally, this results in a denoising effect that is able to extend
beyond SGC’s fixed smoothing along edges. For example, when a graph S is homophilous with

3

Algorithm 1 Adaptive Simple Graph Convolution (ASGC) Filter
Input: undirected graph A ∈ {0, 1}n×n, node feature x ∈ Rn,

number of hops K ∈ Z>0, regularization strength R ∈ R≥0

Output: ASGC-filtered feature xASGC
D ← diag (A1) {degree matrix}
S ←D−1/2AD−1/2 {normalized adjacency matrix}
T ∈ Rn×(K+1) ← 0 {k-step propagated features}
T0 ← x
for k = 1 to K do
Tk ← STk−1

end for
R ∈ RK+1 ← (R, 0, 0, . . . , 0)

β ← least squares solution of
(

T
R

)
β ≈

(
x
0

)
Return: Tβ

respect to a node feature x, in that neighbors tend to have similar feature values, the raw feature is
correlated positively with the propagated version Sx of the feature. By contrast, when a graph is
heterophilous with respect to a feature, the correlation is negative. The least squares in ASGC is able
to adapt to both cases and exploit this correlation, as well as correlations that occur when repeatedly
propagating features (i.e., correlations of x with Skx for k > 1).

Further remarks In theory, as K is raised to higher values, T will provide a sufficiently high-rank
basis that xASGC will be arbitrarily close to x, even if R is very high. Then ASGC would have
essentially the same performance as using the raw feature. While this issue could be resolved by
introducing a smaller regularization term for the remaining coefficients, we find that this is generally
not a problem over reasonable values of K on real-world graphs; hence, for simplicity, we do not
introduce this further regularization.

Pseudocode to filter a single feature is given in Algorithm 1. This algorithm is applied independently
to all features; note that this is trivially parallelizable across features. After this, as in SGC, the
filtered features are passed as input to a logistic regression classifier for node classification. The
core computations in Algorithm 1 are 1) creation of the matrix T by multiplying x by S up to K
times, for which the time complexity is O(mK), where m is the number of edges; and 2) linear least
squares with a matrix of dimensionality (n+ 1)× (K + 1), for which the complexity is O(nK2).

Spectral Interpretation of ASGC ASGC admits an interesting alternate interpretation based on
a spectral view of Equation 4. Let S = Qdiag(λ)Q⊤ be an eigendecomposition of S, and let
γ = Q−1x, that is, γ is the graph Fourier transform of the feature x. The central objective in ASGC
is the norm of the residual of the least squares in Equation 4. As in Parseval’s Theorem, due to the
orthogonality of Q, this norm is invariant under the graph Fourier transform:

∥xASGC − x∥2 = ∥Tβ − x∥2 =
∥∥Q⊤ (Tβ − x)

∥∥2 =
∥∥Q−1 (Tβ − x)

∥∥2 .
Recall that each column of T is of the form Six for some nonnegative power i. Then

Q−1Six = Q−1
(
Qdiag(λ)iQ⊤) (Qγ) = diag(λ)iγ,

and the minimization objective can be written as

∥xASGC − x∥2 =
∥∥Q−1Tc−Q−1x

∥∥2 = ∥diag(γ)Vλβ − γ∥2 = ∥diag(γ) (Vλβ − 1)∥2 ,

where, letting superscript ◦i denote the entrywise ith power of a vector,

Vλ =
(
λ◦0;λ◦1;λ◦2; . . . ;λ◦K)

is the Vandermonde matrix of powers 0 to K of the eigenvalues of S. Note that multiplying Vλ by
the vector β yields the values of the polynomial with coefficients β, evaluated at the eigenvalues λ.
Hence ASGC can be interpreted as fitting a K-degree polynomial over the graph’s eigenvalues, with
the target being all-ones. The value the polynomial takes over each eigenvalue represents how the

4

learned filter scales the component of the feature x which is along the direction of the corresponding
eigenvector of S; the all-ones target corresponds to a do-nothing filter. The least squares loss is
weighed proportionately to the magnitude of this component at each eigenvalue. That K is small,
and the use of regularization on the zeroth coefficient, precludes the learned filter actually being the
do-nothing filter, and instead results in a simple polynomial which adapts to the feature.

4 Motivating Example

We now use a synthetic network to demonstrate the capability of ASGC, and the potential deficiencies
of SGC, at denoising a single heterophilous feature. We propose Featured SBMs, which augment
stochastic block models (SBMs) (Holland et al., 1983) with a single feature; we note that our FSBMs
can be seen as a simplified variant of recently studied Contextual SBMs (Deshpande et al., 2018).

Definition 1 (Featured SBM). An SBM graph G has n nodes partitioned into r communities
C1, C2, . . . , Cr, with intra- and inter- community edge probabilities p and q. Let c1, c2, . . . , cr ∈
{0, 1}n be indicator vectors for membership in each community, i.e., the jth entry of ci is 1 if the jth

node is in Ci and 0 otherwise. A Featured SBM (FSBM) is such a graph model G, plus a feature
vector x = f + η ∈ Rn, where η ∼ N (0, σ2I) is zero-centered, isotropic Gaussian noise and
f =

∑
i µici for some µ1, µ2, . . . , µr ∈ R, which are the expected feature values of each community.

We consider FSBMs with n = 1000, 2 equally-sized communities C+ and C−, feature means
µ+ = +1, and µ− = −1, and noise variance σ = 1. Thus, there are 500 nodes in each community;
calling these communities ‘plus’ and ‘minus,’ the feature mean is +1 for nodes in the former and
−1 for the latter, to which standard normal noise is added. We generate different graphs by setting
the expected degree of all nodes to 10 (that is, 1

2 (p + q) · n = 10) , then varying the intra- and
inter-community edge probabilities p and q from p≫ q (highly homophilous, in that ‘plus’ nodes
are much more likely to connect to other ‘plus’ nodes than to ‘minus’ nodes) to q ≫ p (highly
heterophilous, in that ‘plus’ nodes tend to connect to ‘minus’ nodes). See Figure 1 for illustration.

0 500 1000
0

500

1000

Heterophilous
0 500 1000

0

500

1000

Neither
0 500 1000

0

500

1000

Homophilous

0 500 1000
Node

4

2

0

2

4
Fe

at
ur

e

Figure 1: Synthetic dataset visualization. Left: 3 sample adjacency matrices, from the highly
heterophilous (q ≪ p) to the highly homophilous (p ≫ q); for visual clarity, these graphs are 10
times denser the description in Section 4. Right: Feature values by node; note the feature means.

We seek to denoise the feature by exploiting the graph, which should result in the feature values
moving towards the means of the respective communities. We employ SGC and our ASGC, both with
number of hops K = 2. Figure 2 (left) shows the deviation from the feature means after denoising.
It also shows the proportion of nodes whose filtered feature differs from the community mean in
sign, that is, the error when classifying nodes into C+ and C−. By both metrics, ASGC outperforms
SGC on heterophilous graphs, while SGC outperforms ASGC on homophilous graphs. Both methods
can lose accuracy relative to just using the raw feature when the graph is neither homophilous
nor heterophilous, that is, when the graph is not informative about the communities. However,
the performance of ASGC increases similarly as the graph becomes either more heterophilous or
homophilous, whereas SGC’s performance improves significantly less in the heterophilous direction.
Finally, the performance gap between the two is smaller on homophilous graphs, particularly on sign
accuracy, suggesting that ASGC can better adapt to varying degrees of homophily/heterophily. We
examine the highly heterophilous case in more detail in Figure 2 (right), which shows the distributions
of the feature before and after filtering. The fixed propagation of SGC tends towards merging the two
communities’ feature distributions; by contrast, ASGC is able to keep them separated, preserves the
feature means, and pulls the feature distributions towards the respective community means.

5

0.4

0.6

0.8

M
ea

n
Ab

s.
Er

ro
r

-1.0
(Heterophilous)

-0.5 0 +0.5 +1.0
(Homophilous)p q

p + q

0.0

0.1

0.2

0.3

Si
gn

 E
rro

r
Raw
SGC
ASGC

0

50

100

150
Raw

0

50

100

150
SGC

4 3 2 1 0 1 2 3 4
0

50

100

150
ASGC

Figure 2: Left: Denoising results on the synthetic graphs using SGC and ASGC with number of
hops K = 2. ‘Raw’ shows the error when no filtering method is applied. ASGC and SGC are more
effective at denoising on heterophilous and homophilous networks, respectively, and ASGC is more
effective overall. Right: Distribution of the feature values before and after applying each of the
filtering methods on a very heterophilous synthetic graph (p−q

p+q = − 9/10), separated by ground-truth
communities. SGC tends to merge the two communities, while ASGC is able to keep them separated.

5 Theoretical Guarantees

To support our empirical investigation in Section 4, we now theoretically verify the limitations and
capabilities of SGC and ASGC at denoising FSBM networks. For simplicity, we analyze SGC without
the addition of a self-loop (that is, using S in Equation 1 rather than S̃); the distinction between
the two in the analysis vanishes as the number of intra-community edges grows, i.e., if n · p is high.
Further, we assume that the regularization hyperparameter R for ASGC is high, in which case the
coefficient β0 is fixed to zero, or equivalently, the column S0x is removed from the Krylov matrix
T in Equations 3 and 4. Finally, we analyze using expected adjacency matrices from the model,
though we conjecture that via concentration bounds one could extend the following results to the
sampled setting (Spielman, 2012). Here, we analyze FSBMs with 2 equally-sized communities. In
Appendix 9.1, we prove that these results extend to an arbitrary number of communities. Unless
otherwise specified, we use the same notation as Definition 1.
Theorem 1 (Effect of SGC on FSBM Networks). Consider FSBMs having 2 equally-sized communi-
ties with indicator vectors cu and cv , expected adjacency matrix A, and feature vector x = f + η.
Let xSGC be the feature vector returned by applying SGC, with number of hops K, to A and x. Fur-
ther, let µ̄ = 1

2 (µu+µv) be the average of the feature means. Then, xSGC = f ′+θucu+θvcv , where
f ′ = λK

2 f + (1− λK
2)(µ̄1), and θu and θv are both distributed according toN

(
0, 1

n (1 + λ2K
2)σ2

)
.

Proof. In expectation, an entry Aij of the adjacency matrix of the graph is p if both i, j ∈ Cu or
both i, j ∈ Cv, and it is q otherwise. The eigendecomposition Qdiag(λ)Q⊤ of the associated
normalized adjacency matrix S has two nonzero eigenvalues: λ1 = 1, with eigenvector q1 =
(1/

√
n)1 = (1/

√
n)(cu + cv), and λ2 = p−q

p+q , with q2 = (1/
√
n)(cu − cv). In the following analysis,

we use the fact that zero-centered, isotropic Gaussian distributions are invariant to rotation, meaning
Q⊤η = η′ ∼ N (0, σ2I) for any orthonormal matrix Q.

xSGC = SKx = Qdiag(λ)KQ⊤(µucu + µvcv + η)

= q1q
⊤
1 (µucu + µvcv + η) + λK

2 q2q
⊤
2 (µucu + µvcv + η)

= q1

(√
n
2 (µu + µv) + η′1

)
+ λK

2 q2

(√
n
2 (µu − µv) + η′2

)
=

(
1
2 (µu + µv) +

1√
n
η′1

)
(cu + cv) + λK

2

(
1
2 (µu − µv) +

1√
n
η′2

)
(cu − cv)

= λK
2 (µucu + µvcv) + (1− λK

2) · 12 (µu + µv)(cu + cv)

+ 1√
n

(
η′1 + λK

2 η′2
)
cu + 1√

n

(
η′1 − λK

2 η′2
)
cv

= λK
2 f + (1− λK

2)(µ̄1) + θ+cu + θ−cv,

6

where θ± = 1√
n
(η′1 ± λK

2 η′2), which has the specified distribution.

Note that λ2 = p−q
p+q ∈ [−1,+1], with negative values indicating heterophily (p < q) and positive

values indicating homophily (p > q). SGC only preserves the feature means in certain limiting cases.
In particular, this occurs as λ2 → +1, or as λ2 → −1 if K is even; then λK

2 → 1, so the expected
filtered feature vector f ′ → f . On the other hand, if λ2 → 0, then λK

2 → 0 and f ′ → µ̄1, that is,
the feature value means are averaged between the communities. Finally, if λ2 → −1 and K is odd,
then λK

2 → −1 and f ′ = µ̄1 + (µ̄1 − f) = µvcu + µucv: the feature value means are entirely
exchanged across the communities. By contrast, ASGC preserves the means, while similarly reducing
noise by an O(n) factor, with much looser restrictions on λ2 and K:
Theorem 2 (Effect of ASGC on FSBM Networks). Consider FSBMs with p ̸= q having 2 equally-
sized communities with community indicator vectors cu and cv , expected adjacency matrix A, and
feature vector x = f + η. Let xASGC be the feature vector returned by applying ASGC, with number
of hops K ≥ 2, to A and x. Then xASGC = f + θ′+cu + θ′−cv , where θ′+ and θ′− are both distributed
according to N

(
0, 2

nσ
2
)
.

Proof. The least squares in ASGC is equivalent to projecting the feature x onto the column span of
the Krylov matrix T =

(
S1x;S2x; . . . ;SKx

)
. Observe that the column span of T is contained in

the column span of S. Further, S is rank-2 (by the assumption that p ̸= q), so with probability 1 over
the distribution of η, as long as K ≥ 2, the column span of T equals that of S. Thus ASGC projects
x onto the column span of S, i.e., the span of q1, q2, the eigenvectors of S. The following analysis
proceeds exactly like the one for SGC, just without the terms for the eigenvalue λ2, so we use the
same notation and abbreviate the steps:

xASGC = QQ⊤x

= q1q
⊤
1 (µucu + µvcv + η) + q2q

⊤
2 (µucu + µvcv + η)

= f + θ′+cu + θ′−cv,

where θ′± = 1√
n
(η′1 ± η′2), which has the specified distribution.

Observe that in the sampled setting, standard matrix concentration results can be used to show that,
while S will be full rank with high probability, it will have two outlying eigenvalues, corresponding
to eigenvectors close to q1 and q2 (Spielman, 2012). It is well known that the span of the Krylov
matrix T will align well with these outlying eigendirections (Saad, 2011). Thus, we expect the
projection QQ⊤x = QQ⊤f +QQ⊤η to still approximately preserve f . At the same time, QQTη
is the projection of a random Gaussian vector η onto a fixed K-dimensional subspace. Thus, we will
have

∥∥QQ⊤η
∥∥2
2
≈ K

n ∥η∥
2
2, so ASGC will still perform significant denoising when K is small.

6 Related Work

Deep graph models As discussed previously, the SGC algorithm is a drastic simplification of the
graph convolutional network (GCN) model (Kipf & Welling, 2017). GCNs learn a sequence of node
representations that evolve via repeated propagation through the graph and nonlinear transformations.
The starting node representations H(0) are set to the input feature matrix X ∈ Rn×f , where f is the
number of features. The kth-step representations are H(k) = σ

(
SH(k−1)Θ(k)

)
, where Θ(k) is the

learned linear transformation matrix for the kth layer and σ is a nonlinearity like ReLU. After K such
steps, the representations are used to classify the nodes via a softmax layer, and the whole model is
trained end-to-end via gradient descent. Wu et al. (2019) observe that if the nonlinearities are ignored,
all of the linear transformations collapse into a single one, while the repeated multiplications by S
collapse into a single one by SK ; this yields their algorithm of the SGC filter (Equation 1) followed
by logistic regression. GCNs have spawned streamlined versions like FastGCN (Chen et al., 2018),
as well as more complicated variants like graph isomorphism networks (GINs) (Xu et al., 2019) and
graph attention networks (GATs) (Veličković et al., 2018); despite being much simpler and faster
than these competitors, SGC manages similar performance on common benchmarks, though, based
on the analysis of NT & Maehara (2019), this may be due in part to the simplicity of the benchmark
datasets in that they mainly exhibit homophily/assortativity.

7

Table 1: Statistics of datasets used in our experiments, separated by homophilous vs heterophilous.

Dataset CORA CITE. PUBM. COMP. PHOTO CHAM. SQUI. ACTOR TEXAS CORN.
Nodes 2708 3327 19717 13752 7650 2277 5201 7600 183 183
Edges 5278 4552 44324 245861 119081 31421 198493 26752 295 280
Features 1433 3703 500 767 745 2325 2089 932 1703 1703
Classes 7 6 3 10 8 5 5 5 5 5
H(G) 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.057 0.301

Addressing heterophily Like our work, some other recent methods attempt to address node
heterophily. Gatterbauer (2014) and Zhu et al. (2020a) augment classical feature propagation and
GCNs, respectively, to accommodate heterophily by modifying feature propagation based on node
classes. Zhu et al. (2020b) and Yan et al. (2021) analyze common structures in heterophilous graphs
and the failure points of GCNs, then propose GCN variants based on their analyses. The Geom-GCN
paper of Pei et al. (2020) introduces several of the real-world heterophilous networks which are
commonly used in related papers, including this one. Their method allows for long-range feature
propagation based on similarity of pre-trained node embeddings. The preceding is just a sample of
recent works in this area, which has seen a surge of activity (Liu et al., 2020; Luan et al., 2021; Suresh
et al., 2021). We note that, like the GNNs of Kipf & Welling (2017) but unlike SGC and our ASGC,
almost all of these methods are based on deep learning and are trained via backpropagation through
repeated feature propagation and linear transformation steps, and hence incur an associated speed
and memory requirement. Understanding and implementing these methods is also more complicated
relative to our method, which just constitutes a learned feature filter and logistic regression. We mainly
compare our results with the deep method which is most similar to ours, Generalized PageRank
GNN (GPR-GNN) (Chien et al., 2021). Like ASGC, GPR-GNN produces node representations by
linear combination of propagated versions of node features; unlike ASGC, the raw features are first
transformed by a neural network, and parameters for this network, as well as the linear combination
coefficients, are learned by backpropagation using the known node labels. To our knowledge, our
work is the first to show that heterophily can be handled using just feature pre-processing.

7 Empirical Performance

We test the performance of ASGC for the node classification task on a benchmark of real-world
datasets given in Table 1, and compare with SGC and several deep methods.

Real-world datasets We experiment on 10 commonly-used datasets, the same collection of datasets
as Chien et al. (2021). CORA, CITESEER, and PUBMED are citation networks which are common
benchmarks for node classification (Sen et al., 2008; Namata et al., 2012); these have been used
for evaluation on the GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018) papers, in
addition to SGC itself. The features are bag-of-words representations of papers, and the node
labels give the topics of the paper. COMPUTERS and PHOTO are segments of the Amazon co-
purchase graph (McAuley et al., 2015; Shchur et al., 2018); features are derived from product reviews,
and labels are product categories. These first 5 datasets are considered assortative/homophilous;
the remaining 5 datasets, which are disassortative/heterophilous, come from the Geom-GCN pa-
per (Pei et al., 2020), which also introduces the following measure of of a network’s homophily:
H(G) = 1

|V |
∑

v∈V
v’s neighbors with the same label as v

neighbors of v ∈ [0, 1]. We include this statistic in Table 1. The
latter 5 datasets have much lower values of H(G). CHAMELEON and SQUIRREL are hyperlink
networks of pages in Wikipedia which concern the two topics (Rozemberczki et al., 2021). Features
derive from text in the pages, and labels correspond to the amount of web traffic to the page, split into
5 categories. ACTOR is the actor-only induced subgraph of the film-director-actor-writer network
of Tang & Liu (2009). Nodes and edges represent actors and co-occurrence on a Wikipedia page.
Features are based on keywords on the webpage, and labels derive from the number of words on the
page, split into 5 categories. Finally, TEXAS and CORNELL are hyperlink networks from university
websites (Craven et al., 2000); features derive from webpage text, and the labels represent the type of
page: student, project, course, staff, or faculty.

Implementation The SGC and ASGC algorithms are implemented in Python using NumPy (Harris
et al., 2020) for least squares regression and other linear algebraic computations. We use scikit-

8

SGC AGC GCN GEO GPR

20

40

60

80
Cora

SGC AGC GCN GEO GPR
10
20
30
40
50
60
70

Citeseer

SGC AGC GCN GEO GPR
50

60

70

80

PubMed

SGC AGC GCN GPR
80

82

84

86

88
Computers

SGC AGC GCN GPR
89

90

91

92

93
Photo

SGC AGC GCN GEO GPR
50

55

60

65

70

75
Chameleon

SGC AGC GCN GEO GPR
30
35
40
45
50
55
60

Squirrel

SGC AGC GCN GEO GPR
20

25

30

35

40
Actor

SGC AGC GCN GEO GPR
40

50

60

70

80

90

Cornell

SGC AGC GCN GEO GPR
40

50

60

70

80

90

Texas

Figure 3: Test classification accuracy on the benchmark of datasets from Table 1 for selected methods:
2 non-deep, SGC and ASGC; and 3 deep, GCN, Geom-GCN, and GPR-GNN. Error bars show the
95% confidence intervals. SGC is generally competitive with the deep methods on the homophilous
datasets (top row), but not so on the heterophilous ones, whereas ASGC is competitive throughout.

learn (Pedregosa et al., 2011) for logistic regression with 1,000 maximum iterations and otherwise
default settings. For our implementations of SGC and ASGC, we treat each network as undi-
rected, in that if edge (i, j) appears, we also include edge (j, i). Like Chien et al. (2021), we use
random 60%/20%/20% splits as training/validation/test data for the 5 heterophilous datasets, as
in Pei et al. (2020), and use random 2.5%/2.5%/95% splits for the homophilous datasets, which
is closer to the original setting from Kipf & Welling (2017) and Shchur et al. (2018). We re-
lease code in the form of a Jupyter notebook (Pérez & Granger, 2007) demo which is available at
github.com/schariya/adaptive-simple-convolution.

Hyperparameter settings We tune the number of hops over K ∈ {1, 2, 4, 8}, roughly covering the
range analyzed in Wu et al. (2019), and the regularization strength R =

√
n ·R′ over log10(R

′) ∈
{−4,−3,−2,−1, 0}. This dependency on the number of nodes n allows the regularization loss to
scale with the least squares loss, which generally grows linearly with n. In Appendix 9.2, we report
results for some additional experiments investigating the effect of fixing these hyperparameters.

Classification results We apply our implementations of SGC and ASGC to these datasets and
report the mean test accuracy across 10 random splits of the data. As a baseline, we also report the
accuracy of logistic regression on the ‘raw,’ unfiltered features, ignoring the graph. We compare
to results from Chien et al. (2021) for 9 deep methods applied to these datasets. These methods
are 1) a multi-layer perceptron which ignores the graph; 2) GCN; 3) GAT; 4) SAGE (Hamilton
et al., 2017); 5) JKNet (Xu et al., 2018); 6) GCN-Cheby (Defferrard et al., 2016); 7) Geom-GCN; 8)
APPNP (Klicpera et al., 2019); and 9) GPR-GNN. Full results are given in Table 2 in Appendix 9.3.

We plot accuracies for selected methods in Figure 3. In addition to SGC and ASGC, we include
3 deep methods: ‘vanilla’ GCN; Geom-GCN, which originated the heterophilous datasets; and
GPR-GNN, a recent method claiming state-of-the-art performance. We find that SGC is generally
competitive with the deep methods on the homophilous datasets, but not so on the heterophilous ones,
whereas ASGC is generally competitive throughout. Interestingly, the datasets on which GPRGNN
significantly outperforms ASGC (PUBMED, ACTOR, TEXAS, CORNELL) are exactly those on which
a multi-layer perceptron significantly outperforms logistic regression; note that the latter two methods
both ignore the graph. This suggests that the some nonlinear processing of the node features may
be key to performance on these networks, separate from how the graph is exploited. To compactly
compare all 12 of the methods across these 10 datasets, we aggregate the performance across the
datasets as follows. For each dataset, we calculate the accuracy of each method as a proportion of
the accuracy of the best method. We plot the mean and the minimum across the 10 datasets of each
method’s proportional accuracies. See Figure 4. GPRGNN and ASGC achieve the highest mean

9

https://github.com/schariya/adaptive-simple-convolution

Raw SGC ASGC MLP GCN GAT SAGE JKNet GCN
Cheby

Geom
GCN

APP
NP

GPR
GNN

0.5

0.6

0.7

0.8

0.9

1.0 Mean

Raw SGC ASGC MLP GCN GAT SAGE JKNet GCN
Cheby

Geom
GCN

APP
NP

GPR
GNN

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Min

Figure 4: Test accuracy as a proportion of the best method’s accuracy; mean and minimum perfor-
mance over the 10 networks. The 3 non-deep (logistic regression) methods are on the left. ASGC
achieves the highest minimum performance, and is competitive with GPRGNN on the mean.

performance. Further, ASGC achieves the highest minimum performance: at worst, it achieves over
90% of the best method’s test accuracy on each of the datasets.

8 Conclusion, Limitations, and Broader Impact

Building on SGC, we propose a feature filtering technique, ASGC, based on feature propagation and
least-squares regression. We propose a natural class of synthetic featured networks, FSBMs, and
show both empirically and with theoretical guarantees that ASGC can denoise both homophilous and
heterophilous FSBMs, whereas SGC is inappropriate for the latter. Further, we find that ASGC is
generally competitive with recent deep learning-based methods on a benchmark of real-world datasets,
covering both homophilous and heterophilous networks. Our results suggest that deep learning is not
strictly necessary for handling heterophily, and that even a simple feature pre-processing method can
be competitive. We hope that, like SGC, ASGC can serve as a good first method to try, especially for
node classification on heterophilous networks, and a baseline for future works.

We note certain limitations of our work. First, our theoretical guarantees are in the fairly idealized
setting of FSBM networks; we provide no general guarantee of performance. Second, our empirical
evaluations on real-world datasets do not include any truly large-scale datasets (n ∼ 106 or higher),
though our collection of 10 datasets is a fairly broad selection amongst those which are commonly
used in related papers about heterophily. Finally, as we note in Section 6, there are many more
recent works and methods for handling heterophily to which we could compare our results. We limit
ourselves to a subset due to the amount of activity in this area; further, we are not asserting absolute
state-of-the-art results in this area, merely that a simple method like ours can be competitive.

We do not anticipate direct negative societal impacts of our work, but improved methods for network
analysis, including those for node classification, have social consequences. For example, improved
graph-based recommendations may be associated with negative impacts to well-being due to increased
social media use (Verduyn et al., 2017; Kelly et al., 2018). They might also contribute to concerns of
filter bubbles and polarization (Nguyen et al., 2014; Lee et al., 2014; Musco et al., 2018).

Acknowledgments and Disclosure of Funding

This project was partially supported by an Adobe Research grant, a Google Research Scholar
Award, and NSF Grants 2046235 and 1763618. We also thank Raj Kumar Maity and Konstantinos
Sotiropoulos for helpful conversations.

References
Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with graph convolutional networks via importance

sampling. International Conference on Learning Representations, 2018.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive universal generalized pagerank graph neural
network. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

10

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S.
Learning to construct knowledge bases from the world wide web. Artificial intelligence, 118(1-2):
69–113, 2000.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 3837–3845, 2016.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Contextual stochastic block models. In
Advances in Neural Information Processing Systems, 2018.

Gatterbauer, W. Semi-supervised learning with heterophily. arXiv preprint arXiv:1412.3100, 2014.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034, 2017.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.

Holland, P. W., Laskey, K. B., and Leinhardt, S. Stochastic blockmodels: First steps. Social networks,
5(2):109–137, 1983.

Huang, W., Goldsberry, L., Wymbs, N. F., Grafton, S. T., Bassett, D. S., and Ribeiro, A. Graph
frequency analysis of brain signals. IEEE Journal of Selected Topics in Signal Processing, 10(7):
1189–1203, 2016.

Kelly, Y., Zilanawala, A., Booker, C., and Sacker, A. Social media use and adolescent mental health:
Findings from the uk millennium cohort study. EClinicalMedicine, 6:59–68, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks
meet personalized pagerank. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature, 521(7553):436–444, 2015.

Lee, J. K., Choi, J., Kim, C., and Kim, Y. Social media, network heterogeneity, and opinion
polarization. Journal of Communication, 64(4):702–722, 2014.

Liu, M., Wang, Z., and Ji, S. Non-local graph neural networks. arXiv preprint arXiv:2005.14612,
2020.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.-W., and Precup, D. Is het-
erophily a real nightmare for graph neural networks to do node classification? arXiv preprint
arXiv:2109.05641, 2021.

McAuley, J., Targett, C., Shi, Q., and Van Den Hengel, A. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information retrieval, pp. 43–52, 2015.

Musco, C., Musco, C., and Tsourakakis, C. E. Minimizing polarization and disagreement in social
networks. In 2018, pp. 369–378, 2018.

Namata, G., London, B., Getoor, L., Huang, B., and EDU, U. Query-driven active surveying for
collective classification. In 10th International Workshop on Mining and Learning with Graphs,
volume 8, pp. 1, 2012.

11

Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., and Konstan, J. A. Exploring the filter
bubble: the effect of using recommender systems on content diversity. In Proceedings of the 23rd
International Conference on World Wide Web, pp. 677–686, 2014.

NT, H. and Maehara, T. Revisiting graph neural networks: All we have is low-pass filters. arXiv
preprint arXiv:1905.09550, 2019.

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M., and Vandergheynst, P. Graph signal processing:
Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Pei, H., Wei, B., Chang, K. C., Lei, Y., and Yang, B. Geom-gcn: Geometric graph convolutional
networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020.

Pérez, F. and Granger, B. E. IPython: a system for interactive scientific computing. Computing in
Science and Engineering, 9(3):21–29, May 2007. ISSN 1521-9615. doi: 10.1109/MCSE.2007.53.
URL https://ipython.org.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale attributed node embedding. J. Complex
Networks, 9(2), 2021.

Saad, Y. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., and Eliassi-Rad, T. Collective classification
in network data. AI Mag., 29(3):93–106, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network
evaluation. arXiv preprint arXiv:1811.05868, 2018.

Spielman, D. Spectral graph theory. Combinatorial Scientific Computing, 18, 2012.

Stanković, L., Daković, M., and Sejdić, E. Introduction to graph signal processing. In Vertex-
Frequency Analysis of Graph Signals, pp. 3–108. Springer, 2019.

Suresh, S., Budde, V., Neville, J., Li, P., and Ma, J. Breaking the limit of graph neural networks by
improving the assortativity of graphs with local mixing patterns. In KDD ’21: The 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August
14-18, 2021, pp. 1541–1551. ACM, 2021.

Tang, L. and Liu, H. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826.
ACM, 2009.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention
networks. International Conference on Learning Representations, 2018.

Verduyn, P., Ybarra, O., Résibois, M., Jonides, J., and Kross, E. Do social network sites enhance
or undermine subjective well-being? A critical review. Social Issues and Policy Review, 11(1):
274–302, 2017.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. Simplifying graph convolutional
networks. In Proceedings of the 36th International Conference on Machine Learning, pp. 6861–
6871. PMLR, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. Representation learning on
graphs with jumping knowledge networks. In International Conference on Machine Learning, pp.
5453–5462. PMLR, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? International
Conference on Learning Representations, 2019.

12

https://ipython.org

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D. Two sides of the same coin: Heterophily
and oversmoothing in graph convolutional neural networks. arXiv preprint arXiv:2102.06462,
2021.

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed, N. K., and Koutra, D. Graph neural
networks with heterophily. AAAI Conference on Artificial Intelligence, 2020a.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and Koutra, D. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020b.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Section 8 describes limitations.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 8

discusses potential negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 4
defines the FSBM networks and Section 5 describes any further assumptions for
theoretical results.

(b) Did you include complete proofs of all theoretical results? [Yes] Section 5 includes
proofs.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code is a
straightforward Jupyter demo, and it is included in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The implementation subsection of Section 7 specifies the data
splits and hyperparameters and where they came from.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Both the main results plot and the full table of results
include confidence intervals.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] As should be clear from the time
complexity discussion in Section 3 and the dataset statistics in Table 1, our method is
lightweight enough to run the benchmarks within a few hours on a laptop without a
GPU, so compute is not a significant concern.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We only use standard
node classification benchmarks and credit the original papers.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

We do not produce new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

13

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

9 Appendix

9.1 Multi-Community FSBM Proofs

We now prove generalizations of the theorems from Section 5 for FSBMs that may have more than 2
communities, i.e., with r ≥ 2 from Definition 1, and otherwise the same assumptions. The theorem
statements and their implications are essentially the same. The proofs are also similar in concept, just
using a different projection matrix Q, though the proof for the generalized Theorem 1 is significantly
more involved.

Theorem 1 (Effect of SGC on FSBM Networks). Consider FSBMs having r equally-sized communi-
ties with indicator vectors c1, c2, . . . , ck, expected adjacency matrix A, and feature vector x = f+η.
Let xSGC be the feature vector returned by applying SGC, with number of hops K, to A and x. Fur-
ther, let µ̄ = 1

r

∑
i µi be the average of the feature means. Then, xSGC = f ′ +

∑
i θici, where

f ′ = λK
2 f + (1− λK

2)(µ̄1), and each θi is distributed according toN
(
0, 1

n

(
1 + λ2K

2 (r − 1)
)
σ2

)
.

Proof. Let 1̂ = (1/
√
n)1, where 1 is the n-length all-ones vector. Let C = (c1; c2; . . . ; cr) and

Q =
(√

r/n
)
C. Note that 1̂ has norm 1, and the columns of Q are orthonormal. Finally, let

λ2 = p−q
p+(r−1)q . We we will not make use of this fact, but, as in the 2-community case from Section 5,

this is still the second largest eigenvalue of S, and it now has multiplicity r − 1.

The expected adjacency matrix of the graph is

A = (p− q)CC⊤ + q11⊤ = (p− q)(n/r)QQ⊤ + qn1̂1̂⊤,

and the expected degree vector is

d = A1 = (p− q)(n/r)1+ qn1 = (p+ (r − 1)q) (n/r)1,

yielding the expected normalized adjacency matrix

S =
(p− q)(n/r)QQ⊤ + qn1̂1̂⊤

(p+ (r − 1)q) (n/r)

= λ2QQ⊤ +
qr

p+ (r − 1)q
1̂1̂⊤

= λ2QQ⊤ + (1− λ2)1̂1̂
⊤

=
(
QQ⊤) (λ2I + (1− λ2)1̂1̂

⊤) .
Note that

(
QQ⊤)2 = QQ⊤ and

(
1̂1̂⊤)2 = 1̂1̂⊤ since these are projection matrices. We show that(

λ2I + (1− λ2)1̂1̂
⊤)K = λK

2 I +
(
1− λK

2

)
1̂1̂⊤

by induction as follows:(
λ2I + (1− λ2)1̂1̂

⊤)K =
(
λ2I + (1− λ2)1̂1̂

⊤) (λ2I + (1− λ2)1̂1̂
⊤)K−1

=
(
λ2I + (1− λ2)1̂1̂

⊤) (λK−1
2 I +

(
1− λK−1

2

)
1̂1̂⊤)

= λK
2 I +

(
λ2

(
1− λK−1

2

)
+ (1− λ2)λ

K−1
2 + (1− λ2)

(
1− λK−1

2

))
1̂1̂⊤

= λK
2 I +

(
1− λK

2

)
1̂1̂⊤.

Using this result and the fact that
(
QQ⊤) (1̂1̂⊤) = (

1̂1̂⊤) (QQ⊤) = 1̂1̂⊤, we have

SK =
((
QQ⊤) (λ2I + (1− λ2)1̂1̂

⊤))K
=

(
QQ⊤)K (

λ2I + (1− λ2)1̂1̂
⊤)K

=
(
QQ⊤) (λK

2 I +
(
1− λK

2

)
1̂1̂⊤) . (5)

15

Now, as in the 2-community case, Q⊤η = η′ ∼ N (0, σ2I), yielding

Q⊤x = Q⊤
(∑

i
µici + η

)
=

(√
r/n

)
(µ1, µ2, . . . , µr)

⊤
+ (η′1, η

′
2, . . . , η

′
r)

⊤
,

QQ⊤x =
∑

i

(
µi +

(√
r/n

)
η′i

)
ci, and (6)(

1̂1̂⊤) (QQ⊤)x =
(

1
r

∑
i

(
µi +

(√
r/n

)
η′i

))
1.

Finally, combining these equations with the expression for SK , we have

xSGC = SKx = λK
2

∑
i

(
µi +

(√
r/n

)
η′i

)
ci +

(
1− λK

2

) (
1
r

∑
j

(
µj +

(√
r/n

)
η′j

))
1

=
∑

i

(
λK
2

(
µi +

(√
r/n

)
η′i

)
+

(
1− λK

2

)
· 1r

∑
j

(
µj +

(√
r/n

)
η′j

))
ci

=
∑

i

(
λK
2 µi +

(
1− λK

2

)
µ̄+ λK

2

(√
r/n

)
η′i +

(
1− λK

2

)
· 1r

∑
j

(√
r/n

)
η′j

)
ci

= f ′ +
∑

i

(
λK
2

(√
r/n

)
η′i +

(
1− λK

2

)
· 1r

∑
j

(√
r/n

)
η′j

)
ci,

so the expectation f ′ of the filtered feature is as desired. Further, letting the noise term summands be
θici, we have

θi = λK
2

(√
r/n

)
η′i +

(
1− λK

2

)
· 1r

∑
j

((√
r/n

)
η′j

)
=

(
λK
2 + 1

r

(
1− λK

2

)) (√
r/n

)
η′i +

(
1− λK

2

) (
1
r

∑
j ̸=i

(√
r/n

)
η′j

)
,

which is normally distributed with mean 0 and variance(
λK
2 + 1

r

(
1− λK

2

))2 · rnσ2 +
(
1− λK

2

)2 · 1
r2 (r − 1) · rnσ

2

= σ2

n

((
rλK

2 +
(
1− λK

2

))2 · 1r +
(
1− λK

2

)2 (
1− 1

r

))
= σ2

n

(
1 + λ2K

2 (r − 1)
)
,

so the noise variance is also as desired.

Theorem 2 (Effect of ASGC on FSBM Networks). Consider FSBMs with p ̸= q having r equally-
sized communities with indicator vectors c1, c2, . . . , ck, expected adjacency matrix A, and feature
vector x = f + η. Let xASGC be the feature vector returned by applying ASGC, with number of
hops K ≥ r, to A and x. Then, xASGC = f +

∑
i θ

′
ici, where each θ′i is distributed according to

N
(
0, r

nσ
2
)
.

Proof. Following the same argument from Section 5, the least squares in ASGC is equivalent to
projecting the feature x onto the column span of the Krylov matrix T =

(
S1x;S2x; . . . ;SKx

)
.

The column span of T is contained in the column span of S, and since S is rank-r (by the assumption
that p ̸= q), with probability 1 over the distribution of η, as long as K ≥ r, the column span of T
equals that of S; by Equation 5 for S, this span is exactly that of the community indicator matrix
Q. Thus, ASGC is equivalent to multiplication of the feature x by the projection matrix QQ⊤, for
which we use Equation 6 as follows:

xASGC = QQ⊤x

=
∑

i

(
µi +

(√
r/n

)
η′i

)
ci

= f +
∑

i

(√
r/n

)
η′ici

= f +
∑

i
θ′ici,

where θ′i =
(√

r/n
)
η′i, which has the specified distribution.

16

9.2 Hyperparameter Study

We investigate the effect of two hyperparameter choices on validation accuracy: number of hops
K and regularization strength R′. We plot results for each hyperparameter in Figures 5 and 6,
respectively. Trends vary significantly across datasets, indicating that tuning these hyperparameters
is essential to optimal performance. This is perhaps to be expected for R′ in particular, since
this hyperparameter controls, in a fairly direct way, the influence of the raw feature on the nodes’
representations, whereas in an end-to-end method, the influence can be determined more indirectly
based on information from the class labels.

0.45

0.50

0.55

0.60

0.65

Cora

0.50

0.55

0.60

0.65

0.70
Citeseer

0.64

0.66

0.68

0.70

0.72

PubMed

0.725
0.750
0.775
0.800
0.825
0.850

Computers

0.800

0.825

0.850

0.875

0.900
Photo

1 2 4 8
0.45
0.50
0.55
0.60
0.65
0.70

Chameleon

1 2 4 8

0.35

0.40

0.45

0.50

0.55
Squirrel

1 2 4 8
0.26

0.28

0.30

0.32

0.34

0.36
Actor

1 2 4 8

0.6

0.7

0.8

Cornell

1 2 4 8
0.4

0.5

0.6

0.7

Texas

0.0 0.2 0.4 0.6 0.8 1.0

Number of Hops K

0.0

0.2

0.4

0.6

0.8

1.0

Raw SGC ASGC

Figure 5: Validation accuracy for the non-deep methods as the number of hops K is varied. Mean
accuracy over 10 random splits. For ASGC, at each value of K, we report the regularization strength
R′ with highest mean validation accuracy.

0.45

0.50

0.55

0.60

0.65

Cora

0.50

0.55

0.60

0.65

0.70
Citeseer

0.68
0.69
0.70
0.71
0.72
0.73

PubMed

0.725
0.750
0.775
0.800
0.825
0.850

Computers

0.800

0.825

0.850

0.875

0.900
Photo

-4 -3 -2 -1 0
0.45
0.50
0.55
0.60
0.65
0.70

Chameleon

-4 -3 -2 -1 0

0.35

0.40

0.45

0.50

0.55
Squirrel

-4 -3 -2 -1 0
0.30

0.32

0.34

0.36
Actor

-4 -3 -2 -1 0

0.6

0.7

0.8

Cornell

-4 -3 -2 -1 0
0.50
0.55
0.60
0.65
0.70
0.75

Texas

0.0 0.2 0.4 0.6 0.8 1.0

Regularization Strength log10 R ′

0.0

0.2

0.4

0.6

0.8

1.0

Raw SGC ASGC

Figure 6: Validation accuracy for the non-deep methods as the regularization strength R′ is varied.
Mean accuracy over 10 random splits. For ASGC, at each value of R′, we report the number of hops
K with highest mean validation accuracy.

17

9.3 Full Node Classification Results

Table 2 reports the full node classification performance results, which were deferred in Section 7.
We provide results for our implementations of logistic regression on raw features, SGC, and ASGC;
we also include results from Chien et al. (2021) for 9 deep methods, including their GPR-GNN. As
the authors note, the results for Geom-GCN (Pei et al., 2020) on datasets not originally tested in that
paper (in particular, the co-purchasing networks COMPUTERS and PHOTO) cannot be included due to
a pre-processing subroutine that is not publicly available.

Table 2: Complete results for mean test classification accuracy, as well as 95% confidence in-
tervals, on the benchmark of datasets from Table 1. Datasets are separated by homophilous vs
heterophilous. Methods are separated by non-deep vs deep. Results for deep methods are taken from
Chien et al. (2021).

CORA CITESEER PUBMED COMPUTER PHOTO CHAMELEON SQUIRREL ACTOR TEXAS CORNELL

Raw 55.09±1.81 60.30±1.55 77.79±0.95 76.07±0.57 82.97±0.58 49.56±0.88 34.16±0.74 36.28±0.77 86.49±2.88 86.49±2.88
SGC 78.16±1.32 70.18±1.00 73.90±2.22 87.14±0.45 92.03±0.51 57.70±1.62 44.98±1.28 30.07±0.76 55.68±5.71 54.32±6.41
ASGC 73.93±2.51 67.73±0.71 79.05±0.97 86.72±0.50 91.74±0.33 72.28±0.90 58.98±1.01 36.45±0.79 86.76±3.58 86.22±3.08
MLP 50.34±0.48 52.88±0.51 80.57±0.12 70.48±0.28 78.69±0.30 46.72±0.46 31.28±0.27 38.58±0.25 92.26±0.71 91.36±0.70
GCN 75.21±0.38 67.30±0.35 84.27±0.01 82.52±0.32 90.54±0.21 60.96±0.78 45.66±0.39 30.59±0.23 75.16±0.96 66.72±1.37
GAT 76.70±0.42 67.20±0.46 83.28±0.12 81.95±0.38 90.09±0.27 63.9±±0.46 42.72±0.33 35.98±0.23 78.87±0.86 76.00±1.01
SAGE 70.89±0.54 61.52±0.44 81.30±0.10 83.11±0.23 90.51±0.25 62.15±0.42 41.26±0.26 36.37±0.21 79.03±1.20 71.41±1.24
JKNet 73.22±0.64 60.85±0.76 82.91±0.11 77.80±0.97 87.70±0.70 62.92±0.49 44.72±0.48 33.41±0.25 75.53±1.16 66.73±1.73
GCN-Cheby 71.39±0.51 65.67±0.38 83.83±0.12 82.41±0.28 90.09±0.28 59.96±0.51 40.67±0.31 38.02±0.23 86.08±0.96 85.33±1.04
GeomGCN 20.37±1.13 20.30±0.90 58.20±1.23 NA NA 61.06±0.49 38.28±0.27 31.81±0.24 58.56±1.77 55.59±1.59
APPNP 79.41±0.38 68.59±0.30 85.02±0.09 81.99±0.26 91.11±0.26 51.91±0.56 34.77±0.34 38.86±0.24 91.18±0.70 91.80±0.63
GPRGNN 79.51±0.36 67.63±0.38 85.07±0.09 82.90±0.37 91.93±0.26 67.48±0.40 49.93±0.53 39.30±0.27 92.92±0.61 91.36±0.70

18

	Introduction
	Background
	Methodology
	Motivating Example
	Theoretical Guarantees
	Related Work
	Empirical Performance
	Conclusion, Limitations, and Broader Impact
	Appendix
	Multi-Community FSBM Proofs
	Hyperparameter Study
	Full Node Classification Results

