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Abstract

Neural tangent kernel (NTK) is a powerful tool to analyze training dynamics of
neural networks and their generalization bounds. The study on NTK has been
devoted to typical neural network architectures, but it is incomplete for neural
networks with Hadamard products (NNs-Hp), e.g., StyleGAN and polynomial
neural networks (PNNs). In this work, we derive the finite-width NTK formulation
for a special class of NNs-Hp, i.e., polynomial neural networks. We prove their
equivalence to the kernel regression predictor with the associated NTK, which
expands the application scope of NTK. Based on our results, we elucidate the
separation of PNNs over standard neural networks with respect to extrapolation
and spectral bias. Our two key insights are that when compared to standard neural
networks, PNNs can fit more complicated functions in the extrapolation regime
and admit a slower eigenvalue decay of the respective NTK, leading to a faster
learning towards high-frequency functions. Besides, our theoretical results can
be extended to other types of NNs-Hp, which expand the scope of our work. Our
empirical results validate the separations in broader classes of NNs-Hp, which
provide a good justification for a deeper understanding of neural architectures.

1 Introduction

In deep learning theory, neural tangent kernel (NTK) [Jacot et al., 2018] is a powerful analysis tool
that links the training dynamics of neural networks (NNs) trained by gradient descent to kernel
regression [Jacot et al., 2018, Arora et al., 2019]. NTK provides a tractable analysis for several
phenomena in deep learning, e.g., the global convergence of gradient descent [Chizat et al., 2019,
Du et al., 2019a,c], the inductive bias behind NNs [Bietti and Mairal, 2019], the spectral bias
toward different frequency components [Cao et al., 2019, Choraria et al., 2022], the extrapolation
behavior [Xu et al., 2021], and the generalization ability [Huang et al., 2020]. The study on the NTK
has been devoted to typical NNs architectures, e.g., fully-connected NNs [Jacot et al., 2018], residual
NNs [Tirer et al., 2020, Huang et al., 2020], convolutional NNs [Arora et al., 2019], graph NNs [Du
et al., 2019b] and recurrent NNs [Alemohammad et al., 2021].

Recently, NNs with Hadamard products (NNs-Hp), e.g., StyleGAN [Karras et al., 2019], polynomial
neural networks [Chrysos et al., 2020], non-local multiplicative networks [Babiloni et al., 2021], have
received increasing attention due to their expressivity and efficiency over traditional NNs [Chrysos
et al., 2021a, Campbell and Broun, 2000, Su et al., 2020]. There have been several works attempting
to demystify the success of NNs-Hp. For instance, Fan et al. [2021] prove that second-degree
multiplicative interactions allow NNs-Hp to enlarge the set of functions that can be represented
exactly with zero error. Choraria et al. [2022] reveal that NNs-Hp with second-degree multiplicative
interactions yield a faster learning of high-frequency function during training in the NTK regime.
Yet, the theoretical analysis of NNs-Hp with high-degree multiplicative interactions is still unclear.
More importantly, when using NTK for analysis, only deriving the NTK matrix is not enough. The
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complete and rigorous proof is achieved by including the stability of empirical NTK during training
and the equivalence to kernel regression. This is crucial to allow for NTK-based analysis of typical
NNs [Arora et al., 2019, Tirer et al., 2020] but is still missing for NNs-Hp.

Polynomial neural networks (PNNs) [Chrysos et al., 2021a], a special class of NNs-Hp [Jayakumar
et al., 2020], have showcased remarkable performance on a broad range of applications. As a step
for analyzing NNs-Hp, in this work, we take PNNs as an example, derive the NTK for PNNs with
high-degree multiplicative interactions and present a rigorous proof for the equivalence to the kernel
regression predictor. This analysis enables us to further examine properties of PNNs in a theoretical
perspective, e.g., the extrapolation [Haley and Soloway, 1992, Barnard and Wessels, 1992, Xu et al.,
2021]. Neural networks have demonstrated a stellar in-distribution performance but admit some
weaknesses in extrapolating simple arithmetic problems [Saxton et al., 2019] or learning simple
functions [Haley and Soloway, 1992, Sahoo et al., 2018]. Recently, Xu et al. [2021] theoretically and
empirically point out that two-layer fully-connected NNs with ReLU can only extrapolate to linear
functions. The contrast on the in-/out of-distribution performance of standard NNs motivates us to
scrutinize the extrapolation performance of PNNs. Additionally, studying the NTK of PNNs also
allows us to investigate its spectral bias.

Overall, our main contributions and findings can be summarized as follows:

• We derive the NTK formulation for PNNs with high-degree multiplicative interactions, and
give a concrete bound of the widths requirement for convergence to the NTK at initialization,
and stability during training, which allows us to bridge the gap among PNNs trained via
gradient descent and kernel regression predictor.

• We provably demonstrate the extrapolation behavior of PNNs as well as other NNs-Hp,
including multiplicative filter networks and non-local multiplicative networks. Our findings
highlight that PNNs can extrapolate to unseen data in a non-linear way. Besides, the spectral
analysis of NTK of PNNs is also given for better understanding. PNNs admit a slower
eigenvalue decay when compared to standard NNs, which leads to a faster learning towards
high-frequency functions.

• We empirically show the advantage of NNs-Hp over standard NNs in learning commonly
used functions, performing arithmetic extrapolation in real-world dataset, and conducting
visual analogy extrapolation task. We scrutinize the role of multiplicative interactions in the
task of learning spherical harmonics.

2 Background

In this section, we establish the notation, provide an overview of the NTK, and summarize the most
closely related work in NNs-Hp as well as extrapolation.

2.1 Notation

The core operators and symbols are summarized in Table 2 at Appendix A. Vectors (matrices) are
symbolized by lowercase (uppercase) boldface letters, e.g., a, A. We use the shorthand [n] :=

{1, 2, . . . , n} for a positive integer n. We use {xi}|X |
i=1and {yi}|X |

i=1 to present the input features and
their labels of the training set (X ,Y) in a compact space, where |X | denotes the cardinality. We
symbolize by K(x,x′) the neural tangent kernel with respect to input x and x′, the kernel matrix
K ∈ R|X |×|X| with K(ij) = K(xi,xj). Next, we denote by θt the parameter vector, ℓ2(θt) the
empirical training loss, and K̂t the empirical NTK Gram matrix at time step t. The following notation
is used:

ℓ2(θt) =
1

2

∑
(xi,yi)∈(X ,Y)

(f(xi;θt)− yi)
2, f(θt) = vec({f(xi;θt)}xi∈X ) ∈ R|X |,

J(θt) =
∂f(θt)

∂θ
∈ R|X |×|θ| , K̂t = J(θt)J(θt)

⊤ ∈ R|X |×|X|.
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2.2 Neural tangent kernel

Neural networks (NNs) are relevant to the kernel method, under proper initialization [Daniely et al.,
2016, de G. Matthews et al., 2018]. Jacot et al. [2018] provably demonstrate the equivalence between
the training dynamics by gradient descent and kernel regression induced by NTK when employing the
ℓ2 loss. Below, we recall the exact formula regarding the NTK of N -layer (N > 2) fully-connected
NNs with ReLU activation functions σ. The corresponding NTK K(x,x′) = KN (x,x′) could be
computed recursively by:

K0(x,x
′) = Σ0(x,x

′) = x⊤x′ , Kn(x,x
′) = Σn(x,x

′) + 2Kn–1(x,x
′) · Σ̇n(x,x

′) ,

∀n ∈ [N ], where the covariance Σn and its derivative Σ̇n are defined as:

Σn(x,x
′) = 2E(u,v)∼N (0,Λi)[σ(u)σ(v)] , Σ̇n(x,x

′) = E(u,v)∼N (0,Λn)[σ
′(u)σ′(v)]

Λn =

(
Σn–1(x,x) Σn–1(x,x

′)
Σn–1(x,x

′) Σn–1(x
′,x′)

)
,∀n ∈ [N ] .

Furthermore, the aforementioned NTK is extended to residual NNs [Tirer et al., 2020, Huang
et al., 2020], convolutional NNs [Arora et al., 2019], graph NNs [Du et al., 2019b], and recurrent
NNs [Alemohammad et al., 2021]. One of the roles of such kernel is to analyze the training behavior
of the neural network in the over-parameterization regime [Allen-Zhu et al., 2019, Chizat et al., 2019,
Du et al., 2019a,c, Zou et al., 2020]. For instance, Lee et al. [2019] showcase that NNs under the
NTK parameterization trained via gradient descent of any depth evolve to linear models. Meanwhile,
the inductive bias of convolutional networks, e.g., deformation stability of the images, has been
studied in the NTK regime [Bietti and Mairal, 2019].

2.3 Neural networks with Hadamard product

The ideas of augmenting NNs with Hadamard products to allow multiplicative interactions can be
traced back to at least [Ivakhnenko, 1971] that investigate the learnable polynomial relationships. Most
of the early work e.g., Group Method of Data Handling [Ivakhnenko, 1971], pi-sigma network [Shin
and Ghosh, 1991] do not scale well for high-dimensional signals. Chrysos et al. [2021b] factorize
the weight of NNs-Hp based on tensor decompositions to reduce the number of parameters. They
exhibit how to convert popular networks, such as residual networks, and convolutional NNs to the
form of NNs-Hp. StyleGAN can be also considered as a special type of NNs-Hp [Chrysos et al.,
2019]. New efforts have recently emerged to improve the architecture of the network with Hadamard
products [Chrysos et al., 2022, Babiloni et al., 2021, Chrysos et al., 2021a]. In this work, we adopt the
complementary approach and focus on the extrapolation as well as the spectral bias from a theoretical
perspective.

2.4 Extrapolation

The study of extrapolation properties of NNs dates at least back to the 90’s [Barnard and Wessels,
1992, Kramer and Leonard, 1990]. Experimental results show poor performance of NNs in case
of learning simple functions [Barnard and Wessels, 1992]. Browne [2002] also suggest that fully-
connected NNs cannot extrapolate well and then illustrate how the representation of the input impact
the extrapolation. Xu et al. [2021] provably present the extrapolation behavior of fully-connected
NNs and Graph neural networks. Specifically, they show that two-layer fully-connected NNs with
ReLU activation function extrapolate to linear function in extrapolation region. Our work exhibits
that NNs-Hp can learn high degree nonlinear function. Apart from fully-connected NNs, Martius
and Lampert [2016], Sahoo et al. [2018] showcase a novel family of functions with linear mapping
and a non-linear transformation, which allows to use sine and cosine as nonlinearities, enabling
such networks to learn well in analytical expressions. Note that there exist multiplication units in
EQL, which is similar to the multiplicative interactions in NNs-Hp. Lastly, extrapolation is often
considered in the context of out-of-distribution (OOD). There are other types of OOD problems with
specific setting among machine learning community [Shen et al., 2021]. Domain adaption assumes
the source and the target domains lie in the same feature space but with different distributions [Kouw
and Loog, 2019], which differs from extrapolation. Another category of methodologies to solve the
OOD generalization problem, called invariant learning, aims to discover high-level invariance feature
from low-level observations through latent causal mechanisms [Arjovsky et al., 2019, Rosenfeld et al.,
2021]. We believe our analysis can also encourage the usage of NNs-Hp in these OOD problems.
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3 Analysis of polynomial neural networks

Our analysis admits the following structure: we firstly study the NTK of PNNs in Section 3.1, which
allows us to conduct analysis towards extrapolation in Section 3.2, and spectral bias in Section 3.3.
In Appendix F and G, of the supplementary, we consider extensions beyond PNNs to other families
of NNs-Hp, e.g. multiplicative filter networks and non-local networks with Hadamard product.

3.1 Neural tangent kernel

We now derive the NTK for PNNs, then we bridge the gap between the PNNs trained by gradient
descent with respect to squared loss and the kernel regression predictor involving the NTK. The goal
of such networks is to learn an N -degree (N ≥ 2) polynomial expansion that outputs f(x) ∈ R with
respect to the input x ∈ Rd. For simplifying the proof, we consider the following formulation, which
is a reparameterization version of PNNs [Zhu et al., 2022]. The output is given by:

y1 =

√
2

m
σ(W1x), f(x) =

√
2

m
(WN+1yN ), yn =

√
2

m
σ (Wnx) ∗ yn–1, n = 2, . . . , N ,

(1)

where σ is the ReLU activation function, each element in WN+1 ∈ R1×m and Wn ∈ Rm×d,
∀n ∈ [N ] is independently sampled from N (0, 1). Three remarks are in place: a) We multiply by the

scaling factor
√

2
m after each degree to ensure that the norm of the network output is preserved at

initialization with infinite-width setting. b) ReLU is usually required to increase the performance of
NNs-Hp in experiments [Chrysos et al., 2021b]. c) The original formulation before reparameterization
that is used in practice can be founded in Appendix A.1.
Theorem 1. The NTK of N -degree PNNs, denoted by K(x,x′), can be derived as:

K(x,x′) = 2N · ⟨x,x′⟩κ1(x,x
′)(κ2(x,x

′))N−1 + 2(κ2(x,x
′))N , (2)

where κ1 and κ2 are defined by taking the random Gaussian vector w ∈ Rd

κ1 = E
w∼N (0,

√
2
m ·I)

(
σ̇(w⊤x) · σ̇(w⊤x′)

)
, κ2 = E

w∼N (0,
√

2
m ·I)

(
σ(w⊤x) · σ(w⊤x′)

)
. (3)

The proof, which is provided in Appendix B.1, is based on the standard NTK calculations. Differently
from the NTK of fully-connected NNs, the existence of multiplicative interaction in PNNs induces
the product form of multiple kernels.

Next, we provide the following theorem that gives a concrete requirement for the width of the
networks that is sufficient for nonasymptotic convergence to the NTK at initialization,
Theorem 2. (Convergence to the NTK). Consider N -degree PNNs, and assume that the width
m ≥ 24N−2 log2N−1(2N/δ) for any δ ∈ (0, 1), then given two inputs x,x′ on the unit sphere, with
probability at least 1− δ over the randomness of initialization, we have that

|⟨∇f(x),∇f(x′)⟩ −K(x,x′)| ≤ 4Nρe

√
log(2N/δ)

m
,

where ρ =
√
2
2N−1√

8e3(2π)1/4e1/24
(
e2/e(2N − 1)/2

)(2N−1)/2
.

Remark: This result exhibits that the inner product of the Jacobian converges to the NTK at
initialization, which has not been studied before for PNNs. This theorem allows us to further analyze
the extrapolation of networks from the perspective of the NTK. It should be noted that the term ρ and
the width are exponential with respect to the degree N , but the degree N is not large in practice, e.g.,
at most 15 in Chrysos et al. [2021a]. Hence the bound is fair and reasonable.

The technical key issue of the proof is to provide probability estimates for the multiplication of
several sub-exponential random variables. To this end, we rely on the concentration of sub-Weibull
random variables [Zhang and Chen, 2020] to complete the proof, which is deferred to Appendix B.2.

Below, we show that under certain conditions, the limiting NTK of PNNs stays constant when training
with gradient descent using the squared loss.
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Theorem 3 (Stability of the NTK during training). Given PNNs in Eq. (1), assume λmin(K) > 0 and
the training data (X ,Y) in a compact space admitting x ̸= x̃ for all x, x̃ ∈ X , then there exist some
constants R0 > 0, M > 1, and Q > 1 such that for every m > M , when minimizing the squared
loss with gradient descent and sufficient small learning rate η0 < 2(λmin(K) + λmax(K))−1, the
following inequality holds with high probability over the random initialization of model parameters:

sup
t

∥K̂t − K̂0∥F ≤ 6Q3R0

λmin(K)
√
m

. (4)

Remark: Eq. (4) shows that K̂t
m−→∞−−−−→ K̂0. Combining this with Theorem 2 that states K̂0

m−→∞−−−−→
K, we have K̂t

m−→∞−−−−→ K. Thus, the equivalence to the kernel regression is established. Note
that Theorem 3 is an extension from the corresponding theorem of NNs with residual connection
[Tirer et al., 2020] to PNNs. This property allows us to characterize the training process as kernel
regression.

Regarding the proof of Theorem 3, we firstly introduce the norm control of the Gaussian weight
matrices and then derive the local boundness and local Lipschitzness. The last step is to apply the
induction rules over different time steps. Details are presented in the Appendix B.3.

3.2 Extrapolation behavior

Firstly, we provide the definition of extrapolation from Xu et al. [2021] as follows.
Definition 1. Extrapolation occurs when the domain of test samples is larger than the support of the
training distribution.
Remark: The definition presented above is different from the one in Balestriero et al. [2021] that
claims extrapolation occurs when the test samples fall outside of the convex hull of the training set.
Even though these definitions are not completely compatible, both definitions are suitable for our
subsequent analysis.

The derived kernel in the previous section enables us to study how PNNs with ReLU activation
trained by gradient descent extrapolates. Note that our theorem can also be extended to the raw PNNs
without activation function.
Theorem 4 (γ-degree extrapolation of N -degree PNNs). Suppose we train N -degree (N ≥ 2) PNNs
f : Rd → R with infinite-width on {(xi, yi)}|X |

i=1, and the network is optimized with the squared loss
in the NTK regime. For any direction v ∈ Rd that satisfies ∥v∥2 = max{∥xi∥2}, let x0 = tv and
x = x0 + hv with t > 1 and h > 0 be the extrapolation data points, the output f(x0 + hv) follows
a γ-degree (γ ≤ N ) function with respect to h.

Apart from PNNs, we also consummate Xu et al. [2021] that consider the extrapolation of fully-
connected NNs with only two-layer. We provide the following generalized theorem for N -layer
(N > 2) fully-connected NNs.
Theorem 5 (Linear extrapolation of N -layer fully-connected NNs). Suppose we train N -layer
(N ≥ 2) fully-connected NNs f : Rd → R on {(xi, yi)}|X |

i=1. For any direction v ∈ Rd that satisfies
∥v∥2 = max{∥xi∥2}, x0 = tv and x = x0 + hv with t > 1 and h > 0 are extrapolation data
points, the output f(x0 + hv) follows a linear function with respect to h.

We have already shown that PNNs extrapolate to a function with specific degree and are more flexible
than fully-connected NNs. However, only knowing the information of the degree of the extrapolation
function is not enough. Naturally, we might ask under which condition PNNs can achieve successful
extrapolation. Below, we build our analysis in the NTK regime and show how the geometry of the
training set affects the behavior of PNNs.
Theorem 6 (Condition for exact extrapolation of PNNs). Let fρ(x) = x⊤βx be the target function
with x ∈ Rd and β ∈ Rd×d. Suppose that {xi}|X |

i=1 contains the orthogonal basis {ei}di=1 and
{−ei}di=1. Then if we train two-degree PNNs f on {(xi, fρ(xi))}|X |

i=1 with the squared loss in the
NTK regime, we have f(x) = x⊤βx for all x ∈ Rd.

Remark: This result only considers quadratic functions as our proof heavily relies on the construction
of the feature map of the NTK, which is harder for the high-degree case.

Due to constrained space, the proof of aforementioned theorems can be found in Appendix C.1 to C.3.
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3.3 Spectral analysis

In this section, we characterize the approximation properties of N -degree PNNs in the in-distribution
regime. By studying the spectral analysis in the form of a Mercer decomposition, we explicitly
show the eigenvalues and eigenfunctions of NTK. We firstly introduce some notation. Denote by
{Yk,j}N(d,k)

j=1 the spherical harmonics of degree k in d+ 1 variables. G(γ)
k represents the Gegenbauer

polynomials with respect to the weight function x 7→ (1− x2)γ−
1
2 and degree k. Finally, denote by

F (d, k) := 2k+d−1
k

(
k+d−2
d−1

)
.

The following lemma enables us to connect spherical harmonics to Gegenbauer polynomials.
Lemma 1. [Frye and Efthimiou, 2012, Theorem 4.11] For any x,x′ ∈ Sd, the k-degree spherical
harmonics in d+ 1 variables satisfies:

F (d,k)∑
j=1

Yk,j(x)Yk,j(x
′) = F (d, k)G

( d−1
2 )

k (⟨x,x′⟩).

For any dot product Mercer kernel K ′, denote by (µk)
∞
k=0the eigenvalues associated to the kernel,

we can apply the following Mercer’s decomposition in the form of spherical harmonics, and using
Lemma 1 we obtain:

K ′(x,x′) =

∞∑
k=0

µk

F (d,k)∑
j=1

Yk,j(x)Yk,j(x
′) =

∞∑
k=0

µkF (d, k)G
( d−1

2 )

k (⟨x,x′⟩), (5)

In order to study the decay rate of the eigenvalues, we can express the NTK as the product of multiple
kernels and present the decay rate of the eigenvalues of PNNs.
Theorem 7. Consider PNNs with N -degree (N ≥ 2) multiplicative interactions and denote by
(µk)

∞
k=0 the eigenvalues associated to the NTK. Then for k ≫ d , we have µk = Ω((N2k)−d/2).

The proof can be found in Appendix D. As a comparison, the decay rate for both deep fully-connected
NNs and residual NNs is Ω((k)−d) [Belfer et al., 2021]. Thus, we can see a slower decay rate
when inserting Hadamard product into standard NNs, which leads to a faster learning towards
high-frequency functions.

4 Experiments

Our experiments are organized as follows: We firstly showcase the extrapolation of NNs-Hp in
learning some common functions in Section 4.1. Next, we assess the extrapolation performance on
non-synthetic dataset in Section 4.2 and conduct the experiment in learning spherical harmonics in
Section 4.3. Due to the constrained space, the extrapolation in a visual analogy task and the spectral
bias in image classification task are deferred to Appendix E.5 and Appendix E.6, respectively.

4.1 Extrapolation in learning analytically-known functions

These experiments aim to examine the extrapolation behavior of NNs-Hp in regression tasks. Our
first experiment includes training the networks via the squared loss to fit several well-known and
analytically-known underlying functions. During prediction, we sample data points beyond the
training regime and observe the extrapolation performance. More details on implementation can be
found in Appendix E.1. We set the target function as fρ(x) = x3 + x2 − 10x+ 5 and use four-layer
fully-connected NN. As presented in Figure 1(a) and Figure 1(b), fully-connected NN extrapolates
linearly while NN-Hp approximates better the extrapolation part of the underlying non-linear function,
which are consistent with Theorem 4 and Theorem 5.

Learning fρ(x) = cos(2x). We choose eleven-layer fully-connected NN. The training set and
testing set are the same as in the previous experiment. Observing Figure 1(c) and Figure 1(d), we
find that NN-Hp is more flexible to learn the non-linear function outside the training region while
fully-connected NN still extrapolates linearly.

Learning fρ(x) = (x(1))
2
+(x(2))

2
, where x(1) and x(2) is the first and second dimension of x ∈ R2.

In this task, we choose three-layer NNs. Each model is trained with different data distribution, i.e.,
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Figure 1: Extrapolation function. The blue curve indicates the training regime while the pink
color symbolizes the extrapolation regime. (a) and (b) show the fitting results towards fρ(x) =
x3 + x2 − 10x+ 5. We can see that NN extrapolates linearly without the Hadamard product (Hp)
while NN-Hp is able to extrapolate to the underlying non-linear function nearly. (c) and (d) present
the fitting results towards fρ(x) = cos(2x). Notably, NN-Hp is more flexible to learn the non-linear
function outsides the training region.
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Figure 2: Fitting results for the underlying function fρ(x) = (x(1))
2
+ (x(2))

2
, where x(1) and x(2)

are the first and second dimension of x ∈ R2. Blue points indicate the training regime, pink points
symbolize the extrapolation regime, gray points indicate the underlying function. Left: We train
NNs-Hp with the training set containing support in all directions, the network is able to extrapolate
successfully. Middle: We train NN-Hp with the training set wherein two dimensions of the data are
fixed to be positive , NN-Hp fails to extrapolate. Right. We remove the Hadamard product of the
network, which leads to linear extrapolation.

the training set contains support in all directions in the first case while two dimension of the training
set are fixed to be positive in the second case. The result is visually depicted in Figure 2, which shows
that NNs-Hp can achieve exact extrapolation if the training set contains support in all directions
and thereby validates Theorem 6. On the other hand, NNs without the Hadamard product fail to
extrapolate to the underlying function due to its linear extrapolation.

4.2 Extrapolation in real-world dataset

In this section, we assess the extrapolation performance beyond synthetic datasets.

Variation of brightness. This experiment is conducted on two well-known grayscale image datasets:
MNIST dataset [LeCun et al., 1998] and Fashion-MNIST dataset Xiao et al. [2017]. For these two
datasets, the original range of the pixel of each image is [0, 1], we divided it by 10 for the raw training
set to construct the new one where the pixels range from 0 to 0.1. During extrapolation, we limit the
range of the original testing set to [0, rmax] through division, where rmax ∈ {0.1, 0.2, 0.3, ..., 1.0}, as
illustrated in the top two panels in Figure 3. Then we feed these images into the trained network
and evaluate the accuracy. More details on the implementation can be found in Appendix E.2. The
accuracy is summarized in the two bottom plots of Figure 3. We find that both networks achieve
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similar accuracy in the case rmax = 0.1 while inserting Hadamard product (Hp) into NN improves
the performance during extrapolation.

Arithmetic extrapolation. Now we turn to a more challenging task. As human we can usually
extrapolate to arbitrarily large numbers in arithmetic. How do the neural networks perform during
extrapolation? Following the setup of Bloice et al. [2020], we use MNIST dataset, where there are
100 different two-image combinations of the digits 0 ∼ 9. We randomly pick up 90 combinations as
the training set and the remaining 10 combinations as the extrapolation set. This problem is treated as
regression instead of classification for higher error tolerance following Bloice et al. [2020]. In addition,
if we design the network as a classifier, the number of the class will vary as the change of the splitting
for the training set and testing set. The network only outputs one single discrete value. However,
we still measure the accuracy by rounding the network output. five-layer fully-connected NNs and
convolution NNs are chosen as the baselines. For comparison, we implement NN-Hp with dense
layers and NN-Hp with convolution layers, respectively. More details on the implementation can be
found in the Appendix E.3. The results obtained by a three-fold cross validation are summarized
in Table 1, where we can see NN-Hp has a better extrapolation behavior in such more difficult task.

ExtrapolationTraining

(a) Examples and results on MNIST dataset.

ExtrapolationTraining

(b) Examples and results on Fashion-MNIST dataset.

Figure 3: The top two panels show the examples of extrapolation in MNIST dataset and Fashion-
MNIST dataset. rmax varies from 0.1 to 1.0. from left to right, indicating the variation of the darkness
of the image. The bottom two panels show the accuracy as rmax increasing. Both networks achieve
similar accuracy in the case rmax = 0.1 while inserting Hadamard product (Hp) into NN improves
the performance during extrapolation.

...
Seen pair   Unseen pair

ExtrapolationNetwork 

...
Training

Figure 4: A schematic illustration for the task of arithmetic extrapolation.

4.3 Spectral bias in learning spherical harmonics

Here, we aim to learn the linear combinations of spherical Harmonics where inputs are sampled
from the uniform distribution on the unit sphere. Our experiment follows the setup in Choraria
et al. [2022], which only considers NNs-Hp with one Hadamard product. The target function is
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Table 1: Results in the task of arithmetic extrapolation, which aims to predict the target label with
regression. ’Interpolation’ indicates the accuracy in the seen pairs during training while ’Extrapolation’
indicates the accuracy tested in those unseen pairs. Three ways are used for the network output: (a)
Rounding, the output is rounded to the nearest integer. (b) Floor/ceiling, A floor and ceiling function
is applied for the output and if one of those equals to the ground truth label, we treat it as a correct
prediction. (c) ±1. An error of ±1 is allowed. We can observe that NN-Hp has a better extrapolation
behavior compared with the baselines.

Method Rounding Floor/ceiling ±1

NN(Dense) Interpolation 0.980± 0.002 0.999± 0.000 0.999± 0.000
Extrapolation 0.436± 0.065 0.805± 0.042 0.887± 0.011

NN-Hp (Dense) Interpolation 0.926± 0.031 0.996± 0.001 0.999± 0.000
Extrapolation 0.554± 0.011 0.802± 0.010 0.889± 0.008

NN(Conv) Interpolation 0.945± 0.983 0.983± 0.021 0.994± 0.007
Extrapolation 0.617± 0.103 0.918± 0.016 0.953± 0.006

NN-Hp (Conv) Interpolation 0.991± 0.002 0.998± 0.000 0.999± 0.000
Extrapolation 0.825± 0.109 0.948± 0.006 0.963± 0.007
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Figure 5: Comparison of convergence curve of error projection lengths for NNs-Hp with N -
degree multiplicative interactions, where N ∈ {3, 6, 9} for different order harmonics with
K ∈ {1, 3, 4, 5, 8, 12} We can see the improvement for high-degree interactions in the rate of
convergence of error.

defined by: f∗(x) = 1
N(K)

∑
k∈K AkPk(⟨x, ζk⟩), K = {1, 3, 4, 5, 8, 12}, where Pk(t) denotes

the k-degree Gegenbauer polynomial, ζk are fixed vectors that are independently sampled from
uniform distribution on unit sphere, and N(K) is the normalizing constant. The error residuals
with different K are compared during the training process. Implementation details are deferred to
Appendix E.4. In this experiment, we show that increasing the number of multiplicative interactions
can improve the rate of convergence of error, as presented in Figure 5.

5 Conclusion

This paper examines neural network with Hadamard product with a particular focus on polynomial
neural networks from a theoretical perspective. The analysis of the NTK paves the way for knowing
interesting properties of the networks, such as the extrapolation behavior and the spectral bias.
Experimental results in learning analytically-known functions validate our hypothesis. We further
conduct several experiments in real-world datasets and demonstrate the advantage of inserting
Hadamard products into standard neural networks. We believe not only our framework provides a
good justification for a deeper understanding of neural architecture, but it also lays the foundations to
investigate other more complicated OOD problems such as domain adaption and invariant learning in
future work.
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